-
Notifications
You must be signed in to change notification settings - Fork 3
/
eval.py
303 lines (260 loc) · 11.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
''' Evaluation of agent trajectories '''
import os
import json
from collections import defaultdict
import networkx as nx
import numpy as np
import pprint; pp = pprint.PrettyPrinter(indent=4) # NoQA
from env import R2RBatch, ImageFeatures
import utils
from utils import load_datasets, load_nav_graphs
from follower import BaseAgent
import train
from collections import namedtuple
EvalResult = namedtuple(
"EvalResult", "nav_error, oracle_error, trajectory_steps, "
"trajectory_length, success, oracle_success, spl")
class Evaluation(object):
''' Results submission format:
[{'instr_id': string,
'trajectory':[(viewpoint_id, heading_rads, elevation_rads),]}] '''
def __init__(self, splits, args=None):
self.error_margin = 3.0
self.splits = splits
self.gt = {}
self.instr_ids = []
self.scans = []
self.instructions = {}
for item in load_datasets(args, splits):
self.gt[item['path_id']] = item
self.scans.append(item['scan'])
# self.instr_ids += [
# '%d_%d' % (item['path_id'], i) for i in range(3)]
self.instr_ids += ['%s_%d' % (item['path_id'], i) for i in range(len(item['instructions']))]
for j,instruction in enumerate(item['instructions']):
self.instructions['%d_%d' % (item['path_id'], j)] = instruction
self.scans = set(self.scans)
self.instr_ids = set(self.instr_ids)
self.graphs = load_nav_graphs(self.scans)
self.distances = {}
for scan, G in self.graphs.items(): # compute all shortest paths
self.distances[scan] = dict(nx.all_pairs_dijkstra_path_length(G))
def _get_nearest(self, scan, goal_id, path):
near_id = path[0][0]
near_d = self.distances[scan][near_id][goal_id]
for item in path:
d = self.distances[scan][item[0]][goal_id]
if d < near_d:
near_id = item[0]
near_d = d
return near_id
def _score_item(self, instr_id, path):
''' Calculate error based on the final position in trajectory, and also
the closest position (oracle stopping rule). '''
gt = self.gt[int(instr_id.split('_')[0])]
start = gt['path'][0]
assert start == path[0][0], \
'Result trajectories should include the start position'
goal = gt['path'][-1]
final_position = path[-1][0]
nearest_position = self._get_nearest(gt['scan'], goal, path)
nav_error = self.distances[gt['scan']][final_position][goal]
oracle_error = self.distances[gt['scan']][nearest_position][goal]
trajectory_steps = len(path)-1
trajectory_length = 0 # Work out the length of the path in meters
prev = path[0]
for curr in path[1:]:
trajectory_length += self.distances[gt['scan']][prev[0]][curr[0]]
prev = curr
success = nav_error < self.error_margin
# check for type errors
# assert success == True or success == False
# check for type errors
oracle_success = oracle_error < self.error_margin
# assert oracle_success == True or oracle_success == False
sp_length = 0
prev = gt['path'][0]
sp_length = self.distances[gt['scan']][gt['path'][0]][gt['path'][-1]]
spl = 0.0 if nav_error >= self.error_margin else \
(float(sp_length) / max(trajectory_length,sp_length))
return EvalResult(nav_error=nav_error, oracle_error=oracle_error,
trajectory_steps=trajectory_steps,
trajectory_length=trajectory_length, success=success,
oracle_success=oracle_success,
spl=spl)
def score_results(self, results):
# results should be a dictionary mapping instr_ids to dictionaries,
# with each dictionary containing (at least) a 'trajectory' field
# return a dict with key being a evaluation metric
self.scores = defaultdict(list)
model_scores = []
instr_ids = set(self.instr_ids)
instr_count = 0
for instr_id, result in results.items():
if instr_id in instr_ids:
instr_count += 1
instr_ids.remove(instr_id)
eval_result = self._score_item(instr_id, result['trajectory'])
self.scores['nav_errors'].append(eval_result.nav_error)
self.scores['oracle_errors'].append(eval_result.oracle_error)
self.scores['trajectory_steps'].append(
eval_result.trajectory_steps)
self.scores['trajectory_lengths'].append(
eval_result.trajectory_length)
self.scores['success'].append(eval_result.success)
self.scores['oracle_success'].append(
eval_result.oracle_success)
self.scores['spl'].append(eval_result.spl)
if 'score' in result:
model_scores.append(result['score'])
assert len(instr_ids) == 0, \
'Missing %d of %d instruction ids from %s' % (
len(instr_ids), len(self.instr_ids), ",".join(self.splits))
assert len(self.scores['nav_errors']) == len(self.instr_ids)
score_summary = {
'nav_error': np.average(self.scores['nav_errors']),
'oracle_error': np.average(self.scores['oracle_errors']),
'steps': np.average(self.scores['trajectory_steps']),
'lengths': np.average(self.scores['trajectory_lengths']),
'success_rate': float(
sum(self.scores['success']) / len(self.scores['success'])),
'oracle_rate': float(sum(self.scores['oracle_success'])
/ len(self.scores['oracle_success'])),
'spl': float(sum(self.scores['spl'])) / len(self.scores['spl'])
}
if len(model_scores) > 0:
assert len(model_scores) == instr_count
score_summary['model_score'] = np.average(model_scores)
num_successes = len(
[i for i in self.scores['nav_errors'] if i < self.error_margin])
# score_summary['success_rate'] = float(num_successes)/float(len(self.scores['nav_errors'])) # NoQA
assert float(num_successes) / float(len(self.scores['nav_errors'])) == score_summary['success_rate'] # NoQA
oracle_successes = len(
[i for i in self.scores['oracle_errors'] if i < self.error_margin])
assert float(oracle_successes) / float(len(self.scores['oracle_errors'])) == score_summary['oracle_rate'] # NoQA
# score_summary['oracle_rate'] = float(oracle_successes) / float(len(self.scores['oracle_errors'])) # NoQA
return score_summary, self.scores
def score_file(self, output_file):
''' Evaluate each agent trajectory based on how close it got to the
goal location '''
with open(output_file) as f:
return self.score_results(json.load(f))
def score_test_file(self, output_file):
with open(output_file) as f:
_d = json.load(f)
results = {}
for item in _d:
results[item['instr_id']] = item
return self.score_results(results)
def _path_segments(self,path):
segs = []
for i in range(len(path)-1):
a = min(path[i], path[i+1])
b = max(path[i], path[i+1])
segs.append((a,b))
return set(segs)
def _inspect(self, instr_id, traj, eval_result):
results = {'instr_id': instr_id}
full_path = [p[0] for p in traj]
path = [full_path[0]]
for _vpt in full_path:
if _vpt != path[-1]:
path.append(_vpt)
results['path'] = path
plen = len(path)
gt = self.gt[int(instr_id.split('_')[0])]
gt_path = gt['path']
glen = len(gt_path)
# 1. No.X starts deviation
_diff = 0
while path[_diff] == gt_path[_diff]:
_diff += 1
if _diff == plen or _diff == glen: break
if _diff == plen and _diff == glen:
_diff = -1 # mark "no deviation"
results['ontrack'] = _diff
# 2. Percentage starts deviation
_percent_diff = float(_diff) / plen
results['%ontrack'] = _percent_diff
# 3. # of path segments on gt_path
psegs = self._path_segments(path)
gsegs = self._path_segments(gt_path)
_shared_segs = len(psegs & gsegs)
results['good_segments'] = _shared_segs
# 4. % of gt_segment in rollout
_s_r = float(_shared_segs) / len(psegs)
results['good/rollout'] = _s_r
# 5. % of gt_segment got covered
_s_g = float(_shared_segs) / len(gsegs)
results['good/gt'] = _s_g
results['success'] = eval_result.success
return results
def inspect_results(self, results):
inspection = defaultdict(list)
evals = []
instr_ids = set(self.instr_ids)
instr_count = 0
skipped_count = 0
if type(results) is list:
_res = results
results = {}
for item in _res:
results[item['instr_id']] = item
for instr_id, result in results.items():
if instr_id in instr_ids:
instr_count += 1
instr_ids.remove(instr_id)
eval_result = self._score_item(instr_id, result['trajectory'])
evals.append(eval_result)
res = self._inspect(instr_id, result['trajectory'], eval_result)
for k,v in res.items():
inspection[k].append(v)
else:
skipped_count += 1
print('Inspected', instr_count)
print('Skipped', skipped_count)
return inspection,evals
def eval_simple_agents(args):
''' Run simple baselines on each split. '''
img_features = ImageFeatures.from_args(args)
for split in ['train', 'val_seen', 'val_unseen', 'test']:
env = R2RBatch(img_features, batch_size=1, splits=[split])
ev = Evaluation([split])
for agent_type in ['Stop', 'Shortest', 'Random']:
outfile = '%s%s_%s_agent.json' % (
train.RESULT_DIR, split, agent_type.lower())
agent = BaseAgent.get_agent(agent_type)(env, outfile)
agent.test()
agent.write_results()
score_summary, _ = ev.score_file(outfile)
print('\n%s' % agent_type)
pp.pprint(score_summary)
def eval_seq2seq():
''' Eval sequence to sequence models on val splits (iteration selected from
training error) '''
outfiles = [
train.RESULT_DIR + 'seq2seq_teacher_imagenet_%s_iter_5000.json',
train.RESULT_DIR + 'seq2seq_sample_imagenet_%s_iter_20000.json'
]
for outfile in outfiles:
for split in ['val_seen', 'val_unseen']:
ev = Evaluation([split])
score_summary, _ = ev.score_file(outfile % split)
print('\n%s' % outfile)
pp.pprint(score_summary)
def eval_outfiles(outfolder):
splits = ['val_seen','val_unseen']
for _f in os.listdir(outfolder):
outfile = os.path.join(outfolder,_f)
_splits = []
for s in splits:
if s in outfile:
_splits.append(s)
ev = Evaluation(_splits)
score_summary, _ = ev.score_file(outfile)
print('\n', outfile)
pp.pprint(score_summary)
if __name__ == '__main__':
from train import make_arg_parser
utils.run(make_arg_parser(), eval_simple_agents)
# eval_seq2seq()