-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
heap_sort.cpp
123 lines (113 loc) · 3.05 KB
/
heap_sort.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/**
* \file
* \brief [Heap Sort Algorithm
* (heap sort)](https://en.wikipedia.org/wiki/Heapsort) implementation
*
* \author [Ayaan Khan](http://github.com/ayaankhan98)
*
* \details
* Heap-sort is a comparison-based sorting algorithm.
* Heap-sort can be thought of as an improved selection sort:
* like selection sort, heap sort divides its input into a sorted
* and an unsorted region, and it iteratively shrinks the unsorted
* region by extracting the largest element from it and inserting
* it into the sorted region. Unlike selection sort,
* heap sort does not waste time with a linear-time scan of the
* unsorted region; rather, heap sort maintains the unsorted region
* in a heap data structure to more quickly find the largest element
* in each step.
*
* Time Complexity - \f$O(n \log(n))\f$
*
*/
#include <algorithm>
#include <cassert>
#include <iostream>
/**
*
* Utility function to print the array after
* sorting.
*
* @param arr array to be printed
* @param sz size of array
*
*/
template <typename T>
void printArray(T *arr, int sz) {
for (int i = 0; i < sz; i++) std::cout << arr[i] << " ";
std::cout << "\n";
}
/**
*
* \addtogroup sorting Sorting Algorithm
* @{
*
* The heapify procedure can be thought of as building a heap from
* the bottom up by successively sifting downward to establish the
* heap property.
*
* @param arr array to be sorted
* @param n size of array
* @param i node position in Binary Tress or element position in
* Array to be compared with it's childern
*
*/
template <typename T>
void heapify(T *arr, int n, int i) {
int largest = i;
int l = 2 * i + 1;
int r = 2 * i + 2;
if (l < n && arr[l] > arr[largest])
largest = l;
if (r < n && arr[r] > arr[largest])
largest = r;
if (largest != i) {
std::swap(arr[i], arr[largest]);
heapify(arr, n, largest);
}
}
/**
* Utilizes heapify procedure to sort
* the array
*
* @param arr array to be sorted
* @param n size of array
*
*/
template <typename T>
void heapSort(T *arr, int n) {
for (int i = n - 1; i >= 0; i--) heapify(arr, n, i);
for (int i = n - 1; i >= 0; i--) {
std::swap(arr[0], arr[i]);
heapify(arr, i, 0);
}
}
/**
*
* @}
* Test cases to test the program
*
*/
void test() {
std::cout << "Test 1\n";
int arr[] = {-10, 78, -1, -6, 7, 4, 94, 5, 99, 0};
int sz = sizeof(arr) / sizeof(arr[0]); // sz - size of array
printArray(arr, sz); // displaying the array before sorting
heapSort(arr, sz); // calling heapsort to sort the array
printArray(arr, sz); // display array after sorting
assert(std::is_sorted(arr, arr + sz));
std::cout << "Test 1 Passed\n========================\n";
std::cout << "Test 2\n";
double arr2[] = {4.5, -3.6, 7.6, 0, 12.9};
sz = sizeof(arr2) / sizeof(arr2[0]);
printArray(arr2, sz);
heapSort(arr2, sz);
printArray(arr2, sz);
assert(std::is_sorted(arr2, arr2 + sz));
std::cout << "Test 2 passed\n";
}
/** Main function */
int main() {
test();
return 0;
}