-
Notifications
You must be signed in to change notification settings - Fork 73
/
toy.py
66 lines (56 loc) · 2.42 KB
/
toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""
A toy example for bounding neural network outputs under input perturbations.
"""
import torch
from collections import defaultdict
from auto_LiRPA import BoundedModule, BoundedTensor
from auto_LiRPA.perturbations import PerturbationLpNorm
class simple_model(torch.nn.Module):
"""
A very simple 2-layer neural network for demonstration.
"""
def __init__(self):
super().__init__()
# Weights of linear layers.
self.w1 = torch.tensor([[1., -1.], [2., -1.]])
self.w2 = torch.tensor([[1., -1.]])
def forward(self, x):
# Linear layer.
z1 = x.matmul(self.w1.t())
# Relu layer.
hz1 = torch.nn.functional.relu(z1)
# Linear layer.
z2 = hz1.matmul(self.w2.t())
return z2
model = simple_model()
# Input x.
x = torch.tensor([[1., 1.]])
# Lowe and upper bounds of x.
lower = torch.tensor([[-1., -2.]])
upper = torch.tensor([[2., 1.]])
# Wrap model with auto_LiRPA for bound computation.
# The second parameter is for constructing the trace of the computational graph,
# and its content is not important.
lirpa_model = BoundedModule(model, torch.empty_like(x))
pred = lirpa_model(x)
print(f'Model prediction: {pred.item()}')
# Compute bounds using LiRPA using the given lower and upper bounds.
norm = float("inf")
ptb = PerturbationLpNorm(norm = norm, x_L=lower, x_U=upper)
bounded_x = BoundedTensor(x, ptb)
# Compute bounds.
lb, ub = lirpa_model.compute_bounds(x=(bounded_x,), method='IBP')
print(f'IBP bounds: lower={lb.item()}, upper={ub.item()}')
lb, ub = lirpa_model.compute_bounds(x=(bounded_x,), method='CROWN')
print(f'CROWN bounds: lower={lb.item()}, upper={ub.item()}')
# Getting the linear bound coefficients (A matrix).
required_A = defaultdict(set)
required_A[lirpa_model.output_name[0]].add(lirpa_model.input_name[0])
lb, ub, A = lirpa_model.compute_bounds(x=(bounded_x,), method='CROWN', return_A=True, needed_A_dict=required_A)
print('CROWN linear (symbolic) bounds: lA x + lbias <= f(x) <= uA x + ubias, where')
print(A[lirpa_model.output_name[0]][lirpa_model.input_name[0]])
# Opimized bounds, which is tighter.
lb, ub, A = lirpa_model.compute_bounds(x=(bounded_x,), method='alpha-CROWN', return_A=True, needed_A_dict=required_A)
print(f'alpha-CROWN bounds: lower={lb.item()}, upper={ub.item()}')
print('alpha-CROWN linear (symbolic) bounds: lA x + lbias <= f(x) <= uA x + ubias, where')
print(A[lirpa_model.output_name[0]][lirpa_model.input_name[0]])