-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
false_position.cpp
128 lines (124 loc) · 3.89 KB
/
false_position.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/**
* \file
* \brief Solve the equation \f$f(x)=0\f$ using [false position
* method](https://en.wikipedia.org/wiki/Regula_falsi), also known as the Secant
* method
*
* \details
* First, multiple intervals are selected with the interval gap provided.
* Separate recursive function called for every root.
* Roots are printed Separatelt.
*
* For an interval [a,b] \f$a\f$ and \f$b\f$ such that \f$f(a)<0\f$ and
* \f$f(b)>0\f$, then the \f$(i+1)^\text{th}\f$ approximation is given by: \f[
* x_{i+1} = \frac{a_i\cdot f(b_i) - b_i\cdot f(a_i)}{f(b_i) - f(a_i)}
* \f]
* For the next iteration, the interval is selected
* as: \f$[a,x]\f$ if \f$x>0\f$ or \f$[x,b]\f$ if \f$x<0\f$. The Process is
* continued till a close enough approximation is achieved.
*
* \see newton_raphson_method.cpp, bisection_method.cpp
*
* \author Unknown author
* \author [Samruddha Patil](https://github.com/sampatil578)
*/
#include <cmath> /// for math operations
#include <iostream> /// for io operations
/**
* @namespace numerical_methods
* @brief Numerical methods
*/
namespace numerical_methods {
/**
* @namespace false_position
* @brief Functions for [False Position]
* (https://en.wikipedia.org/wiki/Regula_falsi) method.
*/
namespace false_position {
/**
* @brief This function gives the value of f(x) for given x.
* @param x value for which we have to find value of f(x).
* @return value of f(x) for given x.
*/
static float eq(float x) {
return (x * x - x); // original equation
}
/**
* @brief This function finds root of the equation in given interval i.e.
(x1,x2).
* @param x1,x2 values for an interval in which root is present.
@param y1,y2 values of function at x1, x2 espectively.
* @return root of the equation in the given interval.
*/
static float regula_falsi(float x1, float x2, float y1, float y2) {
float diff = x1 - x2;
if (diff < 0) {
diff = (-1) * diff;
}
if (diff < 0.00001) {
if (y1 < 0) {
y1 = -y1;
}
if (y2 < 0) {
y2 = -y2;
}
if (y1 < y2) {
return x1;
} else {
return x2;
}
}
float x3 = 0, y3 = 0;
x3 = x1 - (x1 - x2) * (y1) / (y1 - y2);
y3 = eq(x3);
return regula_falsi(x2, x3, y2, y3);
}
/**
* @brief This function prints roots of the equation.
* @param root which we have to print.
* @param count which is count of the root in an interval [-range,range].
*/
void printRoot(float root, const int16_t &count) {
if (count == 1) {
std::cout << "Your 1st root is : " << root << std::endl;
} else if (count == 2) {
std::cout << "Your 2nd root is : " << root << std::endl;
} else if (count == 3) {
std::cout << "Your 3rd root is : " << root << std::endl;
} else {
std::cout << "Your " << count << "th root is : " << root << std::endl;
}
}
} // namespace false_position
} // namespace numerical_methods
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
float a = 0, b = 0, i = 0, root = 0;
int16_t count = 0;
float range =
100000; // Range in which we have to find the root. (-range,range)
float gap = 0.5; // interval gap. lesser the gap more the accuracy
a = numerical_methods::false_position::eq((-1) * range);
i = ((-1) * range + gap);
// while loop for selecting proper interval in provided range and with
// provided interval gap.
while (i <= range) {
b = numerical_methods::false_position::eq(i);
if (b == 0) {
count++;
numerical_methods::false_position::printRoot(i, count);
}
if (a * b < 0) {
root = numerical_methods::false_position::regula_falsi(i - gap, i,
a, b);
count++;
numerical_methods::false_position::printRoot(root, count);
}
a = b;
i += gap;
}
return 0;
}