-
-
Notifications
You must be signed in to change notification settings - Fork 45.6k
/
sol1.py
141 lines (110 loc) · 3.4 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""
Project Euler Problem 89: https://projecteuler.net/problem=89
For a number written in Roman numerals to be considered valid there are basic rules
which must be followed. Even though the rules allow some numbers to be expressed in
more than one way there is always a "best" way of writing a particular number.
For example, it would appear that there are at least six ways of writing the number
sixteen:
IIIIIIIIIIIIIIII
VIIIIIIIIIII
VVIIIIII
XIIIIII
VVVI
XVI
However, according to the rules only XIIIIII and XVI are valid, and the last example
is considered to be the most efficient, as it uses the least number of numerals.
The 11K text file, roman.txt (right click and 'Save Link/Target As...'), contains one
thousand numbers written in valid, but not necessarily minimal, Roman numerals; see
About... Roman Numerals for the definitive rules for this problem.
Find the number of characters saved by writing each of these in their minimal form.
Note: You can assume that all the Roman numerals in the file contain no more than four
consecutive identical units.
"""
import os
SYMBOLS = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000}
def parse_roman_numerals(numerals: str) -> int:
"""
Converts a string of roman numerals to an integer.
e.g.
>>> parse_roman_numerals("LXXXIX")
89
>>> parse_roman_numerals("IIII")
4
"""
total_value = 0
index = 0
while index < len(numerals) - 1:
current_value = SYMBOLS[numerals[index]]
next_value = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def generate_roman_numerals(num: int) -> str:
"""
Generates a string of roman numerals for a given integer.
e.g.
>>> generate_roman_numerals(89)
'LXXXIX'
>>> generate_roman_numerals(4)
'IV'
"""
numerals = ""
m_count = num // 1000
numerals += m_count * "M"
num %= 1000
c_count = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
x_count = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def solution(roman_numerals_filename: str = "/p089_roman.txt") -> int:
"""
Calculates and returns the answer to project euler problem 89.
>>> solution("/numeralcleanup_test.txt")
16
"""
savings = 0
with open(os.path.dirname(__file__) + roman_numerals_filename) as file1:
lines = file1.readlines()
for line in lines:
original = line.strip()
num = parse_roman_numerals(original)
shortened = generate_roman_numerals(num)
savings += len(original) - len(shortened)
return savings
if __name__ == "__main__":
print(f"{solution() = }")