-
Notifications
You must be signed in to change notification settings - Fork 2
/
check_align.py
148 lines (136 loc) · 5.67 KB
/
check_align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import json
import re
from collections import defaultdict
from metrics import CorefAllMetrics
from typing import Dict
from data import get_document_predicts, SPECIAL_IDS, parse_short_target_tokens
import argparse
from transformers import T5Tokenizer
from preprocess import SPEAKER_START, SPEAKER_END, MENTION_START, \
MENTION_END, COPY
from preprocess_mark_sentence import SPECIAL_IDS as MARK_SPECIAL_IDS
from preprocess_mark_sentence import SENTENCE_START, SENTENCE_END
def load_data(data_dir, tokenizer):
def load_split(split):
max_len = 4096
data_path = os.path.join(
data_dir,
f'{split}.t5-small.english.{max_len}.jsonlines')
samples = []
doc_labels = {}
with open(data_path, 'r') as f:
for line in f:
item = json.loads(line)
doc_key = item['doc_key']
doc_id = re.sub(r'_\d+$', '', doc_key)
target_seq = tokenizer.convert_tokens_to_ids(
item['target_short_sentence'])
sample = {'doc_key': doc_key,
'sentence': tokenizer.convert_tokens_to_ids(
item['sentence']),
'target_seq': target_seq,
'subtoken_map': item['subtoken_map'],
'seg_clusters': [[tuple(m) for m in c] for c in item[
'seg_clusters'] if len(c) >= 2],
'offset': item['offset']
}
doc_labels[doc_id] = [[tuple(m) for m in c] for c in item[
'gold_clusters']]
samples.append(sample)
return samples, doc_labels
samples_dev, dev_labels = load_split('dev')
samples_test, test_labels = load_split('test')
return samples_dev, samples_test, dev_labels, test_labels
def oracle_align(doc_labels, samples, tokenizer, align_mode, mark_sentence) -> \
Dict:
documents_to_chunk_data = defaultdict(list)
documents_to_chunk_gold = defaultdict(list)
predictions = {}
golds = {}
last_doc_id = re.sub(r'_\d+$', '', samples[0]['doc_key'])
for sample in samples:
doc_key = sample['doc_key']
doc_id = re.sub(r'_\d+$', '', doc_key)
# require convert to ids first
input_ids = sample['sentence']
subtoken_map = sample['subtoken_map']
offset = sample['offset']
# remove bos
predict_ids = sample['target_seq']
gold_data = sample['seg_clusters']
special_ids = MARK_SPECIAL_IDS if mark_sentence else SPECIAL_IDS
pred_data, aligned_input_ids, aligned_pred_ids = \
parse_short_target_tokens(input_ids, predict_ids,
special_ids, subtoken_map,
tokenizer,
align_mode, 2, mark_sentence)
# list of (m1,m2)
documents_to_chunk_data[doc_id].extend(pred_data)
documents_to_chunk_gold[doc_id].extend(gold_data)
if doc_id != last_doc_id:
predictions[last_doc_id] = get_document_predicts(
documents_to_chunk_data[
last_doc_id])
golds[last_doc_id] = get_document_predicts(
documents_to_chunk_gold[
last_doc_id])
last_doc_id = doc_id
# final one
predictions[last_doc_id] = get_document_predicts(
documents_to_chunk_data[last_doc_id]
)
golds[last_doc_id] = get_document_predicts(
documents_to_chunk_gold[last_doc_id]
)
# print(predictions)
predictions_list = []
labels_list = []
golds_list = []
for document_id, doc_label in doc_labels.items():
predictions_list.append(predictions[document_id])
labels_list.append(doc_label)
golds_list.append(golds[document_id])
metrics = CorefAllMetrics().get_all_metrics(labels_list,
predictions_list)
metrics_golds = CorefAllMetrics().get_all_metrics(golds_list,
predictions_list)
label_results = {
f'{metric_name}_{x}': v
for metric_name, metric_values in metrics['micro'].items()
for x, v in metric_values.items()
}
gold_results = {
f'gold_{metric_name}_{x}': v
for metric_name, metric_values in metrics_golds['micro'].items()
for x, v in metric_values.items()
}
results = {**label_results, **gold_results}
return results
def main(args):
print('load data')
tokenizer = T5Tokenizer.from_pretrained("t5-small", model_max_length=4096)
tokenizer.add_tokens([SPEAKER_START, SPEAKER_END,
MENTION_START, MENTION_END, COPY])
if args.mark_sentence:
tokenizer.add_tokens([SENTENCE_START, SENTENCE_END])
samples_dev, samples_test, dev_labels, test_labels = load_data(
args.data_dir, tokenizer)
print('check dev')
results_dev = oracle_align(dev_labels, samples_dev, tokenizer,
args.align_mode, args.mark_sentence)
print('dev results')
print(results_dev)
print('check test')
results_test = oracle_align(test_labels, samples_test, tokenizer,
args.align_mode, args.mark_sentence)
print('test results')
print(results_test)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, help='data directory')
parser.add_argument('--align_mode', type=str, default='l',
help='align mode')
parser.add_argument('--mark_sentence', action='store_true')
args = parser.parse_args()
main(args)