-
Notifications
You must be signed in to change notification settings - Fork 0
/
ppo_RNN_universal.py
756 lines (656 loc) · 32.9 KB
/
ppo_RNN_universal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppopy
import argparse
import os
import random
import time
from distutils.util import strtobool
import copy
import pandas as pd
import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions.categorical import Categorical
from torch.utils.tensorboard import SummaryWriter
from agents.heuristic_agent import HeuristicAgent
from environment.briscola_communication.actions import BriscolaCommsAction
def parse_args():
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
help="the name of this experiment")
parser.add_argument("--seed", type=int, default=1,
help="seed of the experiment")
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, `torch.backends.cudnn.deterministic=False`")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="if toggled, this experiment will be tracked with Weights and Biases")
parser.add_argument("--wandb-project-name", type=str, default="FORL_Briscola",
help="the wandb's project name")
parser.add_argument("--wandb-entity", type=str, default=None,
help="the entity (team) of wandb's project")
# Algorithm specific arguments
parser.add_argument("--total-timesteps", type=int, default=8*10000000,
help="total timesteps of the experiments")
parser.add_argument("--learning-rate", type=float, default=2.5e-4,
help="the learning rate of the optimizer")
parser.add_argument("--num-envs", type=int, default=16,
help="the number of parallel game environments")
parser.add_argument("--num-steps", type=int, default=8, #NOTE finite game
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--gamma", type=float, default=1.0,
help="the discount factor gamma")
parser.add_argument("--gae-lambda", type=float, default=0.95,
help="the lambda for the general advantage estimation")
parser.add_argument("--num-minibatches", type=int, default=4,
help="the number of mini-batches")
parser.add_argument("--update-epochs", type=int, default=4,
help="the K epochs to update the policy")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--clip-coef", type=float, default=0.2,
help="the surrogate clipping coefficient")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--ent-coef", type=float, default=0.01,
help="coefficient of the entropy")
parser.add_argument("--vf-coef", type=float, default=0.5,
help="coefficient of the value function")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
parser.add_argument("--num-test-games", type=int, default=1000,
help="")
parser.add_argument("--freq-eval-test", type=int, default=1000,
help="")
parser.add_argument("--freq-save-model", type=int, default=100000, help= "")
parser.add_argument("--save-old-model-freq", type=int, default=500,
help="")
parser.add_argument("--num-old-models-to-save", type=int, default=2, help="")
parser.add_argument("--briscola-communicate", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True)
parser.add_argument("--briscola-communicate-truth", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True)
parser.add_argument("--rnn-out-size", type=int, default=64)
parser.add_argument("--sample-batch-env", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True)
parser.add_argument("--hidden-dim", type=int, default=64)
parser.add_argument("--cuda-env", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument('--logdir', type=str,
default='log/')
parser.add_argument('--resume-path', type=str, default=None)
args = parser.parse_args()
if args.briscola_communicate:
args.num_steps = args.num_steps * 2
args.total_timesteps = args.total_timesteps*2
args.batch_size = int(args.num_envs * args.num_steps)
args.minibatch_size = int(args.batch_size // args.num_minibatches)
# fmt: on
return args
def make_env(seed, role_training, briscola_agents, verbose=False, deterministic_eval=False):
def thunk():
if args.briscola_communicate:
env = BriscolaEnv(1, args.rnn_out_size, normalize_reward=False, render_mode='terminal_env' if verbose else None,
role=role_training, agents=briscola_agents, deterministic_eval=deterministic_eval, device=ENV_DEVICE,
communication_say_truth=args.briscola_communicate_truth)
else:
env = BriscolaEnv(1, args.rnn_out_size, normalize_reward=False, render_mode='terminal_env' if verbose else None,
role=role_training, agents=briscola_agents, deterministic_eval=deterministic_eval, device=ENV_DEVICE)
env = gym.wrappers.RecordEpisodeStatistics(env)
env.seed(seed)
args.observation_shape = env.observation_shape
return env
return thunk
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class CategoricalMasked(Categorical):
def __init__(self, probs=None, logits=None, validate_args=None, masks=[]):
self.masks = masks
if len(self.masks) == 0:
super(CategoricalMasked, self).__init__(
probs, logits, validate_args)
else:
self.masks = masks.type(torch.BoolTensor).to(logits.device)
logits = torch.where(self.masks, logits,
torch.tensor(-1e8).to(logits.device))
super(CategoricalMasked, self).__init__(
probs, logits, validate_args)
def entropy(self):
if len(self.masks) == 0:
return super(CategoricalMasked, self).entropy()
p_log_p = self.logits * self.probs
p_log_p = torch.where(self.masks, p_log_p,
torch.tensor(0.0).to(self.masks.device))
return -p_log_p.sum(-1)
class Agent(nn.Module):
def __init__(self, env):
super().__init__()
self.lstm = nn.LSTM(
np.prod(env.previous_round_shape), args.rnn_out_size)
for name, param in self.lstm.named_parameters():
if "bias" in name:
nn.init.constant_(param, 0)
elif "weight" in name:
nn.init.orthogonal_(param, 1.0)
self.actor = nn.Sequential(
layer_init(nn.Linear(np.prod(env.current_round_shape) +
args.rnn_out_size, args.hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(args.hidden_dim, args.hidden_dim)),
nn.Tanh(),
layer_init(
nn.Linear(args.hidden_dim, env.num_actions), std=0.01)
)
self.critic = nn.Sequential(
layer_init(nn.Linear(np.prod(env.current_round_shape) +
args.rnn_out_size, args.hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(args.hidden_dim, args.hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(args.hidden_dim, 1), std=1)
)
self.offset_round = env.current_round_shape[-1]
def get_states(self, x, lstm_state, done):
x_features_round = x[:, :, :self.offset_round] # B, S, F
x_previous_round = x[:, :, self.offset_round:] # B, S, P
# LSTM logic
batch_size = lstm_state[0].shape[1]
x_previous_round = x_previous_round.reshape(
(-1, batch_size, self.lstm.input_size))
done = done.reshape((-1, batch_size))
out_lstm = []
for xr, d in zip(x_previous_round, done):
o, lstm_state = self.lstm(
xr.unsqueeze(0), ((1.0 - d).view(1, -1, 1) * lstm_state[0], (1.0 - d).view(1, -1, 1) * lstm_state[1]))
out_lstm += [o]
out_lstm = torch.flatten(torch.cat(out_lstm), 0, 1)
new_hidden = torch.cat([x_features_round.squeeze(1),
out_lstm], dim=1)
return new_hidden, lstm_state
def get_value(self, x, lstm_state, done):
hidden, _ = self.get_states(x, lstm_state, done)
return self.critic(hidden)
def get_action_and_value(self, x, action_mask, lstm_state, done, action=None, deterministic=False):
hidden, lstm_state = self.get_states(x, lstm_state, done)
action_mask = action_mask.squeeze()
logits = self.actor(hidden)
probs = CategoricalMasked(logits=logits, masks=action_mask)
if action is None and not deterministic:
action = probs.sample()
if action is None and deterministic:
if len(action_mask.shape) == 1:
action_mask = action_mask.unsqueeze(0)
logits[~action_mask] = -torch.inf
action = logits.argmax(axis=-1)
return action, probs.log_prob(action), probs.entropy(), self.critic(hidden), lstm_state
def save_model(step='last'):
model_save_path = os.path.join(
log_path, f'policy_{step}_{global_step}.pth')
torch.save(
{
'global_step': global_step,
'model_state_dict': agent.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'lr': optimizer.param_groups[0]["lr"]
},
model_save_path
)
if args.track:
artifact = wandb.Artifact(
f'policy_{step}_{global_step}', type='model')
artifact.add_file(model_save_path)
run.log_artifact(artifact)
weights_adversary_elo = None
elo_adversary = 1000 # init
def evaluate_elo():
global elo_adversary
global weights_adversary_elo
adversary_agent = Agent(dummy_env).to(ENV_DEVICE)
adversary_agent.load_state_dict(weights_adversary_elo)
adversary_agent.eval()
agent_cpu = Agent(dummy_env).to(ENV_DEVICE)
agent_cpu.load_state_dict(agent.state_dict())
agent_cpu.eval()
# 1 Game
config = {'callee': agent_cpu, 'good_1': adversary_agent,
'good_2': adversary_agent, 'good_3': adversary_agent}
env = gym.vector.SyncVectorEnv(
[make_env(args.seed+(args.num_envs)+i, 'caller', config, deterministic_eval=True)
for i in range(args.num_test_games)]
)
data, _ = env.reset()
next_obs, next_mask = torch.tensor(data['observation'], device=device, dtype=torch.float), torch.tensor(
data['action_mask'], dtype=torch.bool, device=device)
next_lstm_state = (
torch.zeros(agent.lstm.num_layers, args.num_test_games,
agent.lstm.hidden_size).to(device),
torch.zeros(agent.lstm.num_layers, args.num_test_games,
agent.lstm.hidden_size).to(device),
) # hidden and cell states
next_done = torch.zeros(args.num_test_games).to(device)
count_truth_comm = 0
for step in range(0, args.num_steps):
# ALGO LOGIC: action logic
with torch.no_grad():
action, logprob, _, value, next_lstm_state = agent.get_action_and_value(
next_obs, next_mask, next_lstm_state, next_done, deterministic=True)
if args.briscola_communicate and (action >= 40).all():
# Action is communicating
count_truth_comm += (action <
(40+BriscolaCommsAction.NUM_MESSAGES)).sum()
# TRY NOT TO MODIFY: execute the game and log data.
data, reward, done, _, info = env.step(action.cpu().numpy())
next_obs, next_mask, next_done = torch.tensor(data['observation'], device=device, dtype=torch.float), torch.tensor(
data['action_mask'], dtype=torch.bool, device=device), torch.tensor(done, dtype=torch.float, device=device)
reward_bad = reward.mean()
# 2 Game
config = {'callee': adversary_agent, 'caller': adversary_agent,
'good_2': agent_cpu, 'good_3': agent_cpu}
env = gym.vector.SyncVectorEnv(
[make_env(args.seed+(args.num_envs)+i, 'good_1', config, deterministic_eval=True)
for i in range(args.num_test_games)]
)
data, _ = env.reset()
next_obs, next_mask = torch.tensor(data['observation'], device=device, dtype=torch.float), torch.tensor(
data['action_mask'], dtype=torch.bool, device=device)
next_lstm_state = (
torch.zeros(agent.lstm.num_layers, args.num_test_games,
agent.lstm.hidden_size).to(device),
torch.zeros(agent.lstm.num_layers, args.num_test_games,
agent.lstm.hidden_size).to(device),
) # hidden and cell states
next_done = torch.zeros(args.num_test_games).to(device)
count_truth_comm = 0
for step in range(0, args.num_steps):
# ALGO LOGIC: action logic
with torch.no_grad():
action, logprob, _, value, next_lstm_state = agent.get_action_and_value(
next_obs, next_mask, next_lstm_state, next_done, deterministic=True)
if args.briscola_communicate and (action >= 40).all():
# Action is communicating
count_truth_comm += (action <
(40+BriscolaCommsAction.NUM_MESSAGES)).sum()
# TRY NOT TO MODIFY: execute the game and log data.
data, reward, done, _, info = env.step(action.cpu().numpy())
next_obs, next_mask, next_done = torch.tensor(data['observation'], device=device, dtype=torch.float), torch.tensor(
data['action_mask'], dtype=torch.bool, device=device), torch.tensor(done, dtype=torch.float, device=device)
reward_good = reward.mean()
expected_score = 60
mean_reward = (reward_bad+reward_good)/2
elo_adversary += 10*(mean_reward-expected_score)
writer.add_scalar(f"test/ELO", elo_adversary, global_step)
# Save
weights_adversary_elo = copy.deepcopy(agent.state_dict())
best = {'model_bad_vs_random': 0,
'model_good_vs_random': 0, 'model_vs_model': 0}
def log_coms(info, name, roles):
for r in roles:
m = pd.concat([a[f'stats_comms_{r}'] for a in info]).mean()
for (colname, colval) in m.items():
writer.add_scalar(
f"test/{name}/{r}/{colname}", colval, global_step)
m = np.array([a[f'stats_truth'] for a in info]).mean()
writer.add_scalar(f"test/{name}/truth_ratio", m, global_step)
def evaluate(save=False):
random_model = 'random'
agent_cpu = Agent(dummy_env).to(ENV_DEVICE)
agent_cpu.load_state_dict(agent.state_dict())
agent_cpu.eval()
settings = [
{'name': 'model_bad_vs_random', 'agents': {'callee': agent_cpu, 'good_1': random_model,
'good_2': random_model, 'good_3': random_model}, 'model': 'caller'},
{'name': 'model_good_vs_random', 'agents': {'caller': random_model, 'callee': random_model, 'good_1': agent_cpu,
'good_2': agent_cpu, 'good_3': agent_cpu}, 'model': 'good_1'},
{'name': 'model_vs_model', 'agents': {'caller': agent_cpu, 'callee': agent_cpu, 'good_1': agent_cpu,
'good_2': agent_cpu, 'good_3': agent_cpu}, 'model': 'callee'}
]
for s in settings:
name = s['name']
env = gym.vector.SyncVectorEnv(
[make_env(args.seed+(args.num_envs)+i, s['model'], s['agents'], deterministic_eval=True)
for i in range(args.num_test_games)]
)
data, _ = env.reset()
next_obs, next_mask = torch.tensor(data['observation'], device=device, dtype=torch.float), torch.tensor(
data['action_mask'], dtype=torch.bool, device=device)
next_lstm_state = (
torch.zeros(agent.lstm.num_layers, args.num_test_games,
agent.lstm.hidden_size).to(device),
torch.zeros(agent.lstm.num_layers, args.num_test_games,
agent.lstm.hidden_size).to(device),
) # hidden and cell states
next_done = torch.zeros(args.num_test_games).to(device)
count_truth_comm = 0
for step in range(0, args.num_steps):
# ALGO LOGIC: action logic
with torch.no_grad():
action, logprob, _, value, next_lstm_state = agent.get_action_and_value(
next_obs, next_mask, next_lstm_state, next_done, deterministic=True)
if args.briscola_communicate and (action >= 40).all():
# Action is communicating
count_truth_comm += (action <
(40+BriscolaCommsAction.NUM_MESSAGES)).sum()
# TRY NOT TO MODIFY: execute the game and log data.
data, reward, done, _, info = env.step(action.cpu().numpy())
next_obs, next_mask, next_done = torch.tensor(data['observation'], device=device, dtype=torch.float), torch.tensor(
data['action_mask'], dtype=torch.bool, device=device), torch.tensor(done, dtype=torch.float, device=device)
metric = None
if args.briscola_communicate:
if name == 'model_bad_vs_random':
log_coms(info['final_info'], name, ['callee', 'caller'])
elif name == 'model_good_vs_random':
log_coms(info['final_info'], name, ['good'])
elif name == 'model_vs_model':
log_coms(info['final_info'], name, [
'callee', 'caller', 'good'])
writer.add_scalar(f"test/reward_{name}_mean",
reward.mean(), global_step)
writer.add_scalar(f"test/reward_{name}_std",
reward.std(), global_step)
metric = reward.mean()
if metric > best[name] and save:
best[name] = metric
if __name__ == "__main__":
args = parse_args()
run_name = f"{args.exp_name}__{args.seed}__{int(time.time())}"
log_path = os.path.join(args.logdir, run_name)
os.makedirs(log_path, exist_ok=True)
if args.briscola_communicate:
from environment.briscola_communication.briscola_rnn import BriscolaEnv
else:
from environment.briscola_base.briscola_rnn import BriscolaEnv
if args.track:
import wandb
run = wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True
)
wandb.define_metric(
f"test/reward_model_bad_vs_random_mean", summary="max")
wandb.define_metric(
f"test/reward_model_good_vs_random_mean", summary="max")
wandb.define_metric(f"test/reward_model_vs_model_mean", summary="max")
wandb.define_metric("test/ELO", summary="max")
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % (
"\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device(
"cuda" if torch.cuda.is_available() and args.cuda else "cpu")
ENV_DEVICE = torch.device(
"cuda" if torch.cuda.is_available() and args.cuda_env else "cpu")
dummy_env = make_env(args.seed, 'caller', {})()
# env setup
old_agents = []
def pick_random_agents():
role = np.random.choice(['caller', 'callee', 'good'], size=1, p=[
0.25, 0.25, 0.5])[0] # was uniform
if role == 'good':
role = np.random.choice(['good_1', 'good_2', 'good_3'], size=1)[0]
def sample_model():
if len(old_agents) > 0:
m = np.random.choice(
['old_agent', 'random', 'heuristic'], size=1, p=[0.6, 0.1, 0.3])[0] # 0.6 0.3 0.1
else:
m = np.random.choice(
['random', 'heuristic'], size=1, p=[0.5, 0.5])[0]
if m == 'old_agent':
w = old_agents[np.random.choice(len(old_agents), size=1)[0]]
m = Agent(dummy_env).to(ENV_DEVICE)
m.eval()
m.load_state_dict(w)
elif m == 'heuristic':
if args.briscola_communicate:
from agents.heuristic_agent_comm import HeuristicAgent
m = HeuristicAgent()
else:
from agents.heuristic_agent import HeuristicAgent
m = HeuristicAgent()
return m
agents_env = {'caller': sample_model(), 'callee': sample_model(), 'good_1': sample_model(),
'good_2': sample_model(), 'good_3': sample_model()}
del agents_env[role]
return role, agents_env
agent = Agent(dummy_env).to(device)
agent.eval()
optimizer = optim.Adam(
agent.parameters(), lr=args.learning_rate, eps=1e-5)
id_log_model_training = 0
global_step = 0
start_time = time.time()
start_step = 0
start_update = 1
if args.resume_path is not None:
saved = torch.load(args.resume_path, map_location='cpu')
agent.load_state_dict(saved['model_state_dict'])
optimizer.load_state_dict(saved['optimizer_state_dict'])
global_step = saved['global_step']
start_step = global_step
# +1 because we want to start from the next update
start_update = (global_step // args.batch_size) + 1
print(f"Loaded model from {args.resume_path}")
role_now_training, briscola_agents = pick_random_agents()
# Seed is incremented at each generationspick_random_agents
envs = gym.vector.SyncVectorEnv(
[make_env(args.seed + i + args.num_envs, role_now_training, briscola_agents)
for i in range(args.num_envs)]
)
num_updates = args.total_timesteps // args.batch_size
evaluate()
weights_adversary_elo = copy.deepcopy(agent.state_dict())
for update in range(start_update, num_updates + 1):
# Save old models after each args.save_old_model_freq up to args.num_old_models_to_save
if update % args.save_old_model_freq == 0:
if len(old_agents) == args.num_old_models_to_save:
old_agents.pop(0)
old_agents.append(copy.deepcopy(agent.state_dict()))
# Set sampled enviroment
if args.sample_batch_env:
role_now_training, briscola_agents = pick_random_agents()
for i in range(args.num_envs):
if not args.sample_batch_env:
role_now_training, briscola_agents = pick_random_agents()
envs.envs[i].agents = briscola_agents
envs.envs[i].role = role_now_training
# ALGO Logic: Storage setup
obs = torch.zeros((args.num_steps, args.num_envs)
+ args.observation_shape).to(device)
mask = torch.zeros((args.num_steps, args.num_envs, 1,
envs.single_action_space.n), dtype=torch.bool).to(device)
actions = torch.zeros((args.num_steps, args.num_envs) +
envs.single_action_space.shape).to(device)
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
# TRY NOT TO MODIFY: start the game
data, _ = envs.reset()
next_obs, next_mask = torch.tensor(data['observation'], device=device, dtype=torch.float), torch.tensor(
data['action_mask'], dtype=torch.bool, device=device)
next_done = torch.zeros(args.num_envs).to(device)
next_lstm_state = (
torch.zeros(agent.lstm.num_layers, args.num_envs,
agent.lstm.hidden_size).to(device),
torch.zeros(agent.lstm.num_layers, args.num_envs,
agent.lstm.hidden_size).to(device),
) # hidden and cell states
initial_lstm_state = (
next_lstm_state[0].clone(), next_lstm_state[1].clone())
# Annealing the rate if instructed to do so.
if args.anneal_lr:
frac = 1.0 - (update - 1.0) / num_updates
lrnow = frac * args.learning_rate
optimizer.param_groups[0]["lr"] = lrnow
for step in range(0, args.num_steps):
global_step += 1 * args.num_envs
obs[step] = next_obs
mask[step] = next_mask
dones[step] = next_done
# ALGO LOGIC: action logic
with torch.no_grad():
action, logprob, _, value, next_lstm_state = agent.get_action_and_value(
next_obs, next_mask, next_lstm_state, next_done)
values[step] = value.flatten()
actions[step] = action
logprobs[step] = logprob
# TRY NOT TO MODIFY: execute the game and log data.
data, reward, done, _, info = envs.step(action.cpu().numpy())
rewards[step] = torch.tensor(reward).to(device).view(-1)
next_obs, next_mask, next_done = torch.tensor(data['observation'], device=device, dtype=torch.float), torch.tensor(
data['action_mask'], dtype=torch.bool, device=device), torch.tensor(done, dtype=torch.float, device=device)
if 'final_info' in info.keys():
for item in info['final_info']:
if "episode" in item.keys():
writer.add_scalar(
f"charts/episodic_return", item["episode"]["r"], global_step)
writer.add_scalar(
f"charts/episodic_length", item["episode"]["l"], global_step)
break
# bootstrap value if not done
with torch.no_grad():
next_value = agent.get_value(
next_obs,
next_lstm_state,
next_done,
).reshape(1, -1)
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = rewards[t] + args.gamma * \
nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = delta + args.gamma * \
args.gae_lambda * nextnonterminal * lastgaelam
returns = advantages + values
# flatten the batch
b_obs = obs.reshape((-1,) + args.observation_shape)
b_mask = mask.reshape((-1, 1, envs.single_action_space.n))
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
b_dones = dones.reshape(-1)
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)
# Optimizing the policy and value network
agent.train()
assert args.num_envs % args.num_minibatches == 0
envsperbatch = args.num_envs // args.num_minibatches
envinds = np.arange(args.num_envs)
flatinds = np.arange(args.batch_size).reshape(
args.num_steps, args.num_envs)
clipfracs = []
for epoch in range(args.update_epochs):
np.random.shuffle(envinds)
for start in range(0, args.num_envs, envsperbatch):
end = start + envsperbatch
mbenvinds = envinds[start:end]
# be really careful about the index
mb_inds = flatinds[:, mbenvinds].ravel()
_, newlogprob, entropy, newvalue, _ = agent.get_action_and_value(
b_obs[mb_inds], b_mask[mb_inds],
(initial_lstm_state[0][:, mbenvinds],
initial_lstm_state[1][:, mbenvinds]),
b_dones[mb_inds],
b_actions.long()[mb_inds],
)
logratio = newlogprob - b_logprobs[mb_inds]
ratio = logratio.exp()
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() >
args.clip_coef).float().mean().item()]
mb_advantages = b_advantages[mb_inds]
if args.norm_adv:
mb_advantages = (
mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * \
torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * \
((newvalue - b_returns[mb_inds]) ** 2).mean()
entropy_loss = entropy.mean()
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(
agent.parameters(), args.max_grad_norm)
optimizer.step()
if args.target_kl is not None:
if approx_kl > args.target_kl:
break
agent.eval()
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
var_y = np.var(y_true)
explained_var = np.nan if var_y == 0 else 1 - \
np.var(y_true - y_pred) / var_y
# TRY NOT TO MODIFY: record rewards for plotting purposes
writer.add_scalar(f"charts/learning_rate",
optimizer.param_groups[0]["lr"], global_step)
writer.add_scalar(f"losses/value_loss", v_loss.item(), global_step)
writer.add_scalar(f"losses/policy_loss",
pg_loss.item(), global_step)
writer.add_scalar(f"losses/entropy",
entropy_loss.item(), global_step)
writer.add_scalar(f"losses/old_approx_kl",
old_approx_kl.item(), global_step)
writer.add_scalar(f"losses/approx_kl",
approx_kl.item(), global_step)
writer.add_scalar(f"losses/clipfrac",
np.mean(clipfracs), global_step)
writer.add_scalar(f"losses/explained_variance",
explained_var, global_step)
print("SPS:", int((global_step-start_step) / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int((global_step - start_step) /
(time.time() - start_time)), global_step)
if update % args.freq_eval_test == 0:
evaluate()
evaluate_elo()
if update % args.freq_save_model == 0:
save_model('train')
# End generation
if num_updates % args.freq_eval_test > 0:
evaluate()
evaluate_elo()
save_model()
envs.close()
writer.close()