-
Notifications
You must be signed in to change notification settings - Fork 0
/
project final.tex
828 lines (766 loc) · 43.9 KB
/
project final.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
\documentclass[a4paper,12pt]{report}
\pagestyle{headings}
\setlength{\textheight}{8.67in}
\setlength{\textwidth}{5.8in}
\setlength{\topmargin}{-3mm}
\setlength{\headsep}{40pt}
\setlength{\oddsidemargin}{1.5cm}
\setlength{\evensidemargin}{-3mm}
\usepackage{amscd}
%\usepackage{sectsty}
\usepackage{latexsym}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{mathrsfs}
\usepackage{epsfig}
%\pagestyle{empty}
\usepackage{graphicx}
\def\convf{\hbox{\space \raise-2mm\hbox{$\textstyle \stackrel{k_1}{\rightleftharpoons}\atop \scriptstyle k_{-1}$} \space}}
\pagenumbering{roman}
\setcounter{page}{1}
\begin{document}
\fontsize{15pt}{22pt}\selectfont
%\linespread{1}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\thispagestyle{empty}
\begin{center}
{\textbf{ \Large
Hyers-Ulam Stability of Linear Differential Equation
}}
\end{center}
%\vskip .1in
\begin{center}
{\mbox{ {\large \textbf{Dissertation submitted to Periyar University in partial fulfillment}}}}
{\mbox{{\large \textbf{ of the requirements for the award of the degree of}}}}
\vskip .2in
\mbox{\textbf{\large MASTER OF SCIENCE }} \\
\mbox{\textbf{\large IN }}\\
\mbox{\textbf{ \large MATHEMATICS}}
\end{center}
\vspace{.3cm}
\begin{center}
\mbox{ \LARGE Submitted by}
\vspace{.5cm}
\mbox{ {\large\textbf{V. VEERAMMAL}}}\\
\mbox{ {\large\textbf{ Reg. No: U21PG518MAT037 }}}
\vspace{.3cm}
\mbox{ {\textbf{\large Under the guidance of }}}
\mbox{ {\textbf{\large Dr.P. PRAKASH}}}
\mbox{ {\textbf{\large Professor}}}
%\vskip .1in
\end{center}
\begin{center}
\includegraphics[width=0.2\textwidth]{pu.JPG}
\end{center}
%\vskip .1in
\begin{center}
\begin{large}
\mbox{\textbf{ Department of Mathematics }}\\
\mbox{\textbf{ Periyar University}}\\
\mbox{\textbf{ Periyar Palkalai Nagar} }\\
\mbox{ \textbf{Salem 636 011}}\\
%\mbox{\Nlarge Tamil Nadu, India}\\
\end{large}
\vskip .2in
\mbox{\textbf{\large May 2023}}
\end{center}\newpage\thispagestyle{empty}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}
\textbf{CERTIFICATE}
\end{center}
\begin{sloppypar}
This is to certify that the dissertation entitled \textbf{`` HYERS-ULAM STABILITY OF LINEAR DIFFERENTIAL EQUATION''} submitted in partial fulfillment of the requirements for the award of the degree of \textbf{Master of Science in Mathematics} to the Periyar University, Salem is a bonafide record of the dissertation work carried out by \textbf{ V. VEERAMMAL (Reg. No: U21PG518MAT037)} under my supervision and guidance in the academic year 2022-2023 and that no part of the dissertation has been submitted for the award of any degree, diploma, fellowship or other similar titles to any university.\\
\end{sloppypar}
\vskip .3in
\noindent{{\bf Date :}} \hfill{{\bf Signature of the Guide}}\\
\noindent{{\bf Place :}}
\vskip 3.5cm
\noindent{{\bf \ \ \ \ \ Signature of the \\ Head of the Department}} \hfill{{\bf External Examiner}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage\thispagestyle{empty}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%Declaration%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}
\textbf{DECLARATION}
\end{center}\vspace{0.5cm}
\begin{sloppypar}
\ \ \ \ \ I, \textbf{ V. VEERAMMAL}, hereby declare that the dissertation, \\entitled {\bf ``HYERS-ULAM STABILITY OF LINEAR \linebreak DIFFERENTIAL EQUATION''} submitted to the Periyar University, Salem in partial fulfillment of the requirements for the award of the degree of \textbf{Master of Science in Mathematics}, is a bonafide record of the dissertation work done by me during 2022-2023 under the guidance of \ \textbf{Dr.P. PRAKASH}, Professor, Department of Mathematics, Periyar University, Salem.
\end{sloppypar}
\vskip 2.5cm
\noindent{{\bf Date :}} \hfill{{\bf Signature of the Candidate}}
\vskip 0.1cm
\noindent{{\bf Place :}}
\hfill (\textbf{V. VEERAMMAL}) \hspace{0.cm}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%Acknowledgement%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage\thispagestyle{empty}
\begin{center}
\textbf{ACKNOWLEDGEMENT}
\end{center}
%First and foremost, I owe my gratitude to the \textbf{lord almighty} for showering his infinite blessing in completing this dissertation.
\begin{sloppypar}
I express my deep sense of gratitude and indebtedness \linebreak to
my guide,\ \textbf{Dr.P. PRAKASH}, Professor, Department of \linebreak Mathematics,
Periyar University, Salem, who has been a steady
source of motivation and help throughout. I am really grateful to
him for his invaluable guidance, encouragement and
suggestions at each and every stage of this dissertation.\\
I wish to acknowledge my sincere thanks to \textbf{Dr.C. Selvaraj}, \linebreak Professor and Head; \textbf{Dr.A. Muthusamy}, Professor; \linebreak \textbf{Dr.V. Muthulakshmi}, Professor; \textbf{Dr.S. Karthikeyan}, Assistant \linebreak Professor; \textbf{Dr.S. Padmasekaran}, Assistant Professor; \linebreak \textbf{Dr.M. Sambath}, Assistant Professor; Non-teaching staffs and Research scholars of Department of Mathematics, Periyar University, Salem.\\
\end{sloppypar}
\begin{sloppypar}
I also express my thanks to my \textbf{friends and well-wishers} for their full cooperation and help. I would like to express heartful thanks to my family members for their encouragement and constant help.\\
\end{sloppypar}
\hfill \textit{$($\textbf{VEERAMMAL. V }$)$}
\fontsize{15pt}{22pt}\selectfont
\linespread{1.5}
\clearpage
\newtheorem{Rem}{Remark}[section]
\newtheorem{thm}{Theorem}[section]
\newtheorem{cor}{Corollary}[section]
\newtheorem{Lem}{Lemma}[section]
\newtheorem{Pro}{Proposition}[section]
\newtheorem{Ass}{Assumption}[section]
\newtheorem{Con}{Conclusion}[section]
\newtheorem{defn}{Definition}[section]
\newtheorem{ex}{Example}[section]
%\pagestyle{myheadings}
\tableofcontents
\thispagestyle{empty}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\theoremstyle{definition}
\newtheorem{note}{Note}
\newtheorem*{note*}{Note}
\newtheorem*{solution*}{Solution}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\clearpage
\pagenumbering{arabic}
%\pagestyle{empty}
%\pagestyle{headings}
\setcounter{page}{1}
\setcounter{chapter}{0}
\chapter{Introduction}
\quad The stability problem of functional equations originated from a \linebreak question of Stainslaw Ulam, in 1940 concerning the stability of group homomorphisms. Hyers was the first researcher who gave the \linebreak affirmative partial answer to Ulam's question. This type of \linebreak stability is known as ``Hyers-Ulam" stability. In 1940, on a talk given at Winsconsin University, S. M. Ulam posed the following \linebreak
problem: ``Under what conditions does there exist an additive \linebreak mapping near an approximately additive mapping?". A year later, D. H. Hyers gave an answer to the problem of Ulam for additive \linebreak functions defined on Banach spaces. \\
\indent ``Let $E_1,E_2$ be two real Banach spaces and $\epsilon>0$. Then for every mapping f : $E_1 \rightarrow E_2$ satisfying
\begin{eqnarray}
\Vert {f(x+y) - f(x) - f(y)} \Vert \le \epsilon
\end{eqnarray}
for all x,y $\in$ $E_1$ there exists a unique additive mapping g :$E_1 \rightarrow E_2$ with the property
\begin{eqnarray}
\Vert f(x) - g(x) \Vert \le \epsilon, \quad \forall x \in E_1."
\end{eqnarray}
\indent After Hyers result many papers dedicated to this topic, extending Ulam's problem to other funtional equation and generalizing Hyers result in various directions, were published [3,4,6,7,10,20].\\
\indent A new direction of research in the stability theory of functional equations, called Hyers-Ulam stability, was opened by the papers of Aoki and Rassias by considering instead of $\epsilon$ in (1.1) a function \linebreak depending on x and y [2,21]. C. Alsina and R. Ger were the first \linebreak authors who investigated the Hyers-Ulam stability of a differential \linebreak equation [1] and they have proved that for every differentiable \linebreak mapping f : I $\rightarrow$ $\mathbb{R}$ satisfying $\vert$$f^{\prime}(x)$ - f(x)$\vert$ $\le$ $\epsilon$ for every x $\in$ I, where $\epsilon>0$ is a given number and I is an open interval of $\mathbb{R}$, there exists a \linebreak differentiable function g : I $\rightarrow$ $\mathbb{R}$ with the property $g^{\prime}(x$) = g(x) and $\vert${f(x) - g(x)}$\vert$ $\le$ 3$\epsilon$ for all x $\in$ I. The result of Alsina and Ger was \linebreak extended by Miura, Miyajima and Takahasi [15,16,24] and by \linebreak Takahasi, Takagi, Miura and Miyajima [25] to the Hyers-Ulam \linebreak stability of the first order linear differential equation and linear \linebreak differential equation of higher order with constant coefficients. \linebreak
\indent Furthermore S. M. Jung [11,13] has obtained results on the \linebreak stability of linear differential equations extending the results of \linebreak Takahasi, Takagi and Miura. I. A. Rus has proved some results on the stability of differential and integral equations using Gronwall lemma and the technique of weakly Picard operators [22,23]. Recently G. Wang, M. Zhou, L. Sun [27] and Y. Li, Y. Shen [14] proved the Hyers - \linebreak Ulam stability of the linear differential equation of the first order and the linear differential equation of the second order with constant \linebreak coefficients by using the method of integral factor.\\
\indent An extension of the results given in [12,14,16] was obtained by\\ D. S. Cimpean and D. Popa in the case of the linear differential \linebreak equation of n-th order with constant coefficients. The goal of this \linebreak paper is to improve to the results obtained by Takahasi, Takagi, Miura and Jung for the stability of the linear differential equation [12,15,16,25] and the results obtained by D. S. Cimpean and D. Popa in [5].\\
\indent In what follows I = (a,b), a,b $\in$ $\mathbb{R}$$\cup$$\{\pm\infty\}$, is an open interval \linebreak in $\mathbb{R}$, c $\in$ [a,b], C $\in$ $\bar{\mathbb{R}}$, (X,$\Vert$$\cdot$$\Vert$) is a Banach space over the field K \linebreak (K is one of the fields $\mathbb{R}$ or $\mathbb{C}$), f $\in$ C(I,X), $\lambda$ $\in$ C(I,K) and \linebreak $\epsilon$ $\in$ C(I,$\mathbb{R}$) with $\epsilon$ $\ge$ 0. We deal with the stability of the linear \linebreak differential equation.
\begin{eqnarray}
y^{\prime}(x)-\lambda(x) y(x)-f(x), \quad x \in I,
\end{eqnarray}
and the stability of the linear differential equation of high order with constant coeffficients.
\chapter{Preliminaries}
\section{Definitions}
\begin{defn}
Let $\varphi$ : I $\rightarrow$ [0,$\infty$) be a given mapping. Eq.(1.3) is said to be stable in Aoki-Rassias sense if there exists a mapping \linebreak $\psi$ : I $\rightarrow$ [0,$\infty$), depending only on $\varphi$ and Eq.(1.3), such that for every function y $\in$ $C^1(I,X)$ satisfying the relation
\begin{eqnarray}
\Vert y'(x) - \lambda(x)y(x) - f(x) \Vert \le \psi(x), \quad x \in I,
\end{eqnarray}
there exists a solution u $\in$ $C^1(I,X)$ of Eq.(1.3) such that
\begin{eqnarray}
\Vert y(x) - u(x) \Vert \le \psi(x), \quad x \in I.
\end{eqnarray}
\indent In the case where $\psi$ and $\varphi$ are constant functions Eq.(1.3) is called stable in Hyers-Ulam sense. In other words Eq.(1.3) is stable in Aoki-Rassias (or Hyers-Ulam) sense if for every solution of the \linebreak pertubated problem (1.4) there exists a solution of Eq.(1.3) that is close to it. The results on Hyers-Ulam stability of functional equations are in connection with the notion of shadowing and pertubation of a dynamical system [17-19].
\end{defn}
\begin{defn}
In what follows $\Re$z we denote the real part \linebreak of the complex number z. For a function g : (a,b) $\rightarrow$ X define \linebreak $g(b)=$ $\lim _{x \rightarrow b} g(x)$ and $g(a)=\lim _{x \rightarrow a} g(x)$, if the limits exist. Let $L \in C^{1}(I, K)$ be an antiderivative of $\lambda$, i.e. $L^{\prime}=\lambda$ on $I$. Define $\psi_{c}: I \rightarrow \mathbb{R}$ by
\begin{eqnarray}
\psi_{c}(x)=e^{\Re L(x)}\left|\int_{c}^{x} e^{-\Re L(t)} \varepsilon(t) d t\right|.
\end{eqnarray}
If $c \in\{a, b\}$ then we suppose that the integral which defines $\psi_{c}$ is convergent for every $x \in I$. Therefore $\psi_{c}(c)=0$ for all C $\in$ I.
\end{defn}
\begin{Lem}
The general solution of the equation
\begin{eqnarray}
y^{\prime}(x)-\lambda(x) y(x)=f(x), \quad x \in I
\end{eqnarray}
is given by
\begin{eqnarray}
y(x)=e^{L(x)}\left(\int_{x_{0}}^{x} f(t) e^{-L(t)} d t+k\right)
\end{eqnarray}
where $x_{0} \in I$ and $k \in X$ is an arbitrary constant.
The first result on Aoki-Rassias stability for a first order linear differential equation is contained in the Theorem 3.0.1 .
\end{Lem}
\begin{cor}
For every $y \in C^{1}(I, X)$ satisfying
$$ \left\{\begin{array}{l}
\left\|y^{\prime}(x)-\lambda(x) y(x)-f(x)\right\| \le \varepsilon(x), \quad x \in I, \\
y(c)=C,
\end{array}\right. $$
there exists a unique solution $u \in C^{1}(I, X)$ of the Cauchy problem
$$\left\{\begin{array}{l}
u^{\prime}(x)-\lambda(x) u(x)-f(x)=0, \\
u(c)=C,
\end{array} \quad x \in I,\right.$$ with the property
$$\|y(x)-u(x)\| \le \psi_{c}(x), \quad x \in I .$$
The result obtained in Theorem 3.0.1 is more general than the result of Lemma 2.1.1 in [5] and Theorem 1 in [12] since it gives a better estimation of the difference between the approximate solution and the exact solution of Eq.(2.4). This is obvious in the cases $c=a$ and $c=b$, but for $c \in(a, b)$ this better approximation is not always valid on the entire interval $(a, b)$. We will show in the next example that in some cases this estimation is global for $c \in(a, b)$ and we will find the optimal $\psi_{c}$.
\end{cor}
\begin{Rem}
Now, let $\lambda$ be constant with $\Re \lambda \neq 0$. Then \\ $L(x)=\lambda x$ and
\begin{eqnarray}
\left\|\psi_{\tilde{c}}\right\|_{\infty}=|\theta| \cdot \frac{\left|e^{b \Re \lambda}-e^{a \Re \lambda}\right|}{e^{b \Re \lambda}+e^{a \Re \lambda}}
\end{eqnarray}
Taking now an arbitrary $\delta>0$ and $\theta=\frac{\delta}{|\Re \lambda|}$ it is easy to check that
$$\left\|\psi_{\tilde{c}}\right\|_{\infty}<\frac{\delta}{|\Re \lambda|}\left(1-e^{-|\Re(\lambda)|(b-a)}\right)$$
if $a, b \in \mathbb{R}$ and
$$\left\|\psi_{\tilde{c}}\right\|_{\infty}=\frac{\delta}{|\mathfrak{R} \lambda|}$$
if $a=-\infty$ or $b=+\infty$, therefore we improve the result obtained in [5, Corollary 2.4], along all interval $I$ in the case of classical Hyers-Ulam stability.
More precisely we have the following result.
\end{Rem}
\begin{cor}
Suppose that $\lambda \in \mathbb{C}, \hspace{0.1cm} \Re \lambda \neq 0$ and $\delta \ge 0$. Then for every $y \in C^{1}(I, X)$ satisfying
$$\left\|y^{\prime}(x)-\lambda y(x)-f(x)\right\| \le \delta, \quad x \in I,$$
there exists a unique solution of (2.4) such that
$$\|y(x)-u(x)\| \le \begin{cases}\frac{\delta}{\vert \Re \lambda \vert} \cdot \frac{\left|e^{b \Re \lambda}-e^{a \Re \lambda}\right|}{e^{b \Re \lambda}+e^{a \Re \lambda}}, & \text { if } a, b \in \mathbb{R}, \\ \frac{\delta}{\mid \Re \lambda \vert}, & \text { if } a=-\infty \text { or } b=+\infty .\end{cases} $$
Example 3.0.1 and Corollary 2.4 from [5] do not give an answer to the stability problem of Eq.(2.4) in the case where $\lambda$ is a constant and $\Re \lambda=0$. We solve this problem in the following theorems.
\end{cor}
\begin{Rem}
According to Theorem 3.0.1, Eq.(2.4) is stable in Aoki-Rassias sense in this content, with $\psi$ = $\delta$$\vert$x-c$\vert$. Theorem 3.0.3 shows that if the stability is achieved with a certain function $\bar{\psi}$, then
$$\sup _{x \in I}\|\tilde{\psi}(x)\|=\infty.$$
\end{Rem}
\section{Stability of the linear differential equation of higher order}
\quad The results proved in the previous theorems and corollaries lead to stability of the linear differential equation with constant coefficients. We will improve in what follows the results obtained in [16] and [5] for this equation. Suppose that $(X,\|\cdot\|)$ is a Banach space over $\mathbb{C}$ and $a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{C}, n \ge 1$, are given numbers. We study the stability of the linear differential equation
\begin{eqnarray}
y^{(n)}(x)-\sum_{j=0}^{n-1} a_{j} y^{(j)}(x)=f(x), \quad x \in I.
\end{eqnarray}
Let
\begin{eqnarray}
P(z)=z^{n}-\sum_{j=0}^{n-1} a_{j} z^{j}
\end{eqnarray}
be the characteristic polynomial of Eq.(2.7) and denote by $r_{1}, r_{2}, \ldots, r_{n}$ the complex roots of (2.8). For $\lambda \in \mathbb{C}$ and $c \in[a, b]$ define
\begin{eqnarray}
\phi_{\lambda}(h)(x)=e^{\Re(\lambda) x}\left|\int_{c}^{x} e^{-\Re(\lambda) t} h(t) d t\right|, \quad x \in I
\end{eqnarray}
for all $h$ with the property that the integral from the right-hand side of (2.9) is convergent. We suppose that $\phi_{r_{k}} \circ \phi_{r_{k-1}} \circ$ $\cdots \circ \phi_{r_{1}}(\varepsilon)$ exist for every $k \in\{1,2, \ldots, n\}$ if $c=a$ or $c=b$.
\begin{Rem}
The uniqueness of the solution $u$ in Theorem 3.0.4 holds if its characteristic polynomial $P$ has not pure imaginary roots and $I=\mathbb{R}$ ([16]).
\end{Rem}
\chapter{Main Results}
\begin{thm}
For every $y \in C^{1}(I, X)$ satisfying
\begin{eqnarray}
\left\|y^{\prime}(x)-\lambda(x) y(x)-f(x)\right\| \le \varepsilon(x), \quad x \in I
\end{eqnarray}
there exists a unique solution $u \in C^{1}(I, X)$ of Eq.(2.4) with the \linebreak property
\begin{eqnarray}
\|y(x)-u(x)\| \le \psi_{c}(x), \quad x \in I
\end{eqnarray}
\begin{proof}
Existence. Let $y \in C^{1}(I, X)$ satisfy (3.1) and define
\begin{eqnarray}
g(x)=y^{\prime}(x)-\lambda(x) y(x)-f(x), \quad x \in I.
\end{eqnarray}
Then, according to Lemma 2.1.1, it follows
$$ y(x)=e^{L(x)}\left(\int_{x_{0}}^{x} e^{-L(t)} f(t) d t+\int_{x_{0}}^{x} e^{-L(t)} g(t) d t+k\right),\hspace{0.2cm} x_{0} \in I, k \in X . $$
Let $G: I \rightarrow X$ be given by
\begin{eqnarray}
G(x)=\int_{c}^{x} e^{-L(t)} g(t) d t, \quad x \in I.
\end{eqnarray}
If $c \in\{a, b\}$ the integral which defines $G$ is convergent since
$$ \|g(t)\| \le \varepsilon(t) \quad \text { for all } t \in I . $$
Now let $u$ be defined by
$$u(x)=e^{L(x)}\left(\int_{x_{0}}^{x} f(t) e^{-L(t)} d t+k-G\left(x_{0}\right)\right) .
$$
Then obviously $u$ satisfies Eq.(2.4) and we get
$$
\begin{aligned}
\|y(x)-u(x)\| & =e^{\Re L(x)}\left\|\int_{x_{0}}^{x} g(t) e^{-L(t)} d t+G\left(x_{0}\right)\right\|=e^{\Re L(x)}\|G(x)\| \\
& \le e^{\Re L(x)}\left|\int_{c}^{x}\left\|e^{-L(t)} g(t)\right\|\right| d t \\
& \le e^{\Re L(x)}\left|\int_{c}^{x} e^{-\Re L(t)} \varepsilon(t) d t\right| \\
& =\psi_{c}(x), \quad x \in I .
\end{aligned}
$$
Therefore the existence is proved. \\
Uniqueness. Suppose that for a $y$ satisfying (3.1) there exist \linebreak $u_{1}, u_{2}, u_{1} \neq u_{2}$, satisfying (2.4) and (3.2). Then
$$
u_{j}(x)=e^{L(x)}\left(\int_{x_{0}}^{x} f(t) e^{-L(t)} d t+k_{j}\right),\hspace{0.2cm} k_{j} \in X, j=1,2, k_{1} \neq k_{2},
$$
and
$$
\begin{aligned}
e^{\Re L(x)}\left\|k_{1}-k_{2}\right\| & =\left\|u_{1}(x)-u_{2}(x)\right\| \\
& \le\left\|u_{1}(x)-y(x)\right\|+\left\|y(x)-u_{2}(x)\right\| \\
& \le 2 e^{\Re L(x)}\left|\int_{c}^{x} e^{-\Re L(t)} \varepsilon(t) d t\right|
\end{aligned}
$$for all $x \in I$. Therefore
$$
\left\|k_{1}-k_{2}\right\| \le 2\left|\int_{c}^{x} e^{-\Re L(t)} \varepsilon(t) d t\right|, \quad x \in I .
$$
Now letting $x \rightarrow c$ in the above inequality it follows $k_{1}=k_{2}$, \linebreak contradiction.
\end{proof}
\end{thm}
\noindent Theorem 3.0.1 leads to the following result for the Cauchy problem \linebreak of Eq.(2.4).
\begin{thm}
Let $a, b \in \mathbb{R}, \lambda=\alpha i, \alpha \in \mathbb{R}$ and $y \in C^{1}(I, X)$ such that
\begin{eqnarray}
\left\|y^{\prime}(x)-\alpha i y(x)-f(x)\right\| \le \delta, \quad x \in I,
\end{eqnarray}
for some positive $\delta$. Then there exists $u \in C^{1}(I, X)$ such that $$
u^{\prime}(x)-\alpha i u(x)-f(x)=0 \quad \text { for all } x \in I $$ and
\begin{eqnarray}
\|y(x)-u(x)\| \le \delta(b-a), \quad x \in I,
\end{eqnarray}
i.e., Eq.(2.4) is stable in Hyers-Ulam sense.
\begin{proof}
Define $g(x)=y^{\prime}(x)-\alpha i y(x)-f(x), x \in I$. Then
$$ y(x)=e^{i \alpha x}\left(\int_{x_{0}}^{x} f(t) e^{-i \alpha t} d t+\int_{x_{0}}^{x} g(t) e^{-i \alpha t} d t+k\right), \quad x \in I, $$
where $x_{0} \in I$ and $k \in X$. Let $u$ be given by $$
u(x)=e^{i \alpha x}\left(\int_{x_{0}}^{x} f(t) e^{-i \alpha t} d t+k\right), \quad x \in I . $$
We get
$$ \|y(x)-u(x)\|=\left\|\int_{x_{0}}^{x} g(t) e^{-i \alpha t} d t\right\| \le\left|\int_{x_{0}}^{x} \delta d t\right| \le \delta(b-a), \quad x \in I .
$$
\end{proof}
\end{thm}
\begin{thm}
Suppose that $a=-\infty$ or $b=\infty, \lambda=\alpha i, \alpha \in \mathbb{R}$. Then there exists $y \in C^{1}(I, X)$ satisfying
\begin{eqnarray}
\left\|y^{\prime}(x)-\alpha i y(x)-f(x)\right\| \le \delta, \quad x \in I
\end{eqnarray}
such that for every $u \in C^{1}(I, X)$ with the property \\ $u^{\prime}(x)-\alpha i u(x)-f(x)=0, x \in I$, we get
\begin{eqnarray}
\sup _{x \in I}\|y(x)-u(x)\|=\infty
\end{eqnarray}
i.e., the equation is not stable in Hyers-Ulam sense. \\
\begin{proof}
Let $y$ be a solution of the equation
$$y^{\prime}(x)-\alpha i y(x)-f(x)=\delta e^{i \alpha x} k, \quad x \in I$$
where $k \in X$ is fixed, with $\|k\|=1$.
According to Lemma 2.1.1, \linebreak $y$ is given by
$$
y(x)=e^{i \alpha x}\left(\int_{x_{0}}^{x} f(t) e^{-i \alpha t} d t+\delta\left(x-x_{0}\right) k+k_{1}\right), \quad k_{1} \in X, x \in I,
$$
and an arbitrary solution $u$ of (2.4) for $\lambda=\alpha i$ is of the form
$$
u(x)=e^{i \alpha x}\left(\int_{x_{0}}^{x} f(t) e^{-i \alpha t} d t+k_{2}\right), \quad k_{2} \in X, x \in I
$$
The relation $(3.7)$ is satisfied, but
$$
\sup _{x \in I}\|y(x)-u(x)\|=\sup _{x \in I}\left\|\delta\left(x-x_{0}\right) k+k_{1}-k_{2}\right\|=\infty . $$
\end{proof}
\end{thm}
\begin{thm}
For every $y \in C^{n}(I, X)$ with the property
\begin{eqnarray}
\left\|y^{(n)}(x)-\sum_{j=0}^{n-1} a_{j} y^{(j)}(x)-f(x)\right\| \le \varepsilon(x), \quad x \in I,
\end{eqnarray}
there exists a solution of Eq.(2.7) such that
\begin{eqnarray}
\|y(x)-u(x)\| \le \phi_{r_{n}} \circ \phi_{r_{n-1}} \circ \cdots \circ \phi_{r_{1}}(\varepsilon)(x), \quad x \in I.
\end{eqnarray}
\begin{proof}
The proof by induction is analogous to the proof of Theorem 2.3 in [5].
For $n=1$, Theorem 3.0.4 holds in virtue of Theorem 3.0.1.
Now suppose that Theorem 3.0.4 holds for an $n \in \mathbb{N}$. We have to prove that for all $y \in C^{n+1}(I, X)$ satisfying the relation
\begin{eqnarray}
\left\|y^{(n+1)}(x)-\sum_{j=0}^{n} a_{j} y^{(j)}(x)-f(x)\right\| \le \varepsilon(x), \quad \forall x \in I,
\end{eqnarray}
there exists a solution $u \in C^{n+1}(I, X)$ satisfying
\begin{eqnarray}
u^{(n+1)}(x)-\sum_{j=0}^{n} a_{j} u^{(j)}(x)-f(x)=0, \quad \forall x \in I,
\end{eqnarray}
such that
\begin{eqnarray}
\|y(x)-u(x)\| \le \phi_{r_{n+1}} \circ \phi_{r_{n}} \circ \cdots \circ \phi_{r_{1}}(\varepsilon)(x), \quad \forall x \in I.
\end{eqnarray}
Let $y \in C^{n+1}(I, X)$ be a mapping satisfying (3.11). According to Vieta's relations we get
$$
\begin{aligned}
\|y^{(n+1)}(x)-&
\left(r_1+\cdots+r_{n+1}\right)
y^{(n)}(x)+\cdots\\
&+(-1)^{n+1}r_1r_2 \dots
r_{n+1}y(x)-f(x) \| \le
\varepsilon(x)
\end{aligned}
$$
or
\begin{align}
\Vert\left(y^{(n+1)}(x)\right. &
\left.-r_{n+1}y^{(n)}(x)\right)-
\left(r_1+\cdots+r_n\right)\left(
y^{(n)}(x)-r_{n+1} y^{(n-1)}
(x)\right) \nonumber\\
& +\cdots+(-1)^{n} r_{1} \cdots r_n\left(y^{\prime}(x)-r_{n+1} y(x)\right)\nonumber\\
&-f(x)\Vert \le \varepsilon(x), \quad x \in I .
\end{align}
Let $z$ be given by
$$ z=y^{\prime}-r_{n+1} y . $$
Then (3.14) becomes
$$
\begin{aligned}
\|z^{(n)}(x)-&
\left(r_1+\cdots+r_{n}\right)
z^{(n-1)}(x)+\cdots\\
&+(-1)^{n}r_1r_2 \dots
r_{n}z(x)-f(x) \| \le
\varepsilon(x)
\end{aligned}
$$
for all $x \in I$. Therefore, in virtue of the induction hypothesis, there exists a $v$ such that
$$
v^{(n)}(x)-\left(r_{1}+\cdots+r_{n}\right) v^{(n-1)}(x)+\cdots+(-1)^{n} r_{1} \cdots r_{n} v(x)=f(x), x \in I,
$$
and
$$
\|z(x)-v(x)\| \le \phi_{r_{n}} \circ \cdots \circ \phi_{r_{1}}(\varepsilon)(x), \quad x \in I,
$$
which is equivalent to
$$
\left\|y^{\prime}(x)-r_{n+1}(x) y(x)-v(x)\right\| \le \phi_{r_{n}} \circ \cdots \circ \phi_{r_{1}}(\varepsilon)(x) .
$$
From Theorem 3.0.1 it follows that there exists a unique mapping $u \in C^{1}(I, X)$ such that
\begin{eqnarray}
u^{\prime}(x)-r_{n+1} u(x)-v(x)=0, \quad x \in I
\end{eqnarray}
and
$$
\|y(x)-u(x)\| \le \phi_{r_{n+1}} \circ \phi_{r_{n}} \circ \cdots \circ \phi_{r_{1}}(\varepsilon)(x), \quad x \in I .
$$
Finally, from the properties of $u$ and $v$, \hspace{0.1cm} $u$ satisfies (3.7). The theorem is proved.
\end{proof}
\end{thm}
\begin{thm}
Let $\delta$ be a positive number and suppose that all the roots of the characteristic equation (2.8) have the property $\Re r_{k} \neq 0$, $1 \leqslant k \leqslant n$. Then for every mapping $y \in C^{n}(I, X)$ satisfying the relation
$$
\left\|y^{(n)}(x)-\sum_{j=0}^{n-1} a_{j} y^{(j)}(x)-f(x)\right\| \leqslant \delta, \quad x \in I,
$$
there exists a solution $u \in C^{n}(I, X)$ of the equation
$$
y^{(n)}(x)-\sum_{j=0}^{n-1} a_{j} y^{(j)}(x)-f(x)=0, \quad x \in I,
$$
such that
$$
\|y(x)-u(x)\| \leqslant L
$$
where
$$L= \begin{cases}\delta \cdot \prod_{k=1}^{n} \frac{1}{\left|\Re r_{k}\right|} \cdot \frac{\left|e^{b \Re r_{k}}-e^{a \Re r_{k}}\right|}{e^{b \Re r_{k}}+e^{a \Re r_{k}}}, & \text { if } a, b \in \mathbb{R}, \\ \frac{\delta}{\prod_{k=1}^{n}\left|\Re r_{k}\right|}, & \text { if } a=-\infty \text { or } b=+\infty .\end{cases}
$$
\begin{proof}
The proof follows analogously to the proof of Theorem 3.0.4 taking account of Corollary 2.1.2.
\end{proof}
\end{thm}
\begin{ex}
Let $\theta \in \mathbb{R} \backslash\{0\}$ and $\varepsilon(x)=\theta \Re \lambda(x), \hspace{0.1cm} x \in I$. Then
$$
\psi_{c}(x)=|\theta| \cdot\left|1-e^{\Re(L(x)-L(c))}\right|, \quad x \in I .
$$
\begin{proof}
First we consider the case $\theta>0$, \hspace{0.1cm} i.e., $\Re \lambda(x) \ge 0$ for all $x \in I$. Then
$$
\Re L^{\prime}(x) \ge 0, \quad x \in I
$$
hence $\Re L$ is increasing on $I$,
$$
\psi_{c}(x)=\theta \cdot \begin{cases}e^{\Re L(x)-\Re L(c)}-1, & x \in[c, b), \\ 1-e^{\Re L(x)-\Re L(c)}, & x \in(a, c),\end{cases}
$$
and
$$
\left\|\psi_{c}\right\|_{\infty}=\theta \max \left\{e^{\Re(L(b)-L(c))}-1,1-e^{\Re(L(a)-L(c))}\right\}
$$
Obviously, if the real part of $L$ is upper bounded, $\left\|\psi_{c}\right\|_{\infty}$ is minimum for $e^{\Re(L(b)-L(c))}-1=1-e^{\Re(L(a)-L(c))}$, i.e.
$$
e^{\Re L(c)}=\frac{e^{\Re L(a)}+e^{\Re L(b)}}{2}
$$
The relation from above gives $\tilde{c}$ optimal, therefore the following \linebreak estimation holds
$$
\|y-u\|_{\infty} \le \left\|\psi_{\tilde{c}}\right\|_{\infty}
$$
where
$$
\left\|\psi_{\tilde{c}}\right\|_{\infty}=\theta\left(e^{\Re(L(b)-L(\tilde{c}))}-1\right)=\theta \cdot \frac{e^{\Re L(b)}-e^{\Re L(a)}}{e^{\Re L(b)}+e^{\Re L(a)}}
$$
\begin{eqnarray}
i.e., \quad
\min _{c \in I}\left\|\psi_{c}\right\|_{\infty}=\theta \cdot \frac{e^{\Re L(b)}-e^{\Re L(a)}}{e^{\Re L(b)}+e^{\Re L(a)}}
\end{eqnarray}
The case $\theta<0$ leads analogously to
$$
\min _{c \in I}\left\|\psi_{c}\right\|_{\infty}=-\theta \cdot \frac{e^{\Re L(a)}-e^{\Re L(b)}}{e^{\Re L(b)}+e^{\Re L(a)}}
$$
therefore for all $\theta \in \mathbb{R} \backslash\{0\}$ we have
$$ \left\|\psi_{\tilde{c}}\right\|_{\infty}=|\theta| \cdot \frac{\left|e^{\Re L(b)}-e^{\Re L(a)}\right|}{e^{\Re L(b)}+e^{\Re L(a)}}. $$
\end{proof}
\end{ex}
\begin{thm}
If $f(x)$ is an approximately linear transformation from $E$ into $E^{\prime}$, then there is a linear transformation $\varphi(x)$ near $f(x)$. And $\operatorname{such} \varphi(x)$ is unique.
\begin{proof}
In generalizing the definition of Hyers, we shall call a \linebreak transformation $f(x)$ from $E$ into $E^{\prime}$ and there exists $K(\geq 0)$ and $p(0 \le p<1)$ such that
$$
\|f(x+y)-f(x)-f(y)\| \le K\left(\|x\|^{P}+\|y\|^{P}\right)
$$
for any $x$ and $y$ in $E$. \\
\indent Let $f(x)$ and $\varphi(x)$ be transformations from $E$ into $E^{\prime}$ and there exists $K(\geq 0)$ and $p(0 \le p>1)$ such that
$$
\|f(x)-\varphi(x)\| \le K\|x\|^{P}
$$
for any $x$ in $E$.
By the assumption there are $K_{0}(\geq 0)$ \linebreak and $p(0 \le p<1)$ such that
\begin{eqnarray}
\|f(2 x) / 2-f(x)\| \le K_{0}\|x\|^{P}
\end{eqnarray}
We shall now prove that
\begin{eqnarray}
\left\|f\left(2^{n} x\right) / 2^{n}-f(x)\right\| \le K_{0}\|x\|^{p} \sum_{i=0}^{n-1} 2^{i(p-1)}
\end{eqnarray}
for any integer $n$. The case $n=1$ holds by (3.17). Assuming the case
$$
\left\|f\left(2^{n} .2 x\right) / 2^{n}-f(2 x)\right\| \le K_{0}\|x\|^{P} 2^{P} \sum_{i=0}^{n-1} 2^{i(P-1)}
$$
That is,
$$
\left\|f\left(2^{n+1} x\right) / 2^{n}-f(2 x)\right\| \le K_{0}\|x\|^{P} \sum_{i=1}^{n} 2^{i(P-1)}
$$
By (3.17)
$$
\begin{aligned}
& \left\|f\left(2^{n+1} x\right) / 2^{n+1}-f(x)\right\| \le\left\|f\left(2^{n+1} x\right) / 2^{n+1}-f(2 x) / 2\right\| \\
& \indent \indent \indent \indent +\|f(2 x) / 2-f(x)\| \leq K_{0}\|x\|^{p} \sum_{i=0}^{n} 2^{i(P-i)}
\end{aligned}
$$
Thus we get (3.18) for the case $(n+1)$. Hence (3.18) holds for any $n$.
Since $0 \le p<1, \sum_{i=0}^{\infty} 2^{i(P-1)}$ converges to $2 /\left(2-2^{P}\right)$. Therefore (3.18) becomes
\begin{eqnarray}
\left\|f\left(2^{n} x\right) / 2^{n}-f(x)\right\| \le K\|x\|^{P}, \hspace{0.3cm} K=2 K_{0} /\left(2-2^{P}\right)
\end{eqnarray}
Let us consider the sequence $\left(f\left(2^{n} x\right) / 2^{n}\right)$. We have
$$
\begin{aligned}
\left\|f\left(2^{m} x\right) / 2^{m}-f\left(2^{n} x\right) / 2^{n}\right\|=\left\|f\left(2^{m} x\right) / 2^{m-n}-f\left(2^{n} x\right)\right\| / 2^{n} \\
<K\left\|2^{n} x\right\|^{P} / 2^{n}=2^{n(P-1)} K\|x\|^{P} \rightarrow 0(n \rightarrow \infty) .
\end{aligned}
$$
Since $E^{\prime}$ is complete, the sequence in consideration converges.\\ We put
$$
\varphi(x) \equiv \lim f\left(2^{n} x\right) / 2^{n}
$$
Then $\varphi(x)$ is linear. For, by the approximate linearity of $f(x)$
\begin{align}
\left\|f\left(2^{n}(x+y)\right)-f\left(2^{n} x\right)-f\left(2^{n} y\right)\right\|\nonumber &\leq K_{0}\left(\left\|2^{n} x\right\|^{P}+\left\|2^{n} y\right\|^{P}\right)\nonumber\\&=2^{n P} K_{0}\left(\|x\|^{P}+\|y\|^{P}\right). \nonumber
\end{align}
Dividing both sides by $2^{n}$ and letting $n \rightarrow \infty$, we get
$$
\varphi(x+y)=\varphi(x)+\varphi(y)
$$
which shows that $\varphi$ is linear. In (3.19), letting $n \rightarrow \infty$, we get
\begin{eqnarray}
\|\varphi(x)-f(x)\| \le K\|x\|^{r}
\end{eqnarray}
which shows that $\varphi(x)$ is near $f(x)$. \\
\indent It remains to prove the unicity of $\varphi(x)$. Let $\psi\left(x^{\prime}\right)$ be another linear transformation near $f(x)$. Then there exist $K^{\prime}(\le 0)$ and \linebreak $p^{\prime}(0 \le$ $\left.p^{\prime}<1\right)$ such that
\begin{eqnarray}
\|\psi(x)-f(x)\| \le K^{\prime}\|x\|^{P}
\end{eqnarray}
By (3.20) we have,
$$
\|\varphi(x)-\psi(x)\| \le K\|x\|^{P}+K^{\prime}\|x\|^{P}
$$
By the linearity of $\varphi$ and $\psi$,
$$
\begin{aligned}
\|\varphi(x)-\psi(x)\| & =\|\varphi(n x)-\psi(n x)\| / n \\
& \leq\left(K\|n x\|^{P}+K^{\prime}\|n x\|^{P^{\prime}}\right) / n \\
& =K\|x\|^{P} / n^{1-P}+K^{\prime}\|x\|^{P^{\prime}} / n^{1-P^{\prime}} \rightarrow 0(n \rightarrow \infty) .
\end{aligned}
$$
Therefore $\varphi(x)=\psi(x)$.
\end{proof}
\end{thm}
\begin{thm}
Let $f: G \rightarrow X$ be such that
\begin{eqnarray}
\|f(x+y)-f(x)-f(y)\| \le \varphi(x, y), \text { for all } x, y \in G \text {. }
\end{eqnarray}
Then there exists a unique mapping $T: G \rightarrow X$ such that
\begin{eqnarray}
T(x+y)=T(x)+T(y), \quad \text { for all } x, y \in G,
\end{eqnarray}
and
\begin{eqnarray}
\|f(x)-T(x)\| \le \frac{1}{2} \tilde{\varphi}(x, x), \text { for all } x \in G \text.
\end{eqnarray}
\begin{proof}
For $x=y$ inequality (3.22) implies
$$
\|f(2 x)-2 f(x)\| \le \varphi(x, x) .
$$
Thus
\begin{eqnarray}
\left\|2^{-1} f(2 x)-f(x)\right\| \le \frac{1}{2} \varphi(x, x) \text { for all } x \in G .
\end{eqnarray}
Replacing $x$ by $2 x$, inequality (3.25) gives
\begin{eqnarray}
\left\|2^{-1} f\left(2^2 x\right)-f(2 x)\right\| \le \frac{1}{2} \varphi(2 x, 2 x) \text { for all } x \in G .
\end{eqnarray}
From (3.25) and (3.26) it follows that
$$
\begin{aligned}
\left\|2^{-2} f\left(2^2 x\right)-f(x)\right\| & \le\left\|2^{-2} f\left(2^2 x\right)-2^{-1} f(2 x)\right\| \\
& \quad \quad +\left\|2^{-1} f(2 x)-f(x)\right\| \\
& \le 2^{-1} \frac{1}{2} \varphi(2 x, 2 x)+\frac{1}{2} \varphi(x, x) .
\end{aligned}
$$
Hence
\begin{eqnarray}
\left\|2^{-2} f\left(2^2 x\right)-f(x)\right\| \le \frac{1}{2}\left[\varphi(x, x)+\frac{1}{2} \varphi(2 x, 2 x)\right]
\end{eqnarray}
for all $x \in G$.
Replacing $x$ by $2 x$, inequality (3.27) becomes
$$
\left\|2^{-2} f\left(2^3 x\right)-f(2 x)\right\| \le \frac{1}{2}\left[\varphi(2 x, 2 x)+\frac{1}{2} \varphi\left(2^2 x, 2^2 x\right)\right],
$$
and therefore
$$
\begin{aligned}
\left\|2^{-3} f\left(2^3 x\right)-f(x)\right\| & \le\left\|2^{-3} f\left(2^3 x\right)-2^{-1} f(2 x)\right\|\\&\quad\quad \quad +\left\|2^{-1} f(2 x)-f(x)\right\| \\
& \le 2^{-1} \frac{1}{2}\left[\varphi(2 x, 2 x)+\frac{1}{2} \varphi\left(2^2 x, 2^2 x\right)\right]\\
& \quad \quad \quad +\frac{1}{2} \varphi(x, x) .
\end{aligned}
$$
Thus
\begin{eqnarray}
\begin{array}{l}
\noindent \left\|2^{-3} f\left(2^3 x\right)-f(x)\right\| \\
\quad \le \frac{1}{2}\left[\varphi(x, x)+\frac{1}{2} \varphi(2 x, 2 x)+\frac{1}{2^2} \varphi\left(2^2 x, 2^2 x\right)\right]
\end{array}
\end{eqnarray}
for all $x \in G$.
Applying an induction argument to $n$ we obtain
\begin{eqnarray}
\left\|2^{-n} f\left(2^n x\right)-f(x)\right\| \le \frac{1}{2} \sum_{k=0}^{n-1} 2^{-k} \varphi\left(2^k x, 2^k x\right)
\end{eqnarray}
for all $x \in G$.
Indeed,
$$
\begin{aligned}
\left\|2^{-(n+1)} f\left(2^{n+1} x\right)-f(x)\right\| \le & \left\|2^{-(n+1)} f\left(2^{n+1} x\right)-2^{-1} f(2 x)\right\| \\
& \quad\quad +\left\|2^{-1} f(2 x)-f(x)\right\|,
\end{aligned}
$$
and with (3.29) and (3.25) we obtain
$$
\begin{aligned}
\left\|2^{-(n+1)} f\left(2^{n+1} x\right)-f(x)\right\| & \le 2^{-1} \frac{1}{2} \sum_{k=0}^{n-1} 2^{-k} \varphi\left(2^{k+1} x, 2^{k+1} x\right)\\
& \quad \quad \quad +\frac{1}{2} \varphi(x, x) \\
& =\frac{1}{2} \sum_{k=0}^n 2^{-k} \varphi\left(2^k x, 2^k x\right) .
\end{aligned}
$$
We claim that the sequence $\left\{2^{-n} f\left(2^n x\right)\right\}$ is a Cauchy sequence. Indeed, for $n>m$ we have
$$
\begin{aligned}
\left\|2^{-n} f\left(2^n x\right)-2^{-m} f\left(2^m x\right)\right\| & =2^{-m}\left\|2^{-(n-m)} f\left(2^{n-m} 2^m x\right)-f\left(2^m x\right)\right\| \\
& \le 2^{-m} \frac{1}{2} \sum_{k=0}^{n-m-1} 2^{-k} \varphi\left(2^{k+m} x, 2^{k+m} x\right) \\
& =\frac{1}{2} \sum_{p=m}^{n-1} 2^{-p} \varphi\left(2^p x, 2^p x\right) .
\end{aligned}
$$
Taking the limit as $m \rightarrow \infty$ we obtain
$$
\lim _{m \rightarrow \infty}\left\|2^{-n} f\left(2^n x\right)-2^{-m} f\left(2^m x\right)\right\|=0 .
$$
Because of the fact that $X$ is a Banach space it follows that the sequence $\left\{2^{-n} f\left(2^n x\right)\right\}$ converges.
Denote
$$
T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^n x\right)}{2^n}.
$$
We claim that $T$ satisfies (3.23).
From (3.22) we have
$$
\left\|f\left(2^n x+2^n y\right)-f\left(2^n x\right)-f\left(2^n y\right)\right\| \le \varphi\left(2^n x, 2^n y\right)
$$
for all $x, y \in G$. Therefore
\begin{eqnarray}
&\left\|2^{-n} f\left(2^n x+2^n y\right)-2^{-n} f\left(2^n x\right)-2^{-n} f\left(2^n y\right)\right\|\nonumber \\&\quad\quad\quad\le 2^{-n} \varphi\left(2^n x, 2^n y\right).
\end{eqnarray}
Using the equation given below
$$\tilde{\varphi}(x,y)=\sum_{k=0}^{\infty} 2^{-k} \varphi\left(2^kx,2^ky\right)<\infty $$
we have
$$
\lim _{n \rightarrow \infty} 2^{-n} \varphi\left(2^n x, 2^n y\right)=0
$$
Then (3.30) implies
$$
\|T(x+y)-T(x)-T(y)\|=0 .
$$
To prove (3.24), taking the limit in (3.29) as $n \rightarrow \infty$, we obtain
$$
\|T(x)-f(x)\| \le \frac{1}{2} \bar{\varphi}(x, x), \text { for all } x \in G .
$$
It remains to show that $T$ is uniquely defined. Let $F: G \rightarrow X$ be another such mapping with
$$
F(x+y)=F(x)+F(y)
$$
and (3.24) satisfied.\\
Then
$$
\begin{aligned}
\|T(x)-F(x)\| & =\left\|2^{-n} T\left(2^n x\right)-2^{-n} F\left(2^n x\right)\right\| \\
& \le\left\|2^{-n} T\left(2^n x\right)-2^{-n} f\left(2^n x\right)\right\|\\&\quad\quad+\left\|2^{-n} f\left(2^n x\right)-2^{-n} F\left(2^n x\right)\right\| \\
& \le 2^{-n} \frac{1}{2} \tilde{\varphi}\left(2^n x, 2^n x\right)+2^{-n} \frac{1}{2} \tilde{\varphi}\left(2^n x, 2^n x\right) \\
& =2^{-n} \tilde{\varphi}\left(2^n x, 2^n x\right) \\
& =2^{-n} \sum_{k=0}^{\infty} 2^{-k} \varphi\left(2^{k+n} x, 2^{k+n} x\right) \\
& =\sum_{p=n}^{\infty} 2^{-p} \varphi\left(2^p x, 2^p x\right) .
\end{aligned}
$$
Thus
\begin{eqnarray}
\|T(x)-F(x)\| \le \sum_{p=n}^{\infty} 2^{-p} \varphi\left(2^p x, 2^p x\right)\ \text {for all } x \in G.
\end{eqnarray}
Taking the limit in (3.31) as $n \rightarrow \infty$ we obtain$$
T(x)=F(x) \text { for all } x \in G.
$$
\end{proof}
\end{thm}
\chapter{Applications}
Hyers-Ulam stability of linear differential equations has several \linebreak applications in various fields of mathematics and physics. Here we discuss some of the applications of Hyers-Ulam stability:\\\\
\textbf{Control theory}: In control theory, the stability of a system is of utmost importance. Hyers-Ulam stability of linear differential \linebreak equations provides a tool to analyze the stability of a control \linebreak system with a known differential equation. This helps in designing \linebreak controllers that maintain the stability of the system.\\\\
\textbf{Numerical analysis}: Hyers-Ulam stability of linear differential \linebreak equations is also used in numerical analysis. The stability of a \linebreak numerical method used to solve a differential equation can be \linebreak analyzed using Hyers-Ulam stability. This helps in selecting \linebreak appropriate numerical methods to obtain accurate solutions.\\\\
\textbf{Mathematical physics}: Hyers-Ulam stability of linear differential equations is used in mathematical physics to analyze the stability of physical systems. For example, the stability of a quantum system \linebreak can be analyzed using Hyers - Ulam stability of the Schrodinger \linebreak equation.
\\\\
\textbf{Differential geometry}: Hyers-Ulam stability of linear differential \linebreak equations has applications in differential geometry. It is used to study the stability of solutions to linear partial differential equations on manifolds.
\\\\
\textbf{Mathematical biology}: Hyers-Ulam stability of linear differential \linebreak equations is also used in mathematical biology to model biological \linebreak phenomena such as population dynamics, epidemic spread, and \linebreak biochemical reactions. The stability of the models can be analyzed using Hyers-Ulam stability to make predictions about the behavior of the system.\\
Overall, Hyers-Ulam stability of linear differential equations is an important tool in various branches of mathematics and physics, and its applications are wide-ranging.
\pagebreak
\chapter{Conclusion}
\hspace{0.5cm} In this dissertation, we have presented some results on generalized Hyers-Ulam stability of the linear differential equation in a Banach space. As a consequence, we improved some known estimates of the difference between the pertubated and the exact solutions. The results proved in this dissertation are novel. Illustrations are provided at the end of each theorem for better understanding of each theorem.
\begin{thebibliography}
\quad \bibitem{1}C. Alsina, R. Ger, On some inequalities and stability results \linebreak related to the exponential function, \textit{J. Inequal. Appl. $2 (1998)$\linebreak $373-380$.}
\bibitem{2}T. Aoki, On the stability of the linear transformations in \linebreak Banach spaces, \textit{J. Math. Soc. Japan $2 (1950) 64-66$.}
\bibitem{3}J. Brzdek, On the quotient stability of a family of functional equations, \textit{Nonlinear Anal. $71$ $(2009)$ $4396-4404$.}
\bibitem{4}J. Brzdek, D. Popa, B. Xu, The Hyers-Ulam stability of \linebreak nonlinear recurrences, \textit{J. Math. Anal. Appl. $335 (2007) 443-449$.}
\bibitem{5}D.S. Cimpean, D. Popa, On the stability of the linear differential equation of higher order with constant coefficients, \textit{Appl. Math. Comput. $217 (2010)$ \textit{$4141-4146$.}}
\bibitem{6}S. Czerwik, Functional Equations and Inequalities in Several Variables, \textit{World Scientific, $2002$.}
\bibitem{7}G. L. Forti, Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, \textit{J. Math. Anal. Appl.$ 295 (2004)$ $127-133$.}
\bibitem{8}D. H. Hyers, On the stability of the linear functional equation, \textit{Proc. Natl. Acad. Sci. USA $27$$ (1941)$ $222-224$.}
\bibitem{9}D. H. Hyers, G. Isac, Th. M. Rassias, Stability of Functional Equations in Several Variables, \textit{Birkhauser, Basel, $1998$.}
\bibitem{10}S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, \textit{Hadronic Press, Palm Harbor, $2001$.}
\bibitem{11}S. M. Jung, Hyers-Ulam stability of linear differential equation of the first order (III), \textit{J. Math. Anal. Appl.$ 311$ $(2005)$ $139-146$.}
\bibitem{12}S. M. Jung, Hyers-Ulam stability of linear differential equations of first order (II), \textit{Appl. Math. Lett. $19$ $(2006) 854-858$.}
\bibitem{13}S. M. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, \textit{J. Math. Anal. Appl.$ 320 (2006) 549-561$.}
\bibitem{14}Y. Li, Y. Shen, Hyers-Ulam stability of linear differential \linebreak equations of second order, \textit{Appl. Math. Lett.$ 23$ $(2010) 306-309$.}
\bibitem{15}T. Miura, S. Miyajima, S. E. Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, \linebreak \textit{J. Math. Anal. Appl. $286 (2003)$ $136-146$.}
\bibitem{16}T. Miura, S. Miyajima, S. E. Takahasi, Hyers-Ulam stability of linear differential operator with constant coefficients, \textit{Math. Nachr. $258 (2003) 90-96$.}
\bibitem{17}J. Moser, Stable and Random Motions in Dynamical Systems, \textit{Princeton University Press, Princeton, NJ, $2000$.}
\bibitem{18}K. Palmer, Shadowing in Dynamical Systems, Kluwer \linebreak \textit{Academic Press, $2000$.}
\bibitem{19}S. Pilyugin, Shadowing in Dynamical Systems, \textit{Lecture Notes in Math., vol. $1706$, Springer-Verlag, $1999$.}
\bibitem{20}D. Popa, Hyers-Ulam-Rassias stability of a linear recurrence, \linebreak \textit{J. Math. Anal. Appl. $309 (2005) 591-597$.}
\bibitem{21}Th. M. Rassias, On the stability of the linear mapping in \linebreak Banach spaces, \textit{Proc. Amer. Math. Soc. $72 (1978)$ $297-300$.}
\bibitem{22}I. A. Rus, Remarks on Ulam stability of the operatorial \linebreak equations, \textit{Fixed Point Theory $10 (2009) 305-320$.}
\bibitem{23}I. A. Rus, Ulam stability of ordinary differential equations, \textit{Stud. Univ. Babeş-Bolyai Math. $54 (2009)$ $125-134$.}
\bibitem{24}S. E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam \linebreak stability of the Banach space-valued differential equation \linebreak $y^{\prime}=\lambda y$, \textit{Bull. Korean Math. Soc. $39$ $(2002) 309-315$.}
\bibitem{25}S. E. Takahasi, H. Takagi, T. Miura, S. Miyajima, The Hyers-Ulam stability constants of first order linear differential \linebreak operators, \textit{J. Math. Anal. Appl.$ 296 (2004) 403-409$.}
\bibitem{26}S. M. Ulam, A Collection of Mathematical Problems, \textit{Interscience, New York, $1960$.}
\bibitem{27}G. Wang, M. Zhou, L. Sun, Hyers-Ulam stability of linear \linebreak differential equations of first order, \textit{Appl. Math. Lett.$ 21 (2008) 1024-1028$.}
\end{thebibliography}
\end{document}