-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
qr_decompose.h
210 lines (188 loc) · 6.11 KB
/
qr_decompose.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/**
* @file
* \brief Library functions to compute [QR
* decomposition](https://en.wikipedia.org/wiki/QR_decomposition) of a given
* matrix.
* \author [Krishna Vedala](https://github.com/kvedala)
*/
#ifndef NUMERICAL_METHODS_QR_DECOMPOSE_H_
#define NUMERICAL_METHODS_QR_DECOMPOSE_H_
#include <cmath>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <limits>
#include <numeric>
#include <valarray>
#ifdef _OPENMP
#include <omp.h>
#endif
/** \namespace qr_algorithm
* \brief Functions to compute [QR
* decomposition](https://en.wikipedia.org/wiki/QR_decomposition) of any
* rectangular matrix
*/
namespace qr_algorithm {
/**
* operator to print a matrix
*/
template <typename T>
std::ostream &operator<<(std::ostream &out,
std::valarray<std::valarray<T>> const &v) {
const int width = 12;
const char separator = ' ';
out.precision(4);
for (size_t row = 0; row < v.size(); row++) {
for (size_t col = 0; col < v[row].size(); col++)
out << std::right << std::setw(width) << std::setfill(separator)
<< v[row][col];
out << std::endl;
}
return out;
}
/**
* operator to print a vector
*/
template <typename T>
std::ostream &operator<<(std::ostream &out, std::valarray<T> const &v) {
const int width = 10;
const char separator = ' ';
out.precision(4);
for (size_t row = 0; row < v.size(); row++) {
out << std::right << std::setw(width) << std::setfill(separator)
<< v[row];
}
return out;
}
/**
* Compute dot product of two vectors of equal lengths
*
* If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ and
* \f$\vec{b}=\left[b_0,b_1,b_1,...,b_L\right]\f$ then
* \f$\vec{a}\cdot\vec{b}=\displaystyle\sum_{i=0}^L a_i\times b_i\f$
*
* \returns \f$\vec{a}\cdot\vec{b}\f$
*/
template <typename T>
inline double vector_dot(const std::valarray<T> &a, const std::valarray<T> &b) {
return (a * b).sum();
// could also use following
// return std::inner_product(std::begin(a), std::end(a), std::begin(b),
// 0.f);
}
/**
* Compute magnitude of vector.
*
* If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ then
* \f$\left|\vec{a}\right|=\sqrt{\displaystyle\sum_{i=0}^L a_i^2}\f$
*
* \returns \f$\left|\vec{a}\right|\f$
*/
template <typename T>
inline double vector_mag(const std::valarray<T> &a) {
double dot = vector_dot(a, a);
return std::sqrt(dot);
}
/**
* Compute projection of vector \f$\vec{a}\f$ on \f$\vec{b}\f$ defined as
* \f[\text{proj}_\vec{b}\vec{a}=\frac{\vec{a}\cdot\vec{b}}{\left|\vec{b}\right|^2}\vec{b}\f]
*
* \returns NULL if error, otherwise pointer to output
*/
template <typename T>
std::valarray<T> vector_proj(const std::valarray<T> &a,
const std::valarray<T> &b) {
double num = vector_dot(a, b);
double deno = vector_dot(b, b);
/*! check for division by zero using machine epsilon */
if (deno <= std::numeric_limits<double>::epsilon()) {
std::cerr << "[" << __func__ << "] Possible division by zero\n";
return a; // return vector a back
}
double scalar = num / deno;
return b * scalar;
}
/**
* Decompose matrix \f$A\f$ using [Gram-Schmidt
*process](https://en.wikipedia.org/wiki/QR_decomposition).
*
* \f{eqnarray*}{
* \text{given that}\quad A &=&
*\left[\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_{N-1},\right]\\
* \text{where}\quad\mathbf{a}_i &=&
* \left[a_{0i},a_{1i},a_{2i},\ldots,a_{(M-1)i}\right]^T\quad\ldots\mbox{(column
* vectors)}\\
* \text{then}\quad\mathbf{u}_i &=& \mathbf{a}_i
*-\sum_{j=0}^{i-1}\text{proj}_{\mathbf{u}_j}\mathbf{a}_i\\
* \mathbf{e}_i &=&\frac{\mathbf{u}_i}{\left|\mathbf{u}_i\right|}\\
* Q &=& \begin{bmatrix}\mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 & \dots &
* \mathbf{e}_{N-1}\end{bmatrix}\\
* R &=& \begin{bmatrix}\langle\mathbf{e}_0\,,\mathbf{a}_0\rangle &
* \langle\mathbf{e}_1\,,\mathbf{a}_1\rangle &
* \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots \\
* 0 & \langle\mathbf{e}_1\,,\mathbf{a}_1\rangle &
* \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\
* 0 & 0 & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle &
* \dots\\ \vdots & \vdots & \vdots & \ddots
* \end{bmatrix}\\
* \f}
*/
template <typename T>
void qr_decompose(
const std::valarray<std::valarray<T>> &A, /**< input matrix to decompose */
std::valarray<std::valarray<T>> *Q, /**< output decomposed matrix */
std::valarray<std::valarray<T>> *R /**< output decomposed matrix */
) {
std::size_t ROWS = A.size(); // number of rows of A
std::size_t COLUMNS = A[0].size(); // number of columns of A
std::valarray<T> col_vector(ROWS);
std::valarray<T> col_vector2(ROWS);
std::valarray<T> tmp_vector(ROWS);
for (int i = 0; i < COLUMNS; i++) {
/* for each column => R is a square matrix of NxN */
int j;
R[0][i] = 0.; /* make R upper triangular */
/* get corresponding Q vector */
#ifdef _OPENMP
// parallelize on threads
#pragma omp for
#endif
for (j = 0; j < ROWS; j++) {
tmp_vector[j] = A[j][i]; /* accumulator for uk */
col_vector[j] = A[j][i];
}
for (j = 0; j < i; j++) {
for (int k = 0; k < ROWS; k++) {
col_vector2[k] = Q[0][k][j];
}
col_vector2 = vector_proj(col_vector, col_vector2);
tmp_vector -= col_vector2;
}
double mag = vector_mag(tmp_vector);
#ifdef _OPENMP
// parallelize on threads
#pragma omp for
#endif
for (j = 0; j < ROWS; j++) Q[0][j][i] = tmp_vector[j] / mag;
/* compute upper triangular values of R */
#ifdef _OPENMP
// parallelize on threads
#pragma omp for
#endif
for (int kk = 0; kk < ROWS; kk++) {
col_vector[kk] = Q[0][kk][i];
}
#ifdef _OPENMP
// parallelize on threads
#pragma omp for
#endif
for (int k = i; k < COLUMNS; k++) {
for (int kk = 0; kk < ROWS; kk++) {
col_vector2[kk] = A[kk][k];
}
R[0][i][k] = (col_vector * col_vector2).sum();
}
}
}
} // namespace qr_algorithm
#endif // NUMERICAL_METHODS_QR_DECOMPOSE_H_