-
-
Notifications
You must be signed in to change notification settings - Fork 45.6k
/
sol1.py
220 lines (178 loc) · 6.3 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
If we are presented with the first k terms of a sequence it is impossible to say with
certainty the value of the next term, as there are infinitely many polynomial functions
that can model the sequence.
As an example, let us consider the sequence of cube
numbers. This is defined by the generating function,
u(n) = n3: 1, 8, 27, 64, 125, 216, ...
Suppose we were only given the first two terms of this sequence. Working on the
principle that "simple is best" we should assume a linear relationship and predict the
next term to be 15 (common difference 7). Even if we were presented with the first three
terms, by the same principle of simplicity, a quadratic relationship should be
assumed.
We shall define OP(k, n) to be the nth term of the optimum polynomial
generating function for the first k terms of a sequence. It should be clear that
OP(k, n) will accurately generate the terms of the sequence for n ≤ k, and potentially
the first incorrect term (FIT) will be OP(k, k+1); in which case we shall call it a
bad OP (BOP).
As a basis, if we were only given the first term of sequence, it would be most
sensible to assume constancy; that is, for n ≥ 2, OP(1, n) = u(1).
Hence we obtain the
following OPs for the cubic sequence:
OP(1, n) = 1 1, 1, 1, 1, ...
OP(2, n) = 7n-6 1, 8, 15, ...
OP(3, n) = 6n^2-11n+6 1, 8, 27, 58, ...
OP(4, n) = n^3 1, 8, 27, 64, 125, ...
Clearly no BOPs exist for k ≥ 4.
By considering the sum of FITs generated by the BOPs (indicated in red above), we
obtain 1 + 15 + 58 = 74.
Consider the following tenth degree polynomial generating function:
1 - n + n^2 - n^3 + n^4 - n^5 + n^6 - n^7 + n^8 - n^9 + n^10
Find the sum of FITs for the BOPs.
"""
from __future__ import annotations
from collections.abc import Callable
Matrix = list[list[float | int]]
def solve(matrix: Matrix, vector: Matrix) -> Matrix:
"""
Solve the linear system of equations Ax = b (A = "matrix", b = "vector")
for x using Gaussian elimination and back substitution. We assume that A
is an invertible square matrix and that b is a column vector of the
same height.
>>> solve([[1, 0], [0, 1]], [[1],[2]])
[[1.0], [2.0]]
>>> solve([[2, 1, -1],[-3, -1, 2],[-2, 1, 2]],[[8], [-11],[-3]])
[[2.0], [3.0], [-1.0]]
"""
size: int = len(matrix)
augmented: Matrix = [[0 for _ in range(size + 1)] for _ in range(size)]
row: int
row2: int
col: int
col2: int
pivot_row: int
ratio: float
for row in range(size):
for col in range(size):
augmented[row][col] = matrix[row][col]
augmented[row][size] = vector[row][0]
row = 0
col = 0
while row < size and col < size:
# pivoting
pivot_row = max((abs(augmented[row2][col]), row2) for row2 in range(col, size))[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
augmented[row], augmented[pivot_row] = augmented[pivot_row], augmented[row]
for row2 in range(row + 1, size):
ratio = augmented[row2][col] / augmented[row][col]
augmented[row2][col] = 0
for col2 in range(col + 1, size + 1):
augmented[row2][col2] -= augmented[row][col2] * ratio
row += 1
col += 1
# back substitution
for col in range(1, size):
for row in range(col):
ratio = augmented[row][col] / augmented[col][col]
for col2 in range(col, size + 1):
augmented[row][col2] -= augmented[col][col2] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row], 10)] for row in range(size)
]
def interpolate(y_list: list[int]) -> Callable[[int], int]:
"""
Given a list of data points (1,y0),(2,y1), ..., return a function that
interpolates the data points. We find the coefficients of the interpolating
polynomial by solving a system of linear equations corresponding to
x = 1, 2, 3...
>>> interpolate([1])(3)
1
>>> interpolate([1, 8])(3)
15
>>> interpolate([1, 8, 27])(4)
58
>>> interpolate([1, 8, 27, 64])(6)
216
"""
size: int = len(y_list)
matrix: Matrix = [[0 for _ in range(size)] for _ in range(size)]
vector: Matrix = [[0] for _ in range(size)]
coeffs: Matrix
x_val: int
y_val: int
col: int
for x_val, y_val in enumerate(y_list):
for col in range(size):
matrix[x_val][col] = (x_val + 1) ** (size - col - 1)
vector[x_val][0] = y_val
coeffs = solve(matrix, vector)
def interpolated_func(var: int) -> int:
"""
>>> interpolate([1])(3)
1
>>> interpolate([1, 8])(3)
15
>>> interpolate([1, 8, 27])(4)
58
>>> interpolate([1, 8, 27, 64])(6)
216
"""
return sum(
round(coeffs[x_val][0]) * (var ** (size - x_val - 1))
for x_val in range(size)
)
return interpolated_func
def question_function(variable: int) -> int:
"""
The generating function u as specified in the question.
>>> question_function(0)
1
>>> question_function(1)
1
>>> question_function(5)
8138021
>>> question_function(10)
9090909091
"""
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def solution(func: Callable[[int], int] = question_function, order: int = 10) -> int:
"""
Find the sum of the FITs of the BOPS. For each interpolating polynomial of order
1, 2, ... , 10, find the first x such that the value of the polynomial at x does
not equal u(x).
>>> solution(lambda n: n ** 3, 3)
74
"""
data_points: list[int] = [func(x_val) for x_val in range(1, order + 1)]
polynomials: list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff]) for max_coeff in range(1, order + 1)
]
ret: int = 0
poly: Callable[[int], int]
x_val: int
for poly in polynomials:
x_val = 1
while func(x_val) == poly(x_val):
x_val += 1
ret += poly(x_val)
return ret
if __name__ == "__main__":
print(f"{solution() = }")