A curated list of Vehicle to X (V2X) resources (continually updated). You can reference Journal Information for more information.
format:
- [title](paper link) [links]
- author1, author2, and author3...
- keyword
- publisher
- code
- experiment environments and datasets
- paper reading url
- Planning and Decision-making for Connected Autonomous Vehicles at Road Intersections: A Review
- Shen Li, Keqi Shu, Chaoyi Chen and Dongpu Cao
- Planning, Decision-making, Autonomous intersection management, Connected autonomous vehicles
- Chinese Journal of Mechanical Engineering
- Paper Reading
-
GPT-Driver: Learning to Drive with GPT
- Jiageng Mao, Yuxi Qian, Hang Zhao, Yue Wang
- Paper Reading, (轨迹规划, 大语言模型)
-
- Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Ziran Wang
- Paper Reading, (自动驾驶, 大语言模型)
-
Receive, Reason, and React: Drive as You Say with Large Language Models in Autonomous Vehicles
- Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Ziran Wang
- Paper Reading, (自动驾驶, 大语言模型),这一篇上
Drive as You Speak
的详细版本
-
Talk2BEV: Language-enhanced Bird’s-eye View Maps for Autonomous Driving
- Tushar Choudhary, Vikrant Dewangan, Shivam Chandhok, Shubham Priyadarshan, Anushka Jain, Arun K. Singh, Siddharth Srivastava, Krishna Murthy Jatavallabhula, K. Madhava Krishna
- Paper Reading, (自动驾驶, 场景理解, 大语言模型)
-
Open-TI: Open Traffic Intelligence with Augmented Language Model
- Longchao Da, Kuanru Liou, Tiejin Chen, Xuesong Zhou, Xiangyong Luo, Yezhou Yang, Hua Wei
- Paper Reading, (智慧交通系统, 人机交互, 大语言模型)
-
LLM-ASSIST: Enhancing Closed-Loop Planning with Language-Based Reasoning
- S P Sharan, Francesco Pittaluga, Vijay Kumar B G, Manmohan Chandraker
- Paper Reading, (轨迹生成, 自动驾驶, 大语言模型)
- 利用 rule-based planner + LLM,如果 rule-based planner 产生的轨迹得分较低,则使用 LLM 去分析场景并产生新的轨迹。
-
- Yuqi Wang, Jiawei He, Lue Fan, Hongxin Li, Yuntao Chen, Zhaoxiang Zhang
- Paper Reading, (场景预测, 自动驾驶, 大语言模型)
- 对多视角的视频进行预测(结合当前 state 和 action,对场景预测),对不同动作的未来场景进行打分,最后选择分数高的场景对应的动作进行执行。
- World Models for Autonomous Driving: An Initial Survey
- Yanchen Guan, Haicheng Liao, Zhenning Li, Guohui Zhang, Chengzhong Xu
- Paper Reading, (World Model, RSSM, PETA, AV)
- World Model 在 Autonomous Driving 上的综述,主要介绍了两种 World Model 的结构,RSSM 和 JEPA,以及 World Model 在 AV 中的一些应用,(1)场景生成,(2)决策控制;
-
Network Clustering-based Multi-agent Reinforcement Learning for Large-scale Traffc Signal Control
- Zhicheng Tao, Chao Li, Qinmin Yang
- 2023 International Annual Conference on Complex Systems and Intelligent Science (CSIS-IAC), 2023
- Paper Reading, (信号灯控制, 路口相似度聚类)
- 多路口的信号灯控制,将路网进行分割,每个小区域在使用 MARL 来进行训练,提出了路网切分的方法。
-
UniTSA: A Universal Reinforcement Learning Framework for V2X Traffic Signal Control
- Maonan Wang, Xi Xiong, Yuheng Kan, Chengcheng Xu, Man-On Pun
- IEEE Transactions on Vehicular Technology, 2024
- Paper Reading(相关代码,Github-UniTSA)
- 利用数据增强的方式,使得 agent 可以见到训练集中不包含的路口情况,使得 agent 可以在没有见过的路口上获得更好的结果。
- CoTV: Cooperative Control for Traffic Light Signals and Connected Autonomous Vehicles Using Deep Reinforcement Learning
- Jiaying Guo, Long Cheng, Shen Wang
- IEEE Transactions on Intelligent Transportation Systems ( Volume: 24, Issue: 10, October 2023)
- Paper Reading, (信号灯控制,CAV 速度控制,多智能体强化学习)
- 利用强化学习同时控制 CAV(速度) 和 Traffic Light,为了解决扩展性,这里只控制距离 Traffic Light 最接近的 CAV。
-
CARLA: An Open Urban Driving Simulator
- Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, Vladlen Koltun
- Proceedings of the 1st Annual Conference on Robot Learning, PMLR 78:1-16, 2017.
- Paper Reading, (Carla 仿真平台)
- 介绍了 Carla 仿真平台,从两个方面,(1)Carla 仿真部分;(2)自动驾驶实验,测试不同任务下,不同决策方法的结果;
-
Microscopic Traffic Simulation using SUMO
- Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flotterod, Robert Hilbrich, Leonhard Lucken, Johannes Rummel, Peter Wagner and Evamarie Wießner
- 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2018
- Paper Reading, (SUMO 仿真平台,无需多言)
- 把 SUMO 主要功能介绍了一遍。通过一个例子,介绍了路网生成,流量生成,仿真过程中的模型等。读一下对 SUMO 有更多的理解,有更多场景生成的方式。
-
Flow: A Modular Learning Framework for Mixed Autonomy Traffic
- Cathy Wu, Abdul Rahman Kreidieh, Kanaad Parvate, Eugene Vinitsky, Alexandre M. Bayen
- IEEE Transactions on Robotics, vol. 38, no. 2, April 2022
- Paper Reading, (Flow 混合交通流仿真框架)
- 混合交通流下的 MDP 数学建模。希望解决混合车辆下对 AVs 的控制,于是提出了框架和任务,并给出基础的实验结果(文章的写作可以参考)。
-
LimSim: A Long-term Interactive Multi-scenario Traffic Simulator
- Licheng Wen, Daocheng Fu, Song Mao, Pinlong Cai, Min Dou, Yikang Li, Yu Qiao
- 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 2023
- Paper Reading, (仿真平台,交通场景介绍)
- 介绍了一款自动驾驶仿真器,包含多样性的场景和车辆之间的交互。文章里面有对交通仿真器的总结,networkFiles 文件夹里面包含 SUMO 路网,从仿真器四个特色来介绍。
-
MetaDrive: Composing Diverse Driving Scenarios for Generalizable Reinforcement Learning
- Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, Bolei Zhou
- IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 3, pp. 3461-3475, 1 March 2023
- Paper Reading, (仿真平台,自动驾驶泛化性的研究)
- MetaDrive 目标是具有泛化性的自动驾驶,提出了框架和一些自动驾驶任务(文章的写作可以参考)。
Awesome V2X is released under the Apache 2.0 license.