给你一个正整数数组 arr
,请你计算所有可能的奇数长度子数组的和。
子数组 定义为原数组中的一个连续子序列。
请你返回 arr
中 所有奇数长度子数组的和 。
示例 1:
输入:arr = [1,4,2,5,3] 输出:58 解释:所有奇数长度子数组和它们的和为: [1] = 1 [4] = 4 [2] = 2 [5] = 5 [3] = 3 [1,4,2] = 7 [4,2,5] = 11 [2,5,3] = 10 [1,4,2,5,3] = 15 我们将所有值求和得到 1 + 4 + 2 + 5 + 3 + 7 + 11 + 10 + 15 = 58
示例 2:
输入:arr = [1,2] 输出:3 解释:总共只有 2 个长度为奇数的子数组,[1] 和 [2]。它们的和为 3 。
示例 3:
输入:arr = [10,11,12] 输出:66
提示:
1 <= arr.length <= 100
1 <= arr[i] <= 1000
“前缀和”实现。
class Solution:
def sumOddLengthSubarrays(self, arr: List[int]) -> int:
n = len(arr)
presum = [0] * (n + 1)
for i in range(n):
presum[i + 1] = presum[i] + arr[i]
res = 0
for i in range(n):
for j in range(0, n, 2):
if i + j < n:
res += presum[i + j + 1] - presum[i]
return res
class Solution {
public int sumOddLengthSubarrays(int[] arr) {
int n = arr.length;
int[] presum = new int[n + 1];
for (int i = 0; i < n; ++i) {
presum[i + 1] = presum[i] + arr[i];
}
int res = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; i + j < n; j += 2) {
res += presum[i + j + 1] - presum[i];
}
}
return res;
}
}
class Solution {
public:
int sumOddLengthSubarrays(vector<int>& arr) {
int n = arr.size();
int presum[n + 1];
for (int i = 0; i < n; ++i) presum[i + 1] = presum[i] + arr[i];
int res = 0;
for (int i = 0; i < n; ++i)
{
for (int j = 0; i + j < n; j += 2)
{
res += presum[i + j + 1] - presum[i];
}
}
return res;
}
};
func sumOddLengthSubarrays(arr []int) int {
n := len(arr)
presum := make([]int, n+1)
for i := range arr {
presum[i+1] = presum[i] + arr[i]
}
res := 0
for i := 0; i < n; i++ {
for j := 0; i+j < n; j += 2 {
res += presum[i+j+1] - presum[i]
}
}
return res
}