-
Notifications
You must be signed in to change notification settings - Fork 350
/
kbqa_test.py
179 lines (152 loc) · 7.29 KB
/
kbqa_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import io
import re
import time
import jieba
import numpy as np
import pandas as pd
import urllib.request
import urllib.parse
import tensorflow as tf
from Data.load_dbdata import upload_data
from global_config import Logger
from run_similarity import BertSim
# 模块导入 https://blog.csdn.net/xiongchengluo1129/article/details/80453599
loginfo = Logger("recommend_articles.log", "info")
file = "./Data/NER_Data/q_t_a_testing_predict.txt"
bs = BertSim()
bs.set_mode(tf.estimator.ModeKeys.PREDICT)
def dataset_test():
'''
用训练问答对中的实体+属性,去知识库中进行问答测试准确率上限
:return:
'''
with open(file) as f:
total = 0
recall = 0
correct = 0
for line in f:
question, entity, attribute, answer, ner = line.split("\t")
ner = ner.replace("#", "").replace("[UNK]", "%")
# case1: entity and attribute Exact Match
sql_e1_a1 = "select * from nlpccQA where entity='"+entity+"' and attribute='"+attribute+"' limit 10"
result_e1_a1 = upload_data(sql_e1_a1)
# case2: entity Fuzzy Match and attribute Exact Match
sql_e0_a1 = "select * from nlpccQA where entity like '%" + entity + "%' and attribute='" + attribute + "' limit 10"
#result_e0_a1 = upload_data(sql_e0_a1, True)
# case3: entity Exact Match and attribute Fuzzy Match
sql_e1_a0 = "select * from nlpccQA where entity like '" + entity + "' and attribute='%" + attribute + "%' limit 10"
#result_e1_a0 = upload_data(sql_e1_a0)
if len(result_e1_a1) > 0:
recall += 1
for l in result_e1_a1:
if l[2] == answer:
correct += 1
else:
result_e0_a1 = upload_data(sql_e0_a1)
if len(result_e0_a1) > 0:
recall += 1
for l in result_e0_a1:
if l[2] == answer:
correct += 1
else:
result_e1_a0 = upload_data(sql_e1_a0)
if len(result_e1_a0) > 0:
recall += 1
for l in result_e1_a0:
if l[2] == answer:
correct += 1
else:
loginfo.logger.info(sql_e1_a0)
if total > 100:
break
total += 1
time.sleep(1)
loginfo.logger.info("total: {}, recall: {}, correct:{}, accuracy: {}%".format(total, recall, correct, correct * 100.0 / recall))
#loginfo.logger.info("total: {}, recall: {}, correct:{}, accuracy: {}%".format(total, recall, correct, correct*100.0/recall))
def estimate_answer(candidate, answer):
'''
:param candidate:
:param answer:
:return:
'''
candidate = candidate.strip().lower()
answer = answer.strip().lower()
if candidate == answer:
return True
if not answer.isdigit() and candidate.isdigit():
candidate_temp = "{:.5E}".format(int(candidate))
if candidate_temp == answer:
return True
candidate_temp == "{:.4E}".format(int(candidate))
if candidate_temp == answer:
return True
return False
def kb_fuzzy_classify_test():
'''
进行问答测试:
1、 实体检索:输入问题,ner得出实体集合,在数据库中检索与输入实体相关的所有三元组
2、 属性映射——bert分类/文本相似度
+ 非语义匹配:如果所得三元组的关系(attribute)属性是 输入问题 字符串的子集,将所得三元组的答案(answer)属性与正确答案匹配,correct +1
+ 语义匹配:利用bert计算输入问题(input question)与所得三元组的关系(attribute)属性的相似度,将最相似的三元组的答案作为答案,并与正确
的答案进行匹配,correct +1
3、 答案组合
:return:
'''
with open(file, encoding='utf-8') as f:
total = 0
recall = 0
correct = 0
ambiguity = 0 # 属性匹配正确但是答案不正确
for line in f:
try:
total += 1
question, entity, attribute, answer, ner = line.split("\t")
ner = ner.replace("#", "").replace("[UNK]", "%").replace("\n", "")
# case: entity Fuzzy Match
# 找出所有包含这些实体的三元组
sql_e0_a1 = "select * from nlpccQA where entity like '%" + ner + "%' order by length(entity) asc limit 20"
# sql查出来的是tuple,要转换成list才不会报错
result_e0_a1 = list(upload_data(sql_e0_a1))
if len(result_e0_a1) > 0:
recall += 1
flag_fuzzy = True
# 非语义匹配,加快速度
# l1[0]: entity
# l1[1]: attribute
# l1[2]: answer
flag_ambiguity = True
for l in result_e0_a1:
if l[1] in question or l[1].lower() in question or l[1].upper() in question:
flag_fuzzy = False
if estimate_answer(l[2], answer):
correct += 1
flag_ambiguity = False
else:
loginfo.logger.info("\t".join(l))
# 非语义匹配成功,继续下一次
if not flag_fuzzy:
if flag_ambiguity:
ambiguity += 1
time.sleep(1)
loginfo.logger.info("total: {}, recall: {}, correct:{}, accuracy: {}%, ambiguity:{}".format(total, recall, correct, correct * 100.0 / recall, ambiguity))
continue
# 语义匹配
result_df = pd.DataFrame(result_e0_a1, columns=['entity', 'attribute', 'value'])
# loginfo.logger.info(result_df.head(100))
attribute_candicate_sim = [(k, bs.predict(question, k)[0][1]) for k in result_df['attribute'].tolist()]
attribute_candicate_sort = sorted(attribute_candicate_sim, key=lambda candicate: candicate[1], reverse=True)
loginfo.logger.info("\n".join([str(k)+" "+str(v) for (k, v) in attribute_candicate_sort]))
answer_candicate_df = result_df[result_df["attribute"] == attribute_candicate_sort[0][0]]
for row in answer_candicate_df.index:
if estimate_answer(answer_candicate_df.loc[row, "value"], answer):
correct += 1
else:
loginfo.logger.info("\t".join(answer_candicate_df.loc[row].tolist()))
time.sleep(1)
loginfo.logger.info("total: {}, recall: {}, correct:{}, accuracy: {}%, ambiguity:{}".format(total, recall, correct, correct * 100.0 / recall, ambiguity))
except Exception as e:
loginfo.logger.info("the question id % d occur error %s" % (total, repr(e)))
if __name__ == '__main__':
kb_fuzzy_classify_test()