-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
EulerMethod.cs
84 lines (77 loc) · 3.23 KB
/
EulerMethod.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
using System;
using System.Collections.Generic;
namespace Algorithms.Numeric;
/// <summary>
/// In mathematics and computational science, the Euler method (also called forward Euler method)
/// is a first-order numerical procedure for solving ordinary differential equations (ODEs)
/// with a given initial value (aka. Cauchy problem). It is the most basic explicit method for numerical integration
/// of ordinary differential equations. The method proceeds in a series of steps. At each step
/// the y-value is calculated by evaluating the differential equation at the previous step,
/// multiplying the result with the step-size and adding it to the last y-value:
/// y_n+1 = y_n + stepSize * f(x_n, y_n).
/// (description adapted from https://en.wikipedia.org/wiki/Euler_method )
/// (see also: https://www.geeksforgeeks.org/euler-method-solving-differential-equation/ ).
/// </summary>
public static class EulerMethod
{
/// <summary>
/// Loops through all the steps until xEnd is reached, adds a point for each step and then
/// returns all the points.
/// </summary>
/// <param name="xStart">Initial conditions x-value.</param>
/// <param name="xEnd">Last x-value.</param>
/// <param name="stepSize">Step-size on the x-axis.</param>
/// <param name="yStart">Initial conditions y-value.</param>
/// <param name="yDerivative">The right hand side of the differential equation.</param>
/// <returns>The solution of the Cauchy problem.</returns>
public static List<double[]> EulerFull(
double xStart,
double xEnd,
double stepSize,
double yStart,
Func<double, double, double> yDerivative)
{
if (xStart >= xEnd)
{
throw new ArgumentOutOfRangeException(
nameof(xEnd),
$"{nameof(xEnd)} should be greater than {nameof(xStart)}");
}
if (stepSize <= 0)
{
throw new ArgumentOutOfRangeException(
nameof(stepSize),
$"{nameof(stepSize)} should be greater than zero");
}
List<double[]> points = new();
double[] firstPoint = { xStart, yStart };
points.Add(firstPoint);
var yCurrent = yStart;
var xCurrent = xStart;
while (xCurrent < xEnd)
{
yCurrent = EulerStep(xCurrent, stepSize, yCurrent, yDerivative);
xCurrent += stepSize;
double[] point = { xCurrent, yCurrent };
points.Add(point);
}
return points;
}
/// <summary>
/// Calculates the next y-value based on the current value of x, y and the stepSize.
/// </summary>
/// <param name="xCurrent">Current x-value.</param>
/// <param name="stepSize">Step-size on the x-axis.</param>
/// <param name="yCurrent">Current y-value.</param>
/// <param name="yDerivative">The right hand side of the differential equation.</param>
/// <returns>The next y-value.</returns>
private static double EulerStep(
double xCurrent,
double stepSize,
double yCurrent,
Func<double, double, double> yDerivative)
{
var yNext = yCurrent + stepSize * yDerivative(xCurrent, yCurrent);
return yNext;
}
}