diff --git a/pandas/core/arrays/string_.py b/pandas/core/arrays/string_.py index 1919fdce12f11c..f2811703cbecf8 100644 --- a/pandas/core/arrays/string_.py +++ b/pandas/core/arrays/string_.py @@ -391,7 +391,7 @@ def _str_map( return constructor(result, mask) else: - return self._str_map_str_or_object(dtype, na_value, arr, f, mask, convert) + return self._str_map_str_or_object(dtype, na_value, arr, f, mask) def _str_map_str_or_object( self, @@ -400,7 +400,6 @@ def _str_map_str_or_object( arr: np.ndarray, f, mask: npt.NDArray[np.bool_], - convert: bool, ): # _str_map helper for case where dtype is either string dtype or object if is_string_dtype(dtype) and not is_object_dtype(dtype): @@ -434,7 +433,6 @@ def _str_map_nan_semantics( mask = isna(self) arr = np.asarray(self) - convert = convert and not np.all(mask) if is_integer_dtype(dtype) or is_bool_dtype(dtype): na_value_is_na = isna(na_value) @@ -453,6 +451,9 @@ def _str_map_nan_semantics( dtype=np.dtype(cast(type, dtype)), ) if na_value_is_na and mask.any(): + # TODO: we could alternatively do this check before map_infer_mask + # and adjust the dtype/na_value we pass there. Which is more + # performant? if is_integer_dtype(dtype): result = result.astype("float64") else: @@ -461,7 +462,7 @@ def _str_map_nan_semantics( return result else: - return self._str_map_str_or_object(dtype, na_value, arr, f, mask, convert) + return self._str_map_str_or_object(dtype, na_value, arr, f, mask) # error: Definition of "_concat_same_type" in base class "NDArrayBacked" is diff --git a/pandas/core/arrays/string_arrow.py b/pandas/core/arrays/string_arrow.py index 4bdbf1f6a606f1..c643d4fed4b205 100644 --- a/pandas/core/arrays/string_arrow.py +++ b/pandas/core/arrays/string_arrow.py @@ -7,7 +7,6 @@ TYPE_CHECKING, Callable, Union, - cast, ) import warnings @@ -24,8 +23,6 @@ from pandas.util._exceptions import find_stack_level from pandas.core.dtypes.common import ( - is_bool_dtype, - is_integer_dtype, is_scalar, pandas_dtype, ) @@ -285,45 +282,6 @@ def _data(self): _str_map = BaseStringArray._str_map - def _str_map_nan_semantics( - self, f, na_value=None, dtype: Dtype | None = None, convert: bool = True - ): - if dtype is None: - dtype = self.dtype - if na_value is None: - na_value = self.dtype.na_value - - mask = isna(self) - arr = np.asarray(self) - - if is_integer_dtype(dtype) or is_bool_dtype(dtype): - if is_integer_dtype(dtype): - na_value = np.nan - else: - na_value = False - - dtype = np.dtype(cast(type, dtype)) - if mask.any(): - # numpy int/bool dtypes cannot hold NaNs so we must convert to - # float64 for int (to match maybe_convert_objects) or - # object for bool (again to match maybe_convert_objects) - if is_integer_dtype(dtype): - dtype = np.dtype("float64") - else: - dtype = np.dtype(object) - result = lib.map_infer_mask( - arr, - f, - mask.view("uint8"), - convert=False, - na_value=na_value, - dtype=dtype, - ) - return result - - else: - return self._str_map_str_or_object(dtype, na_value, arr, f, mask, convert) - def _str_contains( self, pat, case: bool = True, flags: int = 0, na=np.nan, regex: bool = True ):