-
Notifications
You must be signed in to change notification settings - Fork 3
/
pipeline.py
488 lines (410 loc) · 22 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import tensorflow as tf
from tensorflow import keras
from keras.models import Model
from step1 import return_splits
import time
import yaml
import csv
import sys
import os
import shutil
import numpy as np
import matplotlib.pyplot as plt
import global_vars as GLOBALS
import time
import numpy as np
import random
import models
from models import get_network, create_concat_network
from split_and_augment_dataset import split_and_augment_train_dataset
from contextlib import contextmanager
# Set global seeds for more deterministic training
SEED = 2
tf.random.set_seed(SEED)
os.environ['PYTHONHASHSEED']=str(SEED)
os.environ['TF_DETERMINISTIC_OPS'] = '1'
os.environ['TF_CUDNN_DETERMINISTIC'] = '1'
random.seed(SEED)
np.random.seed(SEED)
@contextmanager
def suppress_stdout():
with open(os.devnull, "w") as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
def initialize_hyper(path_to_config):
'''
Reads config.yaml to set hyperparameters
'''
with open(path_to_config, 'r') as stream:
try:
GLOBALS.CONFIG = yaml.safe_load(stream)
return GLOBALS.CONFIG
except yaml.YAMLError as exc:
print(exc)
return None
def initialize_datasets():
'''
Splits and augments dataset if splitted/augmented version doesn't already exist
'''
# GLOBALS.CONFIG = initialize_hyper('config.yaml')
# print(GLOBALS.CONFIG)
# if GLOBALS.CONFIG is None:
# print("error in initialize_hyper")
# sys.exit(1)
# GLOBALS.CONFIG=GLOBALS.CONFIG
#CHANGE THIS STUFF IF NEEDED:
n = GLOBALS.CONFIG['augmentation_multiplier'] - 1 #number of times to augment the original train set
dataset_name = GLOBALS.CONFIG['directory'] #name of the dataset
train_val_test_ratio = GLOBALS.CONFIG['train_val_test_ratio']#(0.70,0.10,0.20) #train, val, test ratio
txt_filename_raw = 'HousesInfo.txt' #name of the txt label file in the original dataset
############################################################################
#It is assumed that this script is in the same directory as the raw_dataset
dataset_full_path = os.path.join(os.getcwd(), dataset_name) #FULL path of the original dataset
splitted_base_dir_name = get_splitted_dataset_path() #name of the splitted dataset
#check if the splitted/augmented dataset is already created; if not, then create it
if not os.path.isdir(os.path.join(os.getcwd(), splitted_base_dir_name)):
split_and_augment_train_dataset(train_val_test_ratio, dataset_full_path, txt_filename_raw, n, split=True, augment=True)
return True
def get_splitted_dataset_path():
"""
Returns the path name of the splitted dataset
"""
dataset_name = GLOBALS.CONFIG['directory'] #name of the dataset
train_val_test_ratio = GLOBALS.CONFIG['train_val_test_ratio']#(0.70,0.10,0.20) #train, val, test ratio
############################################################################
#It is assumed that this script is in the same directory as the raw_dataset
current_working_dir = os.getcwd() #current working directory
ratio_str_list = [str(elem) for elem in train_val_test_ratio]
#splitted_base_dir_name = 'splitted_dataset_' + '_'.join(ratio_str_list) #name of the splitted dataset
splitted_base_dir_name = 'splitted_' + dataset_name + '_' + '_'.join(ratio_str_list) #name of the splitted dataset
return splitted_base_dir_name
def create_data(directories=['splitted_dataset_0.7_0.1_0.2/train_augmented','splitted_dataset_0.7_0.1_0.2/val','splitted_dataset_0.7_0.1_0.2/test'], import_mode = 'True'):
#RELATIVE path to the array files:
array_files_dir_path = 'array_files_' + GLOBALS.CONFIG['directory']
if GLOBALS.CONFIG['import_mode'] == 'False':
try:
shutil.rmtree(array_files_dir_path)
except:
pass
try:
os.mkdir(array_files_dir_path)
except:
pass
data_dict = return_splits(directories)#, GLOBALS.CONFIG['train_val_test_split'])
for key in data_dict:
np.save(os.path.join(array_files_dir_path,key),data_dict[key])
else:
data_dict={}
key_vals = ['train_images','train_stats','train_prices','validation_images','validation_stats','validation_prices','test_images','test_stats','test_prices', 'test_min_max', 'train_min_max', 'validation_min_max'] # <--- added 'test_min_max', 'train_min_max', 'val_min_max'
try:
for key in key_vals:
data_dict[key] = np.load(os.path.join(array_files_dir_path,key+'.npy'),allow_pickle=True)
except:
print("Your array files folder doesn't exist, please set import_mode in config.yaml to be False.")
print("Once it begins training, KeyBoard Interrupt and set import_mode to be True.")
exit()
print('Train Images:',data_dict['train_images'].shape)
print('Train Stats:',data_dict['train_stats'].shape)
print('Train Prices:',data_dict['train_prices'].shape)
print('Validation Images:',data_dict['validation_images'].shape)
print('Validation Stats:',data_dict['validation_stats'].shape)
print('Validation Prices:',data_dict['validation_prices'].shape)
print('Test Images:',data_dict['test_images'].shape)
print('Test Validation:',data_dict['test_stats'].shape)
print('Test Prices:',data_dict['test_prices'].shape)
GLOBALS.CONFIG['input_shape'] = data_dict['validation_stats'].shape[1]
print('Validation Stats Array:',data_dict['validation_stats'])
return data_dict
def create_models():
CNN_type = GLOBALS.CONFIG['CNN_model']
Dense_NN, CNN = get_network(CNN_type, dense_layers=GLOBALS.CONFIG['dense_model'], \
CNN_input_shape=GLOBALS.CONFIG['CNN_input_shape'], input_shape=GLOBALS.CONFIG['input_shape'])
#CNN.load_weights
if GLOBALS.CONFIG['pretrained']:
CNN.trainable = False
Multi_Input = tf.keras.layers.concatenate([Dense_NN.output, CNN.output])
#Not updated from 63 commit
model = Model(inputs = [Dense_NN.input , CNN.input], outputs = create_concat_network(Multi_Input), name="combined")
if GLOBALS.CONFIG['pretrained']:
model.load_weights(GLOBALS.CONFIG['pretrained_weights_path'])
print("model.name (combined): %s" % model.name)
print("model.name (CNN): %s" % CNN.name)
print("model.trainable (CNN): %s" % CNN.trainable)
print("model.name (Dense): %s" % Dense_NN.name)
print("model.trainable (Dense_NN): %s" % Dense_NN.trainable)
model.summary()
optimizer_functions={'Adam':keras.optimizers.Adam,'SGD':keras.optimizers.SGD,'RMSProp':keras.optimizers.RMSprop,'Adadelta':keras.optimizers.Adadelta}
optimizer=optimizer_functions[GLOBALS.CONFIG['optimizer']](lr = GLOBALS.CONFIG['learning_rate'])
with suppress_stdout():
model.compile(optimizer=optimizer, loss = GLOBALS.CONFIG['loss_function'],
metrics=[tf.keras.metrics.MeanAbsolutePercentageError()])
return model, optimizer
def create_Dense_NN():
CNN_type = GLOBALS.CONFIG['CNN_model']
Dense_NN, _ = get_network(CNN_type, dense_layers=GLOBALS.CONFIG['dense_model'], CNN_input_shape=GLOBALS.CONFIG['CNN_input_shape'], input_shape=GLOBALS.CONFIG['input_shape'])
optimizer_functions={'Adam':keras.optimizers.Adam}
optimizer=optimizer_functions[GLOBALS.CONFIG['optimizer']](lr= GLOBALS.CONFIG['learning_rate'])
model = Dense_NN
with suppress_stdout():
model.compile(optimizer=optimizer, loss = GLOBALS.CONFIG['loss_function'],
metrics=[tf.keras.metrics.MeanAbsolutePercentageError()])
return model
def create_CNN():
CNN_type = GLOBALS.CONFIG['CNN_model']
_, CNN = get_network(CNN_type, dense_layers=GLOBALS.CONFIG['dense_model'], CNN_input_shape=GLOBALS.CONFIG['CNN_input_shape'], CNN_output_shape=GLOBALS.CONFIG['CNN_output_shape'], input_shape=GLOBALS.CONFIG['input_shape'])
optimizer_functions={'Adam':keras.optimizers.Adam}
optimizer=optimizer_functions[GLOBALS.CONFIG['optimizer']](lr= GLOBALS.CONFIG['learning_rate'])
model = CNN
with suppress_stdout():
model.compile(optimizer=optimizer, loss = GLOBALS.CONFIG['loss_function'],
metrics=[tf.keras.metrics.MeanAbsolutePercentageError()])
return model
def train_Dense_NN(model, data_dict):
'''Only trains the dense network
'''
history = model.fit(x=data_dict["train_stats"], y=data_dict['train_prices'], validation_data=(data_dict["validation_stats"], data_dict['validation_prices']),
epochs = GLOBALS.CONFIG['number_of_epochs'],
batch_size = GLOBALS.CONFIG['mini_batch_size'])
results = model.evaluate(data_dict['test_stats'], data_dict['test_prices'], batch_size=GLOBALS.CONFIG['mini_batch_size'])
evaluation_results = dict(zip(model.metrics_names, results))
return model, history, results
def train_CNN(model, data_dict):
'''
Only trains the CNN
'''
history = model.fit(x=data_dict['train_images'], y=data_dict['train_prices'], validation_data=(data_dict['validation_images'], data_dict['validation_prices']),
epochs = GLOBALS.CONFIG['number_of_epochs'],
batch_size = GLOBALS.CONFIG['mini_batch_size'])
results = model.evaluate(data_dict['test_images'], data_dict['test_prices'], batch_size=GLOBALS.CONFIG['mini_batch_size'])
evaluation_results = dict(zip(model.metrics_names, results))
return model, history, results
def train(data_dict, model, optimizer, path_to_config='config.yaml'):
'''
Inputs: The config.yaml file
Output: Training history from model.fit, results from model.evaluate, the model itself
The goal of this function is to conduct training.
The process occurs in the following steps.
1. Initialize all hyperparameters using the initialize_hyper function detailed above.
2. Initialize/create augmented datasets (if it doesn't exist already)
- This initialization will be done in a function called initialize_datasets (done in Step 1, so dw)
- See Step 1 Workflow Notes for outputs of that function.
3. Conduct the training process as follows:
- model = Model(inputs = [Dense_NN.input , CNN.input], outputs = Final_Fully_Connected_Network)
- The sub-bullets below are an example of how the model should be initialized. But note that the 3 lines below are done in another file.
- Multi_Input = concatenate([Dense_NN.output, CNN.output])
- Final_Fully_Connected_Network = Dense((whatever we want), activation = 'relu')(Multi_Input)
- Final_Fully_Connected_Network = Dense(1)(Final_Fully_Connected_Network)
- model.compile (with appropriate hyperparameters)
- history = model.fit (with hyperparameters & training/validation results from 2)
- results = model.evaluate (with hyperparameters & test results from 2)
Refer to https://github.com/omarsayed7/House-price-estimation-from-visual-and-textual-features/blob/master/visual_textual_2.py for a sample implementation.
'''
print("model.fit Debugging Info")
print(data_dict["train_stats"][0].shape)
print(data_dict["train_stats"][0].dtype)
print(data_dict["train_stats"][0])
history = model.fit(x=[data_dict["train_stats"],data_dict['train_images']], y=data_dict['train_prices'], validation_data=([data_dict["validation_stats"],data_dict['validation_images']], data_dict['validation_prices']),
epochs = GLOBALS.CONFIG['number_of_epochs'],
batch_size = GLOBALS.CONFIG['mini_batch_size'])
results = model.evaluate([data_dict['test_stats'],data_dict['test_images']], data_dict['test_prices'], batch_size=GLOBALS.CONFIG['mini_batch_size'])
evaluation_results = dict(zip(model.metrics_names, results))
print(results, 'Test Results')
return model, history, results
def save_model(model, model_dir):
try:
path = os.path.join(model_dir, "model_weights.h5")
print(model.summary())
model.save_weights(path)
except:
print("error saving model weights")
return False
return True
def plot(x, y, xlabel, ylabel, title, save=False, filename=None, ylim=(0,100),optional_y=None):
plt.plot(x, y, label='Train Results (Least = {}, Epoch = {})'.format(round(int(min(y)),2),np.argmin(np.array(y))+1))
if optional_y!=None:
plt.plot(x,optional_y['Validation Results'],label='Val. Results (Least = {}, Epoch = {})'.format(round(int(min(optional_y['Validation Results'])),2),np.argmin(np.array(optional_y['Validation Results']))+1))
plt.legend(fontsize=8)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title)
plt.ylim(ylim)
if save:
plt.savefig(filename)
plt.clf()
return True
def save_dict_to_csv(dict, csv_file_path, fieldnames_header, start_row_num_from_1):
# assumes a dictionary of lists like history.history
with open(csv_file_path, 'w+', newline='') as csv_file:
writer = csv.writer(csv_file)
#
writer.writerow(fieldnames_header)
for row_number in range(len(list(dict.values())[0])):
list_value = [list[row_number] for list in dict.values()]
if start_row_num_from_1:
writer.writerow([row_number + 1] + list_value)
else:
writer.writerow([row_number] + list_value)
def convert_csv_to_dict(csv_file_path):
with open(csv_file_path, 'r') as csv_file:
reader = csv.DictReader(csv_file)
dict = {}
for row in reader:
for column, value in row.items():
dict.setdefault(column, []).append(value)
return dict
def process_outputs(model, history_dict, results, scheduler, dataset, number_of_epochs, path_to_config='config.yaml', one_name='', message=''):
'''
Inputs: History, results and model
Output: Nothing, everything happens as function runs.
The goal of this function is to create the correct output files from the training process.
The process occurs in the following steps:
1. Tap into the dictionary that is history.history
- comes from model.fit
2. Create graphs for accuracy and mean average percentage error using matplotlib
- training and validation
- comes from model.evaluate()
- Do the above for the validation results as well.
3. Also store the accuracy/loss statistics in an Excel file.
4. Store model weights using model.save_weights
5. Store final training, validation and test results (accuracy, error, network size) in a separate Excel file.
Altogether, the corresponding output file structure should look as follows:
output_folder_(modelname)_(learningrate)_(scheduler)_(dataset)_(numberofepochs)
--> model_weights
-- model_weights.h5
--> graphs
-- train_accuracy_graph.png
-- validation_accuracy_graph.png
-- train_loss_graph.png
-- validation_loss.png
--> stats_files
-- train_accuracy.csv
-- validation_accuracy.csv
-- train_loss.csv
-- validation_loss.csv
--> results_files
-- final_results.csv
'''
# Message, Minimum Loss of the Run, hyperparameters utilised
# Create output directory and subdirectory paths for model weights and results
model_name = model.name
learning_rate = tf.keras.backend.eval(model.optimizer.lr)
if one_name == '':
one_name_differentiator = str(input('Create a one-name differentiator for your runs right now.'+'\n'))
else:
one_name_differentiator = one_name
folder_path = one_name_differentiator
output_folder_tag = "output_folder_%s_%s_%s_%s_%s" % (model_name, learning_rate, scheduler, dataset, number_of_epochs)
output_folder_name = os.path.join("Output_Files",os.path.join(folder_path,output_folder_tag))
output_dir = os.path.join(os.path.dirname(__file__), output_folder_name)
model_weights_dir = os.path.join(output_dir, "model_weights")
graphs_dir = os.path.join(output_dir, "graphs_and_message")
stats_dir = os.path.join(output_dir, "stats")
results_dir = os.path.join(output_dir, "results_files")
code_dir = os.path.join(output_dir, 'code_files')
# Create output directories storing all results and model weights
if not os.path.exists(os.path.join(os.path.dirname(__file__), output_dir)):
os.makedirs(output_dir)
os.makedirs(model_weights_dir)
os.makedirs(graphs_dir)
os.makedirs(stats_dir)
os.makedirs(results_dir)
os.makedirs(code_dir)
# Save training history (loss, sparse_categorical_accuracy, val_loss, etc)
# from history dict (contains lists of equal length for each metric over
# all epoch_results)
training_csv_header = ["epoch"] + list(history_dict.keys())
save_dict_to_csv(dict=history_dict, csv_file_path=os.path.join(stats_dir, 'training_history.csv'), fieldnames_header=training_csv_header, start_row_num_from_1=True)
# # Create graphs for accuracy and mean average percentage error using matplotlib
training_results = convert_csv_to_dict(os.path.join(stats_dir, 'training_history.csv'))
epoch_data = np.array(training_results["epoch"]).astype(np.float)
loss_data = np.array(training_results["loss"]).astype(np.float)
val_loss_data = np.array(training_results['val_loss']).astype(np.float)
mean_absolute_percentage_error_data = np.array(training_results["mean_absolute_percentage_error"]).astype(np.float)
val_mean_absolute_percentage_error_data = np.array(training_results['val_mean_absolute_percentage_error']).astype(np.float)
plot(epoch_data, loss_data, xlabel="Epochs", ylabel="Loss", title="Loss vs Epochs", save=True, filename=os.path.join(graphs_dir, "loss.png"),optional_y={'Validation Results':val_loss_data})
#plot(epoch_data, mean_absolute_percentage_error_data, xlabel="Epochs", ylabel="mean_absolute_percentage_error", title="mean_absolute_percentage_error vs Epochs", save=True, filename=os.path.join(graphs_dir, "mean_absolute_percentage_error.png"),optional_y={'Validation Results':val_mean_absolute_percentage_error_data})
# plot(epoch_data, loss_data, xlabel="Epochs", ylabel="Loss", title="Loss vs Epochs", save=True, filename=os.path.join(stats_dir, "loss.png"))
shutil.copy('models'+os.sep+'CNN_models'+os.sep+'RegNet.py',code_dir+os.sep+'RegNet.py')
shutil.copy('models'+os.sep+'__init__.py',code_dir+os.sep+'dense_concatenation.py')
plt.clf()
# plot(training_results["epoch"], training_results["loss"], xlabel="Epochs", ylabel="Loss", title="Loss vs Epochs", save=True, filename=os.path.join(stats_dir, "loss.png"))
saved = save_model(model, model_weights_dir)
if not saved:
print("didn't save model weights")
else:
print("saved model to disk")
min_loss = min(loss_data)
if message == '':
personal_message = str(input('What makes this run different? \n'))
else:
personal_message = message
r = open(path_to_config, 'r')
GLOBALS.CONFIG_lines = r.readlines()
f = open(os.path.join(graphs_dir, 'information.txt'), "a")
f.write(str(results[1]))
f.write("\n")
f.write(personal_message)
f.write("\n")
f.writelines(GLOBALS.CONFIG_lines)
f.close()
r.close()
return personal_message, one_name_differentiator
def the_setup(path_to_config='config.yaml'):
GLOBALS.CONFIG = initialize_hyper(path_to_config)
if GLOBALS.CONFIG is None:
print("error in initialize_hyper")
sys.exit(1)
print("start initializing dataset")
initialize_datasets()
print("finished initializing dataset")
directories=[get_splitted_dataset_path() + "/train_augmented", get_splitted_dataset_path() + "/val", get_splitted_dataset_path() + "/test"]
data_dict = create_data(directories=directories, import_mode=GLOBALS.CONFIG["import_mode"])
model, optimizer = create_models()
return data_dict, model, optimizer
def the_setup_without_models(path_to_config='config.yaml'):
GLOBALS.CONFIG = initialize_hyper(path_to_config)
if GLOBALS.CONFIG is None:
print("error in initialize_hyper")
sys.exit(1)
print("start initializing dataset")
initialize_datasets()
print("finished initializing dataset")
data_dict = create_data()
return data_dict
if __name__ == '__main__':
# set this to True to train models separately
train_dense_and_CNN_separately = False
# train_dense_and_CNN_separately = True
if train_dense_and_CNN_separately:
data_dict = the_setup_without_models()
model = create_Dense_NN()
model, history, results = train_Dense_NN(model, data_dict)
message = "dense_nn"
one_name = "dense_nn"
personal_message, one_name_differentiator = process_outputs(model=model, history_dict=history.history, results=results, scheduler=GLOBALS.CONFIG['LR_scheduler'], dataset=GLOBALS.CONFIG['directory'], number_of_epochs=GLOBALS.CONFIG['number_of_epochs'],one_name=one_name, message=message)
#
# model_CNN = create_CNN()
# model_CNN, history_CNN, results_CNN = train_CNN(model_CNN, data_dict)
#
# message = "cnn"
# one_name = "cnn"
#
# personal_message, one_name_differentiator = process_outputs(model=model, history_dict=history.history, results=results, scheduler=GLOBALS.CONFIG['LR_scheduler'], dataset=GLOBALS.CONFIG['directory'], number_of_epochs=GLOBALS.CONFIG['number_of_epochs'],one_name=one_name, message=message)
else:
data_dict, model, optimizer = the_setup()
# process_outputs(model, history_dict, results, scheduler, dataset, number_of_epochs):
for index,learning_rate in enumerate(GLOBALS.CONFIG['learning_rates']):
GLOBALS.CONFIG['learning_rate'] = learning_rate
model, optimizer = create_models()
model, history, results = train(data_dict, model, optimizer)
if index == 0:
message = ''
one_name = ''
else:
message = personal_message
one_name = one_name_differentiator
personal_message, one_name_differentiator = process_outputs(model=model, history_dict=history.history, results=results, scheduler=GLOBALS.CONFIG['LR_scheduler'], dataset=GLOBALS.CONFIG['directory'], number_of_epochs=GLOBALS.CONFIG['number_of_epochs'],one_name=one_name, message=message)