-
Notifications
You must be signed in to change notification settings - Fork 10
/
FSC_finetune_CARPK.py
350 lines (274 loc) · 14.3 KB
/
FSC_finetune_CARPK.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import argparse
import datetime
import json
from multiprocessing import reduction
from matplotlib import image
import numpy as np
import os
import time
import random
from pathlib import Path
import math
import sys
from PIL import Image
import scipy.ndimage as ndimage
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import Dataset
import torchvision
from torchvision import transforms
import torchvision.transforms.functional as TF
import hub
import timm
assert timm.__version__ == "0.3.2" # version check
import timm.optim.optim_factory as optim_factory
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
import util.lr_sched as lr_sched
from util.FSC147 import TransformTrain
import models_mae_cross
def get_args_parser():
parser = argparse.ArgumentParser('MAE pre-training', add_help=False)
parser.add_argument('--batch_size', default=8, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='mae_vit_base_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--mask_ratio', default=0.5, type=float,
help='Masking ratio (percentage of removed patches).')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data_path', default='/GPFS/data/changliu/FSC147/', type=str,
help='dataset path')
parser.add_argument('--output_dir', default='./output_CARPK_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_CARPK_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
#parser.add_argument('--resume', default='./output_pre_4_dir/checkpoint-300.pth',
# help='resume from checkpoint')
parser.add_argument('--resume', default='./output_CARPK_dir/checkpoint-6.pth',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
return parser
os.environ["CUDA_LAUNCH_BLOCKING"] = '1'
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
if True: # args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
ds_train = hub.load("hub://activeloop/carpk-train")
#ds_test = hub.load("hub://activeloop/carpk-test")
dataloader_train = ds_train.pytorch(num_workers=args.num_workers, batch_size=1, shuffle=False)
#dataloader_test = ds_test.pytorch(num_workers=args.num_workers, batch_size=1, shuffle=False)
# define the model
model = models_mae_cross.__dict__[args.model](norm_pix_loss=args.norm_pix_loss)
model.to(device)
model_without_ddp = model
print("Model = %s" % str(model_without_ddp))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
criterion = nn.MSELoss()
loss_scaler = NativeScaler()
min_MAE = 99999
misc.load_model_FSC(args=args, model_without_ddp=model_without_ddp)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
# train one epoch
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
# some parameters in training
train_mae = 0
train_rmse = 0
pred_cnt = 0
gt_cnt = 0
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, data in enumerate(metric_logger.log_every(dataloader_train, print_freq, header)):
# Be careful
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(dataloader_train) + epoch, args)
samples = (data['images']/255).to(device, non_blocking=True).half()
labels = data['labels'].to(device, non_blocking=True)
samples = samples.transpose(2,3).transpose(1,2)
cnt = 0
boxes=[]
idx = random.randint(0,data['boxes'].shape[1]-1)
box = data['boxes'][0][idx]
box2 = [int(k) for k in box]
x1, y1, x2, y2 = box2[0], box2[1], box2[0]+box2[2], box2[1]+box2[3]
bbox = samples[0,:,y1:y2+1,x1:x2+1].squeeze(0)
bbox = transforms.Resize((64, 64))(bbox)
boxes.append(bbox.cpu().numpy())
boxes = np.array(boxes)
boxes = torch.Tensor(boxes)
boxes = boxes.unsqueeze(0)
boxes = boxes.to(device, non_blocking=True).half()
samples = transforms.Resize((384, 683))(samples[0])
samples = TF.crop(samples, 0, 0, 384, 384)
samples = samples.unsqueeze(0)
gt_density = np.zeros((384, 384),dtype='float32')
for box in data['boxes'][0]:
box2 = [int(k) for k in box]
x, y = int(box2[0]+box2[2]/2), int(box2[1]+box2[3]/2)
if x < 720:
x = int(x * 384 / 720)
y = int(y * 384 / 720)
gt_density[y][x] = 1
gt_density = ndimage.gaussian_filter(gt_density, sigma=(1, 1), order=0)
gt_density = gt_density * 60
gt_density = torch.from_numpy(gt_density)
gt_density = gt_density.to(device, non_blocking=True).half()
shot_num = 1
with torch.cuda.amp.autocast():
output = model(samples,boxes,shot_num)
mask = np.random.binomial(n=1, p=0.8, size=[384,384])
masks = np.tile(mask,(output.shape[0],1))
masks = masks.reshape(output.shape[0], 384, 384)
masks = torch.from_numpy(masks).to(device)
loss = (output - gt_density) ** 2
# loss = (loss * masks / (384*384)).sum() / output.shape[0]
loss = (loss / (384*384)).sum() / output.shape[0]
#loss = criterion(output, gt_density)
loss_value = loss.item()
batch_mae = 0
batch_rmse = 0
for i in range(output.shape[0]):
pred_cnt = torch.sum(output[i]/60).item()
gt_cnt = labels.shape[1]
cnt_err = abs(pred_cnt - gt_cnt)
batch_mae += cnt_err
batch_rmse += cnt_err ** 2
if i == 0 :
print(f'{data_iter_step}/{len(dataloader_train)}: loss: {loss_value}, pred_cnt: {pred_cnt}, gt_cnt: {gt_cnt}, error: {abs(pred_cnt - gt_cnt)}, AE: {cnt_err}, SE: {cnt_err ** 2}, {shot_num}-shot ')
train_mae += batch_mae
train_rmse += batch_rmse
'''if log_writer is not None and data_iter_step == 0:
fig = output[0].unsqueeze(0).repeat(3,1,1)
f1 = gt_density.unsqueeze(0).repeat(3,1,1)
#log_writer.add_images('bboxes', (boxes[0]), int(epoch),dataformats='NCHW')
log_writer.add_images('gt_density', (samples[0]/2+f1/2), int(epoch),dataformats='CHW')
#log_writer.add_images('heatmap', (fig/20), int(epoch),dataformats='CHW')
log_writer.add_images('heatmap overlay', (samples[0]/2+fig/2), int(epoch),dataformats='CHW')'''
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 3:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(dataloader_train) + epoch) * 1000)
log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', lr, epoch_1000x)
log_writer.add_scalar('MAE', batch_mae/args.batch_size, epoch_1000x)
log_writer.add_scalar('RMSE', (batch_rmse/args.batch_size)**0.5, epoch_1000x)
# Only use 1 batches when overfitting
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
train_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
# save train status and model
if args.output_dir and (epoch % 20 == 0 or epoch + 1 == args.epochs):
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
if args.output_dir and train_mae/(len(dataloader_train) * args.batch_size) < min_MAE:
min_MAE = train_mae/(len(dataloader_train) * args.batch_size)
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=666)
# len(dataloader_train) when train on all
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'Current MAE': train_mae/(len(dataloader_train) * args.batch_size),
'RMSE': (train_rmse/(len(dataloader_train) * args.batch_size))**0.5,
'epoch': epoch,}
print('Current MAE: {:5.2f}, RMSE: {:5.2f} '.format( train_mae/(len(dataloader_train) * args.batch_size), (train_rmse/(len(dataloader_train) * args.batch_size))**0.5))
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)