
A survey of potential XHTML diff/merge algorithms
Daniel Ehrenberg

Introduction
XHTML documents cannot be accurately compared and merged by simple line-

by-line tools like diff3 because the tree structure may be compromised in both identifying 
the differences and performing a semi-automatic merge, and programs like Tidy are 
insufficient to clean this up. So we need a different method to compare these documents.

Several algorithms exist which may be suitable to diff HTML documents. Some 
algorithms, such as the Zhang-Shasha algorithm, analyzes two trees to find their minimal 
edit distance. Other algorithms, such as XyDiff, find a non-optimal edit distance between 
trees using some kind of heuristic, but incorporate a broader definition of edit operations, 
including moves. This tree view may, however, be inappropriate for HTML, as many 
elements do not induce a tree-like structure semantically, such as inline formatting 
elements (like <em>). DaisyDiff presents a solution to this problem.

Several types of merging are possible. One strategy is to simply run the edit script 
of both versions, but this can cause inconsistencies in the output. Instead, either 
operational transformation or a diff3-like algorithm should be used to merge edit scripts. 
Alternatively, Lindholm’s merge algorithm can be used directly, without using an explicit 
edit script.

A warning: All of the algorithms are fairly difficult to understand. I don’t 
understand all of them; it took me months to figure out the Zhang-Shasha algorithm. You 
don’t need to understand the details of each algorithm to roughly evaluate its advantages 
and disadvantages.

The Problem
The obvious solution to the problem is to just use diff3 to merge the differences. 

To allow diff3 to see the differences better, the tags are all split onto their own lines in a 
normalization pass. But diff3 this ignores the (superficial) tree structure of XML. For 
example, look at the following example:
<p>
This is
some
text
</p>

<p>
<b>
This is
some
</b>
text
</p>

<p>
This is
<i>
some
text
</i>
</p>

<p>
<b>
This is
<i>
some
</b>
text
</i>
</p>

Original Part bolded Part italicized Line-by-line merge
In this case, the Tidy program could fix the generated HTML. But in other cases, 

things get more complicated and difficult to fix up. Additionally, in a system like a 
WYSIWYG editor, where the user is not exposed to the HTML itself, the diff would 
indicate that, in the “part bolded” variant, the lines “<b>” and “</b>” are added. But it 
should give the information that “This is some” was previously not bold and it became 
bold.



Additionally, it’d be nice if we could track moves. If someone, say, swaps two 
paragraphs, it’d be nice if that could be tracked and reported rather than explained as a 
deletion and insertion. But this isn’t absolutely necessary.

Some definitions
An XML document can be viewed as an ordered tree, where each node has an 

unbounded number of children and each internal node has a label. So we can solve these 
problems of diffing and merging XML by solving a more general problem on ordered 
trees, as most authors have. There are some specific aspects of XML which deserve 
mention (attributes, which are guaranteed to have unique names within a node; IDs, 
which are guaranteed to be unique within a document), but these are minor aspects which 
we can ignore for most of the time.

To avoid confusion, I'll define some terms I've been using or will soon start using. 
When I talk about "diffing", what I mean, formally, is generating an "edit script", or list 
of changes between two documents that can be used to get the modified document from 
the original. Sometimes, these edit scripts are invertible, but not always. When I talk 
about a "merge", I mean a way to reconcile the changes between documents to 
incorporate both of these changes. A merge can be an operation on edit scripts or it can be 
done directly on a tree matching. A "matching" is a set of correspondences between nodes 
in different trees; it is the basis for doing either a diff or a merge, and it's difficult to do 
efficiently.

The idea of diffing trees is closely related to that of comparing strings. It could be 
thought of as a generalization. For this, there is a O(n2) solution using dynamic 
programming [1] and there is also a O(nd) algorithm, where d is the edit distance, 
discovered by Eugene Meyers, using more advanced techniques [18]. The O(nd) 
algorithm is sometimes referred to as the GNU diff algorithm, for some reason. For 
merging, the GNU diff3 program presents a useful model which has been formally 
analyzed [19].

Selkow’s simple algorithm
If we use a simple definition of edit distance, then the problem is relatively 

simple. If all you can do is insert and delete leaves of the tree, then the regular old 
algorithm for the longest common subsequence problem [1] can be used recursively: 
calculate the distance between two subtrees M and N, make a |M| x |N| array and initialize 
it in the same way is if you were solving Levenshtein distance. Then, fill in the array 
using the same technique as with Levenshtein distance, but for replacement cost, use the 
edit distance between the children rather than 1 if they are not equal and 0 if they are 
equal. Once this distance is calculated, an edit script can be traced through the 
intermediate tables generated. See [3] for details.

The weakness here is in the definition of edit distance. If we have a bunch of 
formatted text and put a big <div> tag around it, then this algorithm will register that it 
was all deleted, a div node was inserted, and the text was inserted into the div node. The 
complexity is O(nmd), where n and m are the numbers of leaves in the two trees, and d is 
the maximum depth. This isn’t too good, if the algorithm is supposed to be usable on 
large documents.



The Zhang-Shasha algorithm and extensions
The Zhang-Shasha algorithm [2] is the basic starting point when thinking about 

tree matching, diffing and merging. Except it isn't that basic. Dennis Shasha and 
Kaizhong Zhang created an algorithm to solve the approximate tree matching problem, 
which they described in the book Pattern Matching Algorithms. Here's the basic idea: we 
want to see how similar two trees are, by a weighted edit distance metric. The edit script 
has three operations, similar to Levenshtein distance: add a node (optionally including a 
contiguous subsequence of the parent node), delete a node (putting children in the parent 
node), and relabel a node.

With this, they were able to come up with an algorithm of complexity (basically) 
O((n log n)^2), where n is the number of nodes in the tree. So this can get you a matching 
and an edit script, or diff between two trees. This isn't great, but it's much better than 
previous algorithms. For large documents, it really isn’t very good.

But this doesn't describe all of the changes that might take place in a tree structure 
that we might want to record. It constrained the edit operations so the search space would 
be smaller, but it comes at the cost of being less accurate in practice. For example, in 
Zhang-Shasha proper, moving a node from one place to another is recorded as deleting 
the node from one place and inserting it into another place. Another issue is that inserting 
or deleting a subtree is recorded as inserting the node, then inserting each of its children, 
or deleting the leaf nodes recursively up until you delete their parent. This all leads to 
counterintuitive diffs, as far as human readability goes, unless there’s a postprocessing 
stage for that purpose.

So David Barnard, Gwen Clarke and Nicholas Duncan got together to create a 
modified algorithm that accommodated this modified definition of edit distance [3]. It 
adds three additional operations: insertTree, deleteTree, and swap. Unfortunately, this 
doesn't account for copying nodes, or for moves that aren't within the same parent.

Some tree matching heuristics
So, it's not very good that the Zhang-Shasha algorithm is quadratic. In fact, in 

many cases, it's unacceptable. For example, in my case, where I might sometimes have to 
compare XHTML documents which are very long, it's unacceptable. But there are some 
algorithms which run in a time which is dominated by the number of nodes multiplied by 
the edit distance, or O(ne) in effect.

There’s one algorithm called FastMatch, which has insert leaf, delete leaf, update 
and general move operations [4]. They work on getting an edit script and matching at the 
same time, but the algorithm starts by matching as much as possible, top-down, before 
proceeding to calculate the differences. This yields a complexity of O(ne+e^2). A related 
algorithm, described in Chapter 7 of Tancred Lindholm's master's thesis [5] incorporates 
tree insertion and deletion operations for a complexity of O(ne log n).

It's important to note that both of these will still be O(n^2) in the worst case. A 
different XML matching algorithm was described by Grégory Cobéna in his master's 
thesis [6]. Cobéna calls his algorithm BULD, which stands for bottom-up lazy-down. The 
key to the algorithm is that, for each node, there is a hash value and a weight, both 
calculated bottom-up. Exact equivalence between nodes can be approximated by equal 
hash values, and you search for the equal hash values of nodes that have been inserted on 
a maxheap by weight. In his thesis, Cobéna also goes into depth about his invertible edit 



script format. This algorithm doesn't necessarily generate the optimal diff, but in 
experiments it generates a very good one, and with a worst-case time of O(n log n). An 
empirical study on XML diff/merge tools [7] recommended the use of the software based 
off this, called XyDiff, because it was significantly faster in practice.

Three-document merge
Creating an edit script is all well and good, but it's only half of the problem: the 

merge. Remember that a three-document merge is one where we have the original 
document and two modified versions, and we want to create a fourth version with both 
modifications together. Here was my idea: create an edit script for both modified versions 
with respect to the original, then do one followed by another, with repeated modifications 
done only once. We know there's a conflict if the order matters, in terms of which comes 
first in applying to the original document.

But this will come up with more conflicts than actually exist. For example, say 
some node A has four children, B C D and E. In one change, we insert a new node X after 
B as a child of A, and in another change, we insert a node Y after D as a child of A. So a 
sensible merge would have A's new children be B X C D Y E, in that order. But with the 
model described above, there would be an edit conflict!

One solution to this is the more general strategy of operational transformation [8]. 
The basic idea for this technique as applied here is that, if we insert Y after inserting X, 
we have to add 1 to the index that Y is being inserted. If, on the other hand, Y is inserted 
first, we don't have to add one to the index that X is inserted on. This technique leads to 
fewer conflicting merges, or in OT lingo, it converges in more cases. There are a few 
formal properties of an operational transformation that have only recently been proven 
correct in the best-known algorithms. Pascal Molli used operational transformation, 
together with Cobéna's diff algorithm and format, in his So6 synchronization framework 
[9].

Tancred Lindholm went a different route altogether in creating a three-way merge, 
throwing out the edit script and basing it on a tree matching [10]. He based the merge 
definition on several large, by-hand merges of realistic XHTML and other XML 
documents, figuring out how to automate the results. But the algorithm isn’t perfect; it, 
like all of the other ones mentioned so far, cannot properly handle the motivating 
example at the beginning. Unfortunately, I don’t understand the algorithm.

DaisyDiff and my ad-hoc idea
In simple tests, none of the algorithms handled the merge at the beginning of this 

article properly. Proper XHTML output would be “<p> <b> This is <i> some </i> </b> 
<i> text </i> </p>”, but to do this would require two things: knowledge of the XHTML 
schema and treating text nodes non-atomically. Instead, most algorithms treat a text node 
as one solid thing, which either equals another text node or doesn’t, and has no 
subdivisions. This leads to output for the merge like  “<p> <b> This is some </b> text 
This is <i> some text </i> </p>”. For a practical implementation, output like this may be 
reasonable if the conflict is presented well, though it’s far from optimal, and it’s far from 
obvious how to present the conflict.

A solution to this problem is to radically changes the approach to the problem is 
DaisyDiff [11]. Unfortunately, the only thing written about it is in Dutch. The idea is that 



the linear order of the words is the most important thing in an XML document, and that 
surrounding elements should be treated as auxiliary. So, basically, an LCS is calculated 
between the two strings of words in the two documents, and then an LCS is calculated, 
for each word, between the stacked up parent tags. From this, we can create a sort of edit 
script that’s very readable, if the differences in parent tags are coalesced. To present this 
visually, DaisyDiff uses strikethroughs for deleted words, underlines for inserted words, 
and special roll-over text boxes to explain changes in formatting. No merge algorithm has 
been constructed, though it should be possible to do so using something based on the 
diff3 algorithm.

I have a somewhat different, potentially easier-to-implement idea based on diff3. 
Diff3 is given the original document and two modified documents. It calculates the line-
by-line diff between the original document and each of the modified documents. Then, it 
merges the changes together. See [19] for a more complete description.

So, my idea is to do diff3, but at each step make sure that we’re dealing with some 
well-formed unit in XML. So, after the two two-way line-by-line diffs are made, they 
each (separately) need to have each insertion or deletion to have its scope expanded out 
to the smallest surrounding sequence of XML elements (in tree form). Insertions become 
deletions followed by insertions, and deletions become insertions followed by deletions, 
in general, though often the opposite preceding operations will be unnecessary. And these 
modified operations take place on elements of the DOM. The resulting edit scripts will do 
the same thing as the old edit scripts, though they will be longer. Now, the two edit scripts 
can be merged as they are in diff3 (see [19]), with the continued restriction that XML tags 
not be separated, opening from closing tag. I am still unsure whether this will work fully.

Implementations and further reading
Many, but not all, of these algorithms have usable open-source implementations 

available. Selkow’s algorithm has been implemented in Lisp to get the diff between two 
s-expressions [12], and this has reportedly been used for an HTML diff (though the 
author in fact reinvented this algorithm without reference to Selkow). The xmldiff project 
implements the Zhang-Shasha algorithm and FastMatch in Python [13]. I cannot find a 
usable implementation of the extended Zhang-Shasha algorithm. For the XyDiff 
algorithm, there are two implementations: XyDiff in C++ [14] and jXyDiff in Java [15]. 
For Lindholm’s three-way merge algorithm, there is the 3DM project in Java [16]. 
Unfortunately, all of these appear to be unmaintained since 2006. DaisyDiff’s 
implementation in Java [17] looks to be still maintained, though. There are actively 
maintained commercial implementations of these, for use with XML, but most of them 
make it hard to tell what algorithm is used from the documentation, and the fact that 
they’re closed-source makes it difficult to extend them to fit the specific domain of 
HTML.

For a survey on tree edit distance in an abstract, theoretical way, see [20]. For a 
survey of existing XML diff tools, see [21]. A good book about this topic, in the more 
general sense, is [22] and very technical, hard-to-read one is [23]. Additionally, getting 
the XML into canonical form [24] is generally useful for diffing.

By the way, if you didn’t notice, the original problem is still not perfectly solved 
by any one algorithm.



Citations
[1] Wikipedia. “Longest common subsequence problem.” 
http://en.wikipedia.org/wiki/Longest_common_subsequence_problem 
[2] Dennis Shasha, Kaizhong Zhang. “Approximate Tree Pattern Matching” 
http://citeseer.ist.psu.edu/shasha95approximate.html (This is actually really hard to read, 
and it might be better to look at their original paper in SIAM, K. Zhang and D. Shasha. 
Simple fast algorithms for the editing distance between trees and related problems. SIAM 
J. Computing, 18(6):1245-1252, December 1989. Unfortunately, that paper is not 
available for free online, or through ACM.)
[3] David Barnard, et al. “Tree-to-tree Correction for Document Trees.” 
http://citeseer.ist.psu.edu/47676.html (This has a good survey of older algorithms, but it’s 
little light on explanations.)
[4] Sudarshan Chawathe, et al. “Change Detection in Hierarchically Structured 
Information.” http://citeseer.ist.psu.edu/chawathe96change.html
[5] Tancred Lindholm. “A 3-way Merging Algorithm for Synchronizing Ordered Trees.” 
http://www.cs.hut.fi/~ctl/3dm/thesis.pdf
[6] Gregory Cobéna. “Change management of semi-structured data on the web.” 
http://gregory.cobena.free.fr/www/Publications/thesis_draft.pdf
[7] Sebastian Rönnau, et al. “Towards XML version control of office documents.” 
http://portal.acm.org/citation.cfm?doid=1096601.1096606
[8] Wikipedia. “Operational transformation.” 
http://en.wikipedia.org/wiki/Operational_transformation
[9] Pascal Molli, et al. “Supporting Collaborative Writing of XML Documents.” 
http://www.loria.fr/~molli/pmwiki/uploads/Main/OsterICEIS07.pdf
[10] Tancred Lindholm. “A Three-way Merge for XML Documents.” 
http://citeseer.ist.psu.edu/741860.html
[11] Guy Van den Broeck. “Stageverslag: Daisy Diff.” 
http://daisydiff.googlecode.com/files/stageverslag.pdf
[12] Michael Weber. Diff-Sexp source code. http://www.foldr.org/~michaelw/lisp/diff-
sexp.lisp
[13] Logilab. xmldiff homepage. http://www.logilab.org/859
[14] XyDiff homepage. 
http://gemo.futurs.inria.fr/software/XyDiff/cdrom/www/xydiff/index-eng.htm
[15] jXyDiff homepage. http://potiron.loria.fr/projects/jxydiff
[16] 3DM homepage. http://tdm.berlios.de/3dm/doc/index.html
[17] DaisyDiff homepage. http://code.google.com/p/daisydiff/
[18] Eugene W. Myers. “An O(ND) Difference Algorithm and Its Variations.” 
http://www.xmailserver.org/diff2.pdf
[19] Sanjeev Khanna, et al. “A Formal Investigation of Diff3.” 
http://www.cis.upenn.edu/~bcpierce/papers/diff3-short.pdf
[20] Philip Bille. “A Survey on Tree Edit Distance and Related Problems.” 
http://grfia.dlsi.ua.es/ml/algorithms/references/editsurvey_bille.pdf
[21] Grégory Cobéna, et al. “A comparative study for XML change detection.” 
http://citeseer.ist.psu.edu/696350.html 
[22] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and 

http://citeseer.ist.psu.edu/696350.html
http://grfia.dlsi.ua.es/ml/algorithms/references/editsurvey_bille.pdf
http://www.cis.upenn.edu/~bcpierce/papers/diff3-short.pdf
http://www.xmailserver.org/diff2.pdf
http://code.google.com/p/daisydiff/
http://tdm.berlios.de/3dm/doc/index.html
http://potiron.loria.fr/projects/jxydiff
http://gemo.futurs.inria.fr/software/XyDiff/cdrom/www/xydiff/index-eng.htm
http://www.logilab.org/859
http://www.foldr.org/~michaelw/lisp/diff-sexp.lisp
http://www.foldr.org/~michaelw/lisp/diff-sexp.lisp
http://daisydiff.googlecode.com/files/stageverslag.pdf
http://citeseer.ist.psu.edu/741860.html
http://www.loria.fr/~molli/pmwiki/uploads/Main/OsterICEIS07.pdf
http://en.wikipedia.org/wiki/Operational_transformation
http://portal.acm.org/citation.cfm?doid=1096601.1096606
http://gregory.cobena.free.fr/www/Publications/thesis_draft.pdf
http://www.cs.hut.fi/~ctl/3dm/thesis.pdf
http://citeseer.ist.psu.edu/chawathe96change.html
http://citeseer.ist.psu.edu/47676.html
http://citeseer.ist.psu.edu/shasha95approximate.html
http://en.wikipedia.org/wiki/Longest_common_subsequence_problem


Computational Biology.
[23] Alberto, Apostolico et al. Pattern Matching Algorithms.
[24] W3C Recommendation: Canonical XML, version 1.0. http://www.w3.org/TR/xml-
c14n

http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-c14n

