Developers’ Manual N 302600

BERAND

\/PA\/

RALLEL MULTIGRID IN TIME

Center for Applied Scientific Computing (CASC), LLNL
Department of Mathematics and Statistics, University of New Mexico

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. This document was prepared as an account of work sponsored by
an agency of the United States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United
States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes. LLNL-SM-660398

Copyright (c) 2013, Lawrence Livermore National Security, LLC. Produced at the Lawrence Livermore National Labora-
tory. Written by the XBraid team. LLNL-CODE-660355. All rights reserved.

This file is part of XBraid. Please see the COPYRIGHT and LICENSE file for the copyright notice, disclaimer,
and the GNU Lesser General Public License. For support, post issues to the XBraid Github page.

XBraid is free software; you can redistribute it and/or modify it under the terms of the GNU General Public Li-
cense (as published by the Free Software Foundation) version 2.1 dated February 1999.

XBraid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the IMPLIED
WARRANTY OF MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and conditions of
the GNU General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 1307 USA

Generated by Doxygen

CONTENTS i
Contents

1 Abstract 2

2 XBraid Quickstart, User Advice, and License 2

3 Introduction 4

3.1 Overview of the XBraid Algorithm 4

3.1.1 Two-Grid Algorithm L e e 9

312 SUMMAry . . . e 9

3.2 Overviewofthe XBraid Code e 10

3.2.1 Parallel decompositionand memory e 11

3.2.2 Cycling and relaxation strategies L 12

3.2.3 Overlapping communication and computation L Lo 13

3.2.4 Configuring the XBraid Hierarchy 13

3.25 Haltingtolerance 14

3.2.6 Debugging XBraid e e 15

3.3 Computing Derivatives with XBraid_Adjoint 16

3.3.1 Short Introduction to Adjoint-based Sensitivity Computation 16

3.3.2 Overview of the XBraid_Adjoint Algorithm 17

3.3.3 Overview of the XBraid_AdjointCode 18

3.4 Citing XBraid e e 20

3.5 SUMMArY . . . o e e 20

4 Examples 21

41 The Simplest Example 21

4.1.1 Running XBraid for the Simplest Example oo 24

4.2 Some Advanced Features L e 25

4.3 Simplestexample expanded L e 28

4.4 One-Dimensional Heat Equation e 29

4.5 Two-Dimensional Heat Equation L 29

4.5.1 Scaling Study with this Example 33

4.6 Simplest XBraid_Adjointexample 34

4.7 Optimization with the Simplest Example 38

4.8 ASimple Optimal Control Problem 39

4.9 Runningand Testing XBraid L 40

4.10 Fortan90 Interface, C++ Interface, Python Interface, and More Complicated Examples 40

Generated by Doxygen

i CONTENTS
5 Examples: compiling and running M
6 Drivers: compiling and running 42
7 Coding Style 44
8 File naming conventions 44
9 Using Doxygen 44
10 Regression Testing 46
11 Module Index 50
11.1 Modules e e e 50

12 Data Structure Index 51
12.1 Data Structures L e e e e e e e e 51

13 File Index 52
13.1 File List o e 52

14 Module Documentation 52
14.1 Fortran 90 interface options L L e e 52
14.1.1 Detailed Description 53

14.1.2 Macro Definition Documentation L 53

14.2 Error Codes o o e e e e 54
14.2.1 Detailed Description e 54

14.2.2 Macro Definition Documentation L 54

14.3 User-written routines L L e e e e e e e 55
14.3.1 Detailed Description e 55

14.3.2 Typedef Documentation L 55

14.4 User-written routines for XBraid_Adjoint 60
14.4.1 Detailed Description L 60

Generated by Doxygen

CONTENTS iiii

14.4.2 Typedef Documentation 60
14.5 Userinterface routines L e 62
14.5.1 Detailed Description e 62
14.6 General Interfaceroutines L 63
14.6.1 Detailed Description L 64
14.6.2 Macro Definition Documentation 64
14.6.3 Typedef Documentation e 64
14.6.4 Function Documentation L 64
14.7 Interface routines for XBraid_Adjoint L 82
14.7.1 Detailed Description L 82
14.7.2 Function Documentation L 82
14.8 XBraid status structures e 87
14.9 XBraid statusroutines L L e 88
14.9.1 Detailed Description L 88
14.9.2 Function Documentation L 89
14.10Inherited XBraid status routines L 102
14.10.1 Detailed Description L 103
14.10.2 Function Documentation L 103
14.11XBraid status macros e 114
14.11.1 Detailed Description L e 114
14.11.2 Macro Definition Documentation L 114
14.12XBraid testroutines L 115
14.12.1 Detailed Description L 115
14.12.2 Function Documentation L 115

Generated by Doxygen

iv CONTENTS
15 Data Structure Documentation 123
15.1 _braid_Action Struct Reference e 123
15.1.1 Detailed Description e 123
15.1.2 Field Documentation L e 123

15.2 _braid_ CommHandle Struct Reference e 125
15.2.1 Detailed Description 126
15.2.2 Field Documentation L 126

15.3 _braid Core Struct Reference e 127
15.3.1 Detailed Description 129
15.3.2 Field Documentation 129

15.4 _braid_Grid Struct Reference L e 143
15.4.1 Detailed Description L 143
15.4.2 Field Documentation e 143

15.5 _braid_Status Struct Reference 146
15.5.1 Detailed Description e 146
15.5.2 Field Documentation 147

15.6 _braid_Tape Struct Reference e 147
15.6.1 Detailed Description 147
15.6.2 Field Documentation L 147

15.7 braid_AccessStatus Struct Reference L 148
15.7.1 Detailed Description e 148
15.7.2 Field Documentation L 148

15.8 braid_BaseVector Struct Reference e 148
15.8.1 Detailed Description e 148
15.8.2 Field Documentation 149

15.9 braid_BufferStatus Struct Reference 149
15.9.1 Detailed Description 149
15.9.2 Field Documentation 149

Generated by Doxygen

CONTENTS v

15.10braid_CoarsenRefStatus Struct Reference o 150
15.10.1 Detailed Description e 150
15.10.2 Field Documentation L 150

15.11braid_ObjectiveStatus Struct Reference L 150
15.11.1 Detailed Description 150
15.11.2 Field Documentation L 150

15.12braid_Optim Struct Reference 151
15.12.1 Detailed Description e 151
15.12.2 Field Documentation e 151

15.13braid_StepStatus Struct Reference L 153
15.13.1 Detailed Description e 153
15.13.2 Field Documentation L 154

15.14braid_SyncStatus Struct Reference L 154
15.14.1 Detailed Description e e 154
15.14.2 Field Documentation e 154

15.15braid_VectorBar Struct Reference e 154
15.15.1 Detailed Description 155
15.15.2 Field Documentation L 155

16 File Documentation 155

16.1 _braid.h File Reference e e 155
16.1.1 Detailed Description L 157
16.1.2 Macro Definition Documentation 158
16.1.3 Function Documentation L 161
16.1.4 Variable Documentation L 171

16.2 adjoint.h File Reference o e 172
16.2.1 Detailed Description L 172
16.2.2 Function Documentation L 172

Generated by Doxygen

CONTENTS 1

16.3 base.h File Reference 174
16.3.1 Detailed Description e 175
16.3.2 Function Documentation 175

16.4 braid.h File Reference e 186
16.4.1 Detailed Description 188

16.5 braid _defs.h File Reference e e 188
16.5.1 Detailed Description e 188
16.5.2 Macro Definition Documentation 188
16.5.3 Typedef Documentation e 189

16.6 braid_status.h File Reference e 190
16.6.1 Detailed Description 192
16.6.2 Macro Definition Documentation 192

16.7 braid_test.h File Reference e 194
16.7.1 Detailed Description L 195

16.8 mpistubs.h File Reference 195
16.8.1 Detailed Description e 195

16.9 status.h File Reference e 195
16.9.1 Detailed Description 196
16.9.2 Macro Definition Documentation 196
16.9.3 Function Documentation L 196

16.10tape.h File Reference o e 199
16.10.1 Detailed Description e 200
16.10.2 Enumeration Type Documentation 200
16.10.3 Function Documentation 201

16.11utilLh File Reference e 203
16.11.1 Detailed Description e 203
16.11.2 Function Documentation 203

Generated by Doxygen

2 CONTENTS

Index 205

1 Abstract

This package implements an optimal-scaling multigrid solver for the (non)linear systems that arise from the discretization
of problems with evolutionary behavior. Typically, solution algorithms for evolution equations are based on a time-
marching approach, solving sequentially for one time step after the other. Parallelism in these traditional time-integration
techniques is limited to spatial parallelism. However, current trends in computer architectures are leading towards
systems with more, but not faster, processors, i.e., clock speeds are stagnate. Therefore, faster overall runtimes must
come from greater parallelism. One approach to achieve parallelism in time is with multigrid, but extending classical
multigrid methods for elliptic operators to this setting is a significant achievement. In this software, we implement a non-
intrusive, optimal-scaling time-parallel method based on multigrid reduction techniques. The examples in the package
demonstrate optimality of our multigrid-reduction-in-time algorithm (MGRIT) for solving a variety of equations in two and
three spatial dimensions. These examples can also be used to show that MGRIT can achieve significant speedup in
comparison to sequential time marching on modern architectures.

Itis strongly recommended thatyou alsoread Parallel Time Integration with Multigrid afterread-
ing the Overview of the XBraid Algorithm. It is a more in depth discussion of the algorithm and associated experiments.

2 XBraid Quickstart, User Advice, and License

What is XBraid?

XBraid is a parallel-in-time software package. It implements an optimal-scaling multigrid solver for the (non)linear sys-
tems that arise from the discretization of problems with evolutionary behavior.

This code and associated algorithms are developed at Lawrence Livermore National Laboratory, and
at collaborating academic institutions.

For our publication list, please go here. There you will papers on XBraid and various application areas where XBraid
has been applied, e.g., fluid dynamics, machine learning, parabolic equations, Burgers' equation, powergrid systems,
etc.

About XBraid

Typically, solution algorithms for evolution equations are based on a time-marching approach, solving sequentially for
one time step after the other. Parallelism in these traditional time-integration techniques is limited to spatial parallelism.
However, current trends in computer architectures are leading towards systems with more, but not faster, processors,
i.e., clock speeds are stagnate. Therefore, faster overall runtimes must come from greater parallelism. Our approach to
achieve such parallelism in time is with multigrid.

In this software, we implement a non-intrusive, optimal-scaling time-parallel method based on multigrid reduction tech-
niques (multigrid-reduction-in-time or MGRIT). A few important points about XBraid are as follows.

» The algorithm enables a scalable parallel-in-time approach by applying multigrid to the time dimension.

Generated by Doxygen

https://github.com/XBraid/xbraid/wiki/papers/mgritPaper-2013-3.pdf
https://computation.llnl.gov/projects/parallel-time-integration-multigrid/
https://github.com/XBraid/xbraid/wiki/Team
https://github.com/XBraid/xbraid/wiki/Project-Publications

2 XBraid Quickstart, User Advice, and License 3

« It is designed to be nonintrusive. That is, users apply their existing sequential time-stepping code according to
our interface, and then XBraid does the rest. Users have spent years, sometimes decades, developing the right
time-stepping scheme for their problem. XBraid allows users to keep their schemes, but enjoy parallelism in the
time dimension.

» XBraid solves exactly the same problem that the existing sequential time-stepping scheme does.

» XBraid is flexible, allowing for a variety of time stepping, relaxation, and temporal and spatial coarsening options.
» The full approximation scheme multigrid approach is used to accommodate nonlinear problems.

» XBraid written in MPI/C with C++, Fortran 90, and Python interfaces.

« XBraid is released under LGPL 2.1.

Documentation
» For examples of using XBraid, see the examples/ and drivers/ directories, and in particular examples/ex-
01-%

» See the release page for links to precompiled documentation PDFs that go through, step-by-step, how to use
XBraid.

+ For tutorials, see the bottom of our publications page.

* For citing XBraid, see here.

Advice to Users

The field of parallel-in-time methods is in many ways under development, and success has been shown primarily for
problems with some parabolic character. While there are ongoing projects (here and elsewhere) looking at varied
applications such as hyperbolic problems, computational fluid dynamics, power grids, medical applications, and so on,
expectations should take this fact into account. That being said, we strongly encourage new users to try our code for
their application. Every new application has its own issues to address and this will help us to improve both the algorithm
and the software. Please see our project publications website for our recent publications concerning some of
these varied applications.

For bug reporting, please use the issue tracker here on Github. Please include as much relevant information as pos-
sible, including all the information in the “VERSION” file located in the bottom most XBraid directory. For compile and
runtime problems, please also include the machine type, operating system, MPI implementation, compiler, and any error
messages produced.

Building XBraid

» To specify the compilers, flags and options for your machine, edit makefile.inc. For now, we keep it simple and
avoid using configure or cmake.

» To make the library, libbraid.a,
$ make
» To make the examples

$ make all

Generated by Doxygen

https://github.com/XBraid/xbraid/tree/master/examples
https://github.com/XBraid/xbraid/tree/master/drivers
https://github.com/XBraid/xbraid/releases
https://github.com/XBraid/xbraid/wiki/Project-Publications#Tutorials
https://github.com/XBraid/xbraid/wiki/Citing-XBraid
https://github.com/XBraid/xbraid/wiki/Project-Publications

4 CONTENTS

» The makefile lets you pass some parameters like debug with
$ make debug=yes
or
$ make all debug=yes

It would also be easy to add additional parameters, e.g., to compile with insure.

» To set compilers and library locations, look in makefile.inc where you can set up an option for your machine to
define simple stuff like

CC = mpicc
MPICC = mpicc
MPICXX = mpiCC
LFLAGS -1lm

Meaning of the name

We chose the package name XBraid to stand for Time-Braid, where X is the first letter in the Greek word for time,
Chronos. The algorithm braids together time-grids of different granularity in order to create a multigrid method and
achieve parallelism in the time dimension.

License

This project is released under the LGPL v2.1 license. See files COPYRIGHT and LICENSE file for full details.

LLNL Release Number: LLNL-CODE-660355

3 Introduction

3.1 Overview of the XBraid Algorithm

The goal of XBraid is to solve a problem faster than a traditional time marching algorithm. Instead of sequential time
marching, XBraid solves the problem iteratively by simultaneously updating a space-time solution guess over all time
values. The initial solution guess can be anything, even a random function over space-time. The iterative updates to
the solution guess are done by constructing a hierarchy of temporal grids, where the finest grid contains all of the time
values for the simulation. Each subsequent grid is a coarser grid with fewer time values. The coarsest grid has a trivial
number of time steps and can be quickly solved exactly. The effect is that solutions to the time marching problem on the
coarser (i.e., cheaper) grids can be used to correct the original finest grid solution. Analogous to spatial multigrid, the
coarse grid correction only corrects and accelerates convergence to the finest grid solution. The coarse grid does not
need to represent an accurate time discretization in its own right. Thus, a problem with many time steps (thousands,
tens of thousands or more) can be solved with 10 or 15 XBraid iterations, and the overall time to solution can be greatly
sped up. However, this is achieved at the cost of more computational resources.

To understand how XBraid differs from traditional time marching, consider the simple linear advection equation, u; =
—cuz. The next figure depicts how one would typically evolve a solution here with sequential time stepping. The initial
condition is a wave, and this wave propagates sequentially across space as time increases.

XBraid instead begins with a solution guess over all of space-time, which for demonstration, we let be random. An
XBraid iteration does

Generated by Doxygen

3.1 Overview of the XBraid Algorithm

Ut = —CUyg Ut = —ClUy

/

o)
£
~

/

o)
£
<

Space

Space
1 sequential time step 340 sequential time steps

Ut = —ClUy Ut = —CUyg

/

o
£
IS

/

(4]
£
IS

gpace gpace

680 sequential time steps 1024 sequential time steps

Figure 1 Sequential time stepping.

1. Relaxation on the fine grid, i.e., the grid that contains all of the desired time values. Relaxation is just a local

application of th

e time stepping scheme, e.g., backward Euler.

2. Restriction to the first coarse grid, i.e., interpolate the problem to a grid that contains fewer time values, say every
second or every third time value.

3. Relaxation on the first coarse grid

4. Restriction to the second coarse grid and so on...

5. When a coarse grid of trivial size (say 2 time steps) is reached, it is solved exactly.

6. The solution is t

hen interpolated from the coarsest grid to the finest grid

One XBraid iteration is called a cycle and these cycles continue until the solution is accurate enough. This is depicted
in the next figure, where only a few iterations are required for this simple problem.

Space —

Relaxation on fine time grid

Note:

smaller grid

with fewer Kelaxation on
time values irst coarse grid

Iteration 0 i Iteration 1 i Iteration 2
1 Ut = —ClUy
prolongation) g—’ e prolongation g’ prolongation
(interpolation, = Spe (interpolation, = space (interpolation,
on fine time grid I ion on fine time grid
restriction restriction \restriction
Note: Note:
7 . 7
, smaller grid ’ smaller grid . \ ,
I' with fewer ’ Relaxation on I' with fewer 'Relaxation on N7
time values irst coarse grid time values first coarse grid \&;

Figure 2 XBraid iterations.

There are a few important points to make.

» The coarse time
This is visible in

grids allow for global propagation of information across space-time with only one XBraid iteration.
the above figure by observing how the solution is updated from iteration 0 to iteration 1.

 Using coarser (cheaper) grids to correct the fine grid is analogous to spatial multigrid.

Generated by Doxygen

6 CONTENTS

» Only a few XBraid iterations are required to find the solution over 1024 time steps. Therefore if enough processors
are available to parallelize XBraid, we can see a speedup over traditional time stepping (more on this later).

« This is a simple example, with evenly space time steps. XBraid is structured to handle variable time step sizes
and adaptive time step sizes.

To firm up our understanding, let's do a little math. Assume that you have a general system of ordinary differential
equations (ODEs),

u'(t) = f(t,u(t), u(0)=uo, t€l0,T]
Next, let t; = idt,i = 0,1, ..., N be a temporal mesh with spacing 6t = T'/N, and u; be an approximation to u(t;). A
general one-step time discretization is now given by

Uo =9go
u; ztbi(ui,l) +gz’ 1= 1,27...7N.

Traditional time marching would first solve for ¢ = 1, then solve for i = 2, and so on. For linear time propagators {®;},
this can also be expressed as applying a direct solver (a forward solve) to the following system:

I Uo 9o
-P, I uy g1
Au =]] . = . =g
—oN I uy an
or
Au=g.

This process is optimal and O(N), but it is sequential. XBraid achieves parallelism in time by replacing this sequential
solve with an optimal multigrid reduction iterative method ' applied to only the time dimension. This approach is

* nonintrusive, in that it coarsens only in time and the user defines ®. Thus, users can continue using existing time
stepping codes by wrapping them into our framework.

« optimal and O(N), but O(N) with a higher constant than time stepping. Thus with enough computational resources,
XBraid will outperform sequential time stepping.

* highly parallel

We now describe the two-grid process in more detail, with the multilevel analogue being a recursive application of the
process. We also assume that ® is constant for notational simplicity. XBraid coarsens in the time dimension with factor
m > 1 to yield a coarse time grid with Nao = N/m points and time step AT = mdt. The corresponding coarse grid
problem,
1
—dp T
Ap = . . ;

—PA T
is obtained by defining coarse grid propagators {® A } which are at least as cheap to apply as the fine scale propagators

{®}. The matrix Ax has fewer rows and columns than A4, e.g., if we are coarsening in time by 2, Ax has one half as
many rows and columns.

This coarse time grid induces a partition of the fine grid into C-points (associated with coarse grid points) and F-points,
as visualized next. C-points exist on both the fine and coarse time grid, but F-points exist only on the fine time scale.

' Ries, Manfred, Ulrich Trottenberg, and Gerd Winter. "A note on MGR methods." Linear Algebra and its Applications 49 (1983): 1-26.

Generated by Doxygen

3.1 Overview of the XBraid Algorithm 7

T T AT = mot

0 1 e LN — F-point (fine grid only)

I e e e e e S e e S S o e o el . .
— (C-point (form coarse grid

byl b i3 o Iy P (grid)

Every multigrid algorithm requires a relaxation method and an approach to transfer values between grids. Our relaxation
scheme alternates between so-called F-relaxation and C-relaxation as illustrated next. F-relaxation updates the F-point
values {u;} on interval (T;,T;41) by simply propagating the C-point value w,,; across the interval using the time
propagator {®}. While this is a sequential process, each F-point interval update is independent from the others and
can be computed in parallel. Similarly, C-relaxation updates the C-point value u,,; based on the F-point value ;1
and these updates can also be computed in parallel. This approach to relaxation can be thought of as line relaxation in
space in that the residual is set to 0 for an entire time step.

The F updates are done simultaneously in parallel, as depicted next.

T T AT = mot

0 : — T, — F-point (fine grid only)

e e e B e e e B e e e o B o o o o | . .
— = (-point (form coarse grid

o 1) LR 5 ” point (grid)

Figure 3 Update all F-point intervals in parallel, using the time propagator ¢.

Following the F sweep, the C updates are also done simultaneously in parallel, as depicted next.

0 1 AT =mor, — F-point (fine grid only)

=— (C-point (form coarse grid)

Figure 4 Update all C-points in parallel, using the time propagator ®.

Generated by Doxygen

8 CONTENTS

In general, FCF- and F-relaxation will refer to the relaxation methods used in XBraid. We can say

» FCF- or F-relaxation is highly parallel.
+ But, a sequential component exists equaling the number of F-points between two C-points.

» XBraid uses regular coarsening factors, i.e., the spacing of C-points happens every m points.

After relaxation, comes forming the coarse grid error correction. To move quantities to the coarse grid, we use the
restriction operator R which simply injects values at C-points from the fine grid to the coarse grid,

7 T
0
0
re| I
0
0

The spacing between each I is m — 1 block rows. While injection is simple, XBraid always does an F-relaxation
sweep before the application of R, which is equivalent to using the transpose of harmonic interpolation for restriction
(see Parallel Time Integration with Multigrid). Another interpretation is that the F-relaxation com-
presses the residual into the C-points, i.e., the residual at all F-points after an F-relaxation is 0. Thus, it makes sense
for restriction to be injection.

To define the coarse grid equations, we apply the Full Approximation Scheme (FAS) method, which is a nonlinear
version of multigrid. This is to accommodate the general case where f is a nonlinear function. In FAS, the solution
guess and residual (i.e., u, g — Au) are restricted. This is in contrast to linear multigrid which typically restricts only the
residual equation to the coarse grid. This algorithmic change allows for the solution of general nonlinear problems. For
more details, see this PDF by Van Henson for a good introduction to FAS. However, FAS was originally invented by Achi
Brandt.

A central question in applying FAS is how to form the coarse grid matrix A, which in turn asks how to define the coarse
grid time stepper ®A. One of the simplest choices (and one frequently used in practice) is to let o simply be ® but
with the coarse time step size AT = mdt. For example, if ® = (I — 5tA)_1 for some backward Euler scheme, then
dA = (I —mdtA)~! would be one choice.

With this ® A and letting ua be the restricted fine grid solution and ra be the restricted fine grid residual, the coarse
grid equation

AA(VA) = AA(UA) +ra
is then solved. Finally, FAS defines a coarse grid error approximation ea = va — ua, which is interpolated with Pg

back to the fine grid and added to the current solution guess. Interpolation is equivalent to injecting the coarse grid to the
C-points on the fine grid, followed by an F-relaxation sweep (i.e., it is equivalent to harmonic interpolation, as mentioned

Generated by Doxygen

https://computation.llnl.gov/project/linear_solvers/pubs/mgritPaper-2014.pdf
http://computation.llnl.gov/casc/people/henson/postscript/UCRL_JC_150259.pdf

3.1 Overview of the XBraid Algorithm 9

above about restriction). That is,

I

P

(I)Z

(I)n;,—l
Pq) - I 9
LiiJ
@2
q)n.z—l

where m is the coarsening factor. See Two-Grid Algorithm for a concise description of the FAS algorithm for MGRIT.

3.1.1

Two-Grid Algorithm

The two-grid FAS process is captured with this algorithm. Using a recursive coarse grid solve (i.e., step 3 becomes a
recursive call) makes the process multilevel. Halting is done based on a residual tolerance. If the operator is linear, this
FAS cycle is equivalent to standard linear multigrid. Note that we represent A as a function below, whereas the above
notation was simplified for the linear case.

—_

3.1.2

Relax on A(u) = g using FCF-relaxation

Restrict the fine grid approximation and its residual:
up < Ru, ra + R(g— A(u),
which is equivalent to updating each individual time step according to
UA; < Umis TAG < Gmi — A(U)p; for i =0,...,Na.
Solve Aa(va) = Aa(ua) +ra

Compute the coarse grid error approximation: ea = va — ua

Correct: u <+ u + Pea

This is equivalent to updating each individual time step by adding the error to the values of u at the C-points:
Umi = Umi T €A,

followed by an F-relaxation sweep applied to u.

Summary

In summary, a few points are

» XBraid is an iterative solver for the global space-time problem.

» The user defines the time stepping routine ® and can wrap existing code to accomplish this.

Generated by Doxygen

10

CONTENTS

XBraid convergence will depend heavily on how well ® A approximates &, that is how well a time step size of
mdt = AT will approximate m applications of the same time integrator for a time step size of d¢. This is a subject
of research, but this approximation need not capture fine scale behavior, which is instead captured by relaxation
on the fine grid.

The coarsest grid is solved exactly, i.e., sequentially, which can be a bottleneck for two-level methods like Parareal,
2 but not for a multilevel scheme like XBraid where the coarsest grid is of trivial size.

By forming the coarse grid to have the same sparsity structure and time stepper as the fine grid, the algorithm
can recur easily and efficiently.

Interpolation is ideal or exact, in that an application of interpolation leaves a zero residual at all F-points.

The process is applied recursively until a trivially sized temporal grid is reached, e.g., 2 or 3 time points. Thus,
the coarsening rate m determines how many levels there are in the hierarchy. For instance in this figure, a 3 level
hierarchy is shown. Three levels are chosen because there are six time points, m = 2 and m? < 6 < m3. If the
coarsening rate had been m = 4 then there would only be two levels because there would be no more points to
coarsen!

— F-point (fine grid only)
— (-point (coarse grid)

Level 0

I
I
Level 1 |
Level 2 |

By default, XBraid will subdivide the time domain into evenly sized time steps. XBraid is structured to handle
variable time step sizes and adaptive time step sizes.

3.2 Overview of the XBraid Code

XBraid is designed to run in conjunction with an existing application code that can be wrapped per our interface. This
application code will implement some time marching simulation like fluid flow. Essentially, the user has to take their
application code and extract a stand-alone time-stepping function ® that can evolve a solution from one time value
to another, regardless of time step size. After this is done, the XBraid code takes care of the parallelism in the time
dimension.

XBraid

is written in C and can easily interface with Fortran, C++, and Python

uses MPI for parallelism

self documents through comments in the source code and through *.md files
functions and structures are prefixed by braid

— User routines are prefixed by braid_

— Developer routines are prefixed by _braid_

Generated by Doxygen

3.2 Overview of the XBraid Code 11

Serial time stepping Multigrid-in-time

X (space) X (space)

3.2.1 Parallel decomposition and memory

« XBraid decomposes the problem in parallel as depicted next. As you can see, traditional time stepping only stores
one time step at a time, but only enjoys a spatial data decomposition and spatial parallelism. On the other hand,
XBraid stores multiple time steps simultaneously and each processor holds a space-time chunk reflecting both
the spatial and temporal parallelism.

» XBraid only handles temporal parallelism and is agnostic to the spatial decomposition. See braid_Split—
Commuworld. Each processor owns a certain number of CF intervals of points. In the following figure, processor 1
and processor 2 each own 2 CF intervals. XBraid distributes intervals evenly on the finest grid.

T, T AT = mot
0 ! Lo A, — F-point (fine grid only)
H—+— 14— . .
=— (-point (form coarse grid
o &, B 57 }\ o tN} P (grid)
Processor O Processor 1

» XBraid increases the parallelism significantly, but now several time steps need to be stored, requiring more mem-
ory. XBraid employs two strategies to address the increased memory costs.

— First, one need not solve the whole problem at once. Storing only one space-time slab is advisable. That is,
solve for as many time steps (say k time steps) as you have available memory for. Then move on to the next
k time steps.

— Second, XBraid provides support for storing only C-points. Whenever an F-point is needed, it is generated by
F-relaxation. More precisely, only the red C-point time values in the previous figure are stored. Coarsening
is usually aggressive with m = 8, 16, 32, ..., so the storage requirements of XBraid are significantly reduced
when compared to storing all of the time values.

Overall, the memory multiplier per processor when using XBraid is O(1) if space-time coarsening (see The
Simplest Example) is used and O(log,,, N) for time-only coarsening. The time-only coarsening option is the
default and requires no user-written spatial interpolation/restriction routines (which is the case for space-time
coasrening). We note that the base of the logarithm is m, which can be quite large.

2 Lions, J., Yvon Maday, and Gabriel Turinici. "A’parareal’in time discretization of PDE’s." Comptes Rendus de I'’Academie des Sciences Series |
Mathematics 332.7 (2001): 661-668.

Generated by Doxygen

12 CONTENTS

3.2.2 Cycling and relaxation strategies

There are two main cycling strategies available in XBraid, F-and V-cycles. These two cycles differ in how often and the
order in which coarse levels are visited. A V-cycle is depicted next, and is a simple recursive application of the Two-Grid
Algorithm.

V-cycle

An F-cycle visits coarse grids more frequently and in a different order. Essentially, an F-cycle uses a V-cycle as the
post-smoother, which is an expensive choice for relaxation. But, this extra work gives you a closer approximation to a
two-grid cycle, and a faster convergence rate at the extra expense of more work. The effectiveness of a V-cycle as a
relaxation scheme can be seen in Figure 2, where one V-cycle globally propagates and smoothes the error. The cycling
strategy of an F-cycle is depicted next.

F-cycle

Next, we make a few points about F- versus V-cycles.

» One V-cycle iteration is cheaper than one F-cycle iteration.

» But, F-cycles often converge more quickly. For some test cases, this difference can be quite large. The cycle
choice for the best time to solution will be problem dependent. See Scaling Study with this Example for a case
study of cycling strategies.

» For exceptionally strong F-cycles, the option braid_SetNFMGVcyc can be set to use multiple V-cycles as relax-
ation. This has proven useful for some problems with a strongly advective nature.

The number of FC relaxation sweeps is another important algorithmic setting. Note that at least one F-relaxation sweep
is always done on a level. A few summary points about relaxation are as follows.

» Using FCF, FCFCF, or FCFCFCF relaxation corresponds to passing braid_SetNRelax a value of 1, 2 or 3 respec-
tively, and will result in an XBraid cycle that converges more quickly as the number of relaxations grows.

« But as the number of relaxations grows, each XBraid cycle becomes more expensive. The optimal relaxation
strategy for the best time to solution will be problem dependent.

» However, a good first step is to try FCF on all levels (i.e., braid_SetNRelax(core, -1, 1)).

» A common optimization is to first set FCF on all levels (i.e., braid_setnrelax(core, -1, 1)), but then overwrite the
FCF option on level 0 so that only F-relaxation is done on level 0, (i.e., braid_setnrelax(core, 0, 1)). Another
strategy is to use F-relaxation on all levels together with F-cycles.

» See Scaling Study with this Example for a case study of relaxation strategies.

Generated by Doxygen

3.2 Overview of the XBraid Code 13

There is also a weighted relaxation option, which applies weighted-Jacobi at the C-points during the C-relaxation.
Experiments with the 1D heat equation and 1D advection showed iteration gains of 10-25% for V-cycles when the
experimentally optimal weight was used.

+ For the heat equation, a weight of around 1.3 was experimentally optimal
 For the advection equation, weights between 1.4 and 1.8 were experimentally optimal
+ Set this option with braid_SetCRelaxWt, which allows you to set a global relaxation weight, or an individual weight

for each level. In general, under-relaxation (weight < 1.0) never improved performance, but over-relxation (1.0 <
weight < 2.0) often offered some improvement.

Last, Parallel Time Integration with Multigrid has a more in depth case study of cycling and relax-
ation strategies

3.2.3 Overlapping communication and computation

XBraid effectively overlaps communication and computation. The main computational kernel of XBraid is one relaxation
sweep touching all the CF intervals. At the start of a relaxation sweep, each process first posts a non-blocking receive at
its left-most point. It then carries out F-relaxation in each interval, starting with the right-most interval to send the data to
the neighboring process as soon as possible. If each process has multiple CF intervals at this XBraid level, the strategy
allows for complete overlap.

1) Post receive 2) Compute and send

S R =

3.2.4 Configuring the XBraid Hierarchy

Some of the more basic XBraid function calls allow you to control aspects discussed here.

* braid_SetFMG: switches between using F- and V-cycles.

* braid_SetMaxlter: sets the maximum number of XBraid iterations

+ braid_SetCFactor: sets the coarsening factor for any (or all levels)

« braid_SetNRelax: sets the number of CF-relaxation sweeps for any (or all levels)
* braid_SetRelTol, braid_SetAbsTol: sets the stopping tolerance

* braid_SetMinCoarse: sets the minimum possible coarse grid size

* braid_SetMaxLevels: sets the maximum number of levels in the XBraid hierarchy

Generated by Doxygen

https://computation.llnl.gov/project/linear_solvers/pubs/mgritPaper-2014.pdf

14 CONTENTS

3.2.5 Halting tolerance

Another important configuration aspect regards setting a residual halting tolerance. Setting a tolerance involves these
three XBraid options:

1. braid_PtFcnSpatialNorm
This user-defined function carries out a spatial norm by taking the norm of a braid_Vector. A common choice is
the standard Eucliden norm (2-norm), but many other choices are possible, such as an L2-norm based on a finite
element space.

2. braid_SetTemporalNorm

This option determines how to obtain a global space-time residual norm. That is, this decides how to combine
the spatial norms returned by braid_PtFcnSpatialNorm at each time step to obtain a global norm over space and
time. It is this global norm that then controls halting.

There are three tnorm options supported by braid_SetTemporalNorm. We let the summation index i be over all
C-point values on the fine time grid, k refer to the current XBraid iteration, r be residual values, space_time norms
be a norm over the entire space-time domain and spatial_norm be the user-defined spatial norm from braid_Pt«
FcnSpatialNorm. Thus, r; is the residual at the ith C-point, and () is the residual at the kth XBraid iteration. The
three options are then defined as,

* tnorm=1: One-norm summation of spatial norms

k _ (k)
HT()Hspace_time = Xi|lr; Hspatial_norm

If braid_PtFcnSpatialNorm is the one-norm over space, then this is equivalent to the one-norm of the global
space-time residual vector.

» tnorm=2: Two-norm summation of spatial norms

K _ (k)2 1z
[E8)||space_time = (EiHTz‘ Hspatial_norm)

If braid_PtFcnSpatialNorm is the Euclidean norm (two-norm) over space, then this is equivalent to the
Euclidean-norm of the global space-time residual vector.

* tnorm=3: Infinity-norm combination of spatial norms

k _ (k)
H’“()Hspace_time = max 7 ||spatial_norm

If braid_PtFcnSpatialNorm is the infinity-norm over space, then this is equivalent to the infinity-norm of the
global space-time residual vector.

The default choice is thorm=2
3. braid_SetAbsTol, braid_SetRelTol

« |f an absolute tolerance is used, then

k
€)||space_time < tol
defines when to halt.

« |f a relative tolerance is used, then

[i
space_time < tol

[7(©) ||space_time
defines when to halt. That is, the current kth residual is scaled by the initial residual before comparison to
the halting tolerance. This is similar to typical relative residual halting tolerances used in spatial multigrid,
but can be a dangerous choice in this setting.

Generated by Doxygen

3.2 Overview of the XBraid Code 15

Care should be practiced when choosing a halting tolerance. For instance, if a relative tolerance is used, then issues
can arise when the initial guess is zero for large numbers of time steps. Taking the case where the initial guess (defined
by braid_PtFcnlnit) is 0 for all time values t > 0, the initial residual norm will essentially only be nonzero at the first time
value,

0 ~ k
||7‘()||space_time ~ ||7“§)||spatial_norm

This will skew the relative halting tolerance, especially if the number of time steps increases, but the initial residual norm
does not.

A better strategy is to choose an absolute tolerance that takes your space-time domain size into account, as in Section
Scaling Study with this Example, or to use an infinity-norm temporal norm option.

3.2.6 Debugging XBraid

Wrapping and debugging a code with XBraid typically follows a few steps.

» Test your wrapped functions with XBraid test functions, e.g., braid_TestClone or braid_TestSum.

» Set max levels to 1 (braid_SetMaxLevels) and run an XBraid simulation. You should get the exact same answer
as that achieved with sequential time stepping. If you make sure that the time-grids used by XBraid and by
sequential time stepping are bit-wise the same (by using the user-defined time grid option braid_SetTimeGrid),
then the agreement of their solutions should be bit-wise the same.

« Continue with max levels equal to 1, but switch to two processors in time. Check that the answer again exactly
matches sequential time stepping. This test checks that the information in braid_Vector is sufficient to correctly
start the simulation on the second processor in time.

» Set max levels to 2, halting tolerance to 0.0 (braid_SetAbsTol), max iterations to 3 (braid_SetMaxlter) and turn
on the option braid_SetSeqSoln. This will use the solution from sequential time-stepping as the initial guess for
XBraid and then run 3 iterations. The residual should be exactly 0 each iteration, verifying the fixed-point nature
of XBraid and a (hopefully!) correct implementation. The residual may be on the order of machine epsilon (or
smaller). Repeat this test for multiple processors in time (and space if possible).

+ A similar test turns on debug level printing by passing a print level of 3 to braid_SetPrintLevel. This will print out the
residual norm at each C-point. XBraid with FCF-relaxation has the property that the exact solution is propagated
forward two C-points each iteration. Thus, this should be reflected by numerically zero residual values for the first
so many time points. Repeat this test for multiple processors in time (and space if possible).

« Finally, run some multilevel tests, making sure that the XBraid results are within the halting tolerance of the
solutions generated by sequential time-stepping. Repeat this test for multiple processors in time (and space if

possible).

» Congratulations! Your code is now verified.

Generated by Doxygen

16 CONTENTS

3.3 Computing Derivatives with XBraid_Adjoint

XBraid_Adjoint has been developed in collaboration with the Scientific Computing group at TU Kaiserslautern, Germany,
and in particular with Dr. Stefanie Guenther and Prof. Nicolas Gauger.

In many application scenarios, the ODE system is driven by some independent design parameters p. These can be
any time-dependent or time-independent parameters that uniquely determine the solution of the ODE (e.g. a boundary
condition, material coefficients, etc.). In a discretized ODE setting, the user's time-stepping routine might then be written
as

ui:<I>i(ui,17p)7 VZ:].,N7

where the time-stepper ®;, which propagates a state u; 1 at a time ¢;_; to the next time step at ¢;, now also depends on
the design parameters p. In order to quantify the simulation output for the given design, a real-valued objective function
can then be set up that measures the quality of the ODE solution:

J(u,p) € R.

Here, u = (ug, . .., uy) denotes the space-time state solution for a given design.

XBraid_Adjoint is a consistent discrete time-parallel adjoint solver for XBraid which provides sensitivity information of the
output quantity J with respect to the user-defined design parameters p. The ability to compute sensitivities can greatly
improve and enhance the simulation tool, for example for solving

+ Design optimization problems,

» Optimal control problems,

» Parameter estimation for validation and verification purposes,
* Error estimation,

» Uncertainty quantification techniques.

XBraid_Adjoint is non-intrusive with respect to the adjoint time-stepping scheme so that existing time-serial adjoint codes
can be integrated easily though an extended user-interface.

3.3.1 Short Introduction to Adjoint-based Sensitivity Computation

Adjoint-based sensitivities compute the total derivative of J with respect to changes in the design parameters p by
solving additional so-called adjoint equations. We will briefly introduce the idea in the following. You can skip this
section, if you are familiar with adjoint sensitivity computation in general and move to Overview of the XBraid_Adjoint
Algorithm immedately. Information on the adjoint method can be found in [Giles, Pierce, 2000] * amongst many others.

Consider an augmented (so-called Lagrange) funtion
L(u,p) = J(u,p) + 0" A(u, p)
where the discretized time-stepping ODE equations in

Dy (ug, p) — ur
A(u, p) = :

On(un—1,p) — un

3 Giles, M.B., Pierce, N.A.: "An introduction to the adjoint approach to design.” Flow, Turbulence and Combustion 65(3), 393-415 (2000)

Generated by Doxygen

3.3 Computing Derivatives with XBraid_Adjoint 17

have been added to the objective function, and multiplied with so-called adjoint variables @ = (uy, ..., an). Since the
added term is zero for all design and state variables that satisfy the discrete ODE equations, the total derivative of J
and L with respect to the design match. Using the chain rule of differentiation, this derivative can be expressed as

A _dL_0Jdu 0] o (04du 04
dp dp Oudp 9p Judp Jp

where O denotes partial derivatives — in contrast to the total derivative (i.e. the sensitivity) denoted by d.

When computing this derivative, the terms in red are the ones that are computationally most expensive. In fact, the cost
for computing these sensitivities scale linearly with the number of design parameters, i.e. the dimension of p. These
costs can grow quickly. For example, consider a finite differencing setting, where a re-computation of the entire space-
time state would be necessary for each design variable, because a perturbation of the design must be computed in all

the unit directions of the design space. In order to avoid these costs, the adjoint method aims to set the adjoint variable
u such that these red terms add up to zero in the above expression. Hence, if we solve first for

o1, (24Y",
ou ou B

for the adjoint variable 1, then the so-called reduced gradient of J, which is the transpose of the total derivative of J

with respect to the design, is given by
AN AR 7 A
dp) \op dp

The advantage of this strategy is, that in order to compute the sensitivity of J with respect to p, only one additional
space-time equation (adjoint) for @i has to be solved, in addition to evaluating the partial derivatives. The computational
cost for computing d.J/dp therefore does not scale in this setting with the number of design parameters.

For the time-dependent discrete ODE problem, the adjoint equation from above reads
unsteady adjoint: U; = Oy, J(u, p)T + (Ou; Pi1 (i, p))T Wjt1 Vi=N...,1

using the terminal condition u 4 := 0. The reduced gradient is given by

. aI\" T
reduced gradient: (8;}) =0,J(u, p)" + Z (0, (ui—1,p))” Ui

3.3.2 Overview of the XBraid_Adjoint Algorithm

The unsteady adjoint equations can in principle be solved “backwards in time" in a time-serial manner, starting from
the terminal condition 41 = 0. However, the parallel-in-time XBraid_Adjoint solver offers speedup by distributing the
backwards-in-time phase onto multiple processors along the time domain. Its implementation is based on techniques of
the reverse-mode of Automatic Differentiation applied to one primal XBraid iteration. To that end, each primal iteration
is augmented by an objective function evaluation, followed by updates for the space-time adjoint variable @, as well as
evaluation of the reduced gradient denoted by p. In particular, the following so-called piggy-back iteration is performed:

1. XBraid: update the state and evaluate the objective function

u* Y XBraid(u®, p), J <« J(u® p)

Generated by Doxygen

18 CONTENTS

2. XBraid_Adjoint: update the adjoint and evaluate the reduced gradient

T

a1 « XBraid_Adjoint(u®, a® p), 5« (1
p

dJ(u®, p))

Each XBraid_Adjoint iteration moves backwards though the primal XBraid multigrid cycle. It collects local partial deriva-
tives of the elemental XBraid operations in reverse order and concatenates them using the chain rule of differentiation.
This is the basic idea of the reverse mode of Automatic Differentiation (AD). This yields a consistent discrete time-parallel
adjoint solver that inherits the parallel scaling properties of the primal XBraid solver.

Further, XBraid_Adjoint is non-intrusive for existing adjoint methods based on sequential time marching schemes. |t
adds additional user-defined routines to the primal XBraid interface, in order to define the propagation of sensitivities
of the forward time stepper backwards-in-time and the evaluation of partial derivatives of the local objective function at
each time step. In cases where a time-serial unsteady adjoint solver is already available, this backwards time stepping
capability can be easily wrapped according to the adjoint user interface with little extra coding.

The adjoint solve in the above piggy-back iteration converges at the same convergence rate as the primal state variables.
However since the adjoint equations depend on the state solution, the adjoint convergence will slightly lag behind the
convergence of the state. More information on convergence results and implementational details for XBraid_Adjoint can
be found in [Gunther, Gauger, Schroder, 2017]. *

3.3.3 Overview of the XBraid_Adjoint Code

XBraid_Adjoint offers a non-intrusive approach for time-parallelization of existing time-serial adjoint codes. To that end,
an extended user-interface allows the user to wrap their existing code for evaluating the objective function and performing
a backwards-in-time adjoint step into routines according to the XBraid_Adjoint interface.

3.3.3.1 Objective function evaluation

The user-interface for XBraid_Adjoint allows for objective functions of the following type:

J=F (/t fu(t), p) dt) .

This involves a time-integral part of some time-dependent quantity of interest f as well as a postprocessing function F.
The time-interval boundaries ¢y, t; can be set using the options braid_SetTStartObjective and braid_SetTStopObjective,
otherwise the entire time domain will be considered. Note that these options can be used for objective functions that
are only evaluated at one specific time instance by setting g = ¢1 (e.g. in cases where only the last time step is of
interest). The postprocessing function F' offers the possibility to further modify the time-integral, e.g. for setting up a
tracking-type objective function (substract a target value and square), or for adding relaxation or penalty terms. While
defining f is mandatory for XBraid_Adjoint, the postprocessing routine F' is optional and is passed to XBraid_Adjoint
though the optional braid_SetPostprocessObjective and braid_SetPostprocessObjective_diff routines. XBraid_Adjoint
will perform the time-integration by summing up the f evaluations in the given time-domain

i1
I > f(ui,p)
i=ig
followed by a call to the postprocessing function F/, if set:
J«— F(I,p).

Note that any integration rule for computing I, e.g. for scaling contributions from f (), must be done by the user.

4 Gunther, S., Gauger, N.R. and Schroder, J.B. A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library.” Computing and Visualiza-
tion in Science, Springer, (accepted), (2017)

Generated by Doxygen

3.3 Computing Derivatives with XBraid_Adjoint 19

Partial derivatives of user-routines

The user needs to provide the derivatives of the time-stepper ® and function evaluation f (and potentially F’) for X«
Braid_Adjoint. Those are provided in terms of transposed matrix-vector products in the following way:

1. Derivatives of the objective function J:

+ Time-dependent part f: The user provides a routine that evaluates the following transposed partial deriva-
tives of f multiplied with the scalar input F:

T
8ui

T
dp

The scalar input £ equals 1.0, if no postpocessing function F' has been set.

» Postprocessing F': If the postprocessing routine has been set, the user needs to provide it's transposed

partial derivatives in the following way:
n 8F(Iv p)
Fe ——F=
ol
OF (I,
5 py 2P
dp

2. Derivatives of the time-stepper ®;: The user provides a routine that computes the following transposed partial
derivatives of ®; multiplied with the adjoint input vector u;:

T
. ((“)CI)(ui,p)) -
ou,;

a¢th)TU

p%p+< op

Note that the partial derivatives with respect to p always update the reduced gradient p instead of overwriting it (i.e. they
are a plus-equal operation, + =). Therefore, the gradient needs to be reset to zero before each iteration of XBraid_+«
Adjoint, which is taken care of by XBraid_Adjoint calling an additional user-defined routine braid_PtFcnResetGradient.

Depending on the nature of the design variables, it is neccessary to gather gradient information in p from all time-
processors after XBraid_Adjoint has finished. It is the user's responsibility to do that, if needed, e.g. through a call to
MPI_Allreduce.

Halting tolerance

Similar to the primal XBraid algorithm, the user can choose a halting tolerance for XBraid_Adjoint which is based on the
adjoint residual norm. An absolute tolerance (braid_SetAbsTolAdjoint)

|[a®) — a1 Ispace_time < tol_adjoint
or a relative tolerance (braid_SetRelTolAdjoint)

[a® —ak-1 lspace_time

— — < tol_adjoint
[a) —a© Hspace_time

can be chosen.

Generated by Doxygen

20 CONTENTS

Finite Difference Testing

You can verify the gradient computed from XBraid_Adjoint using Finite Differences. Let e; denote the i-th unit vector in
the design space, then the i-th entry of the gradient should match with

J(up+h6mp + he?) — J(u7 p)

h
for a small perturbation ~ > 0. Here, u,,., denotes the new state solution for the perturbed design variable. Keep
in mind, that round-off errors have to be considered when computing the Finite Differences for very small perturbations
h — 0. Hence, you should vary the parameter to find the best fit.

¢-th Finite Difference:

In order to save some computational work while computing the perturbed objective function value, XBraid_Adjoint can
run in ObjectiveOnly mode, see braid_SetObjectiveOnly. When in this mode, XBraid_Adjoint will only solve the
ODE system and evaluate the objective function, without actually computing its derivative. This option might also be
useful within an optimization framework e.g. for implementing a line-search procedure.

Getting started

* Look at the simple example Simplest XBraid_Adjoint example in order to get started. This example is in
examples/ex-01-adjoint . c, which implements XBraid_Adjoint sensitivity computation for a scalar ODE.

3.4 Citing XBraid

To cite XBraid, please state in your text the version number from the VERSION file, and please cite the project website
in your bibliography as

[1] XBraid: Parallel multigrid in time. http://11nl.gov/casc/xbraid.

The corresponding BibTex entry is

@misc{xbraid-package,
title = {{XB}raid: Parallel multigrid in time},
howpublished = {\url{http://1llnl.gov/casc/xbraid}}
}

3.5 Summary

» XBraid applies multigrid to the time dimension.

— This exposes concurrency in the time dimension.
— The potential for speedup is large, 10x, 100x, ...

» This is a non-intrusive approach, with an unchanged time discretization defined by user.

+ Parallel time integration is only useful beyond some scale. This is evidenced by the experimental results below.
For smaller numbers of cores sequential time stepping is faster, but at larger core counts XBraid is much faster.

» The more time steps that you can parallelize over, the better your speedup will be.
» XBraid is optimal for a variety of parabolic problems (see the examples directory).

» XBraid_Adjoint provides time-parallel adjoint-based sensitivities of output quantities with respect to user-defined
design variables

— Itis non-intrusive with respect to existing adjoint time-marching schemes
— ltinherits parallel scaling properties from XBraid

Generated by Doxygen

http://llnl.gov/casc/xbraid

4 Examples 21

4 Examples

This section is the chief tutorial of XBraid, illustrating how to use it through a sequence of progressively more sophisti-
cated examples.

41 The Simplest Example
User Defined Structures and Wrappers

The user must wrap their existing time stepping routine per the XBraid interface. To do this, the user must define two
data structures and some wrapper routines. To make the idea more concrete, we now give these function definitions
from examples/ex—-01, which implements a scalar ODE,

U = Au.
The two data structures are:

1. App: This holds a wide variety of information and is global in that it is passed to every function. This structure
holds everything that the user will need to carry out a simulation. Here for illustration, this is just an integer storing
a processor's rank.

typedef struct _braid_App_struct
{

int rank;
} my_App;

2. Vector: this defines (roughly) a state vector at a certain time value. It could also contain any other information
related to this vector which is needed to evolve the vector to the next time value, like mesh information. Here, the
vector is just a scalar double.

typedef struct _braid_Vector_struct
{

double value;
} my_Vector;

The user must also define a few wrapper routines. Note, that the app structure is the first argument to every function.

1. Step: This function tells XBraid how to take a time step, and is the core user routine. The user must advance the
vector u from time tstart to time tstop. Note how the time values are given to the user through the status structure
and associated Get routine. Important note: the g; function from Overview of the XBraid Algorithm must be
incorporated into Step, so that the following equation is solved by default.

The ustop parameter serves as an approximation to the solution at time fstop and is not needed here. It can be
useful for implicit schemes that require an initial guess for a linear or nonlinear solver. The use of fstop is an
advanced parameter (not required) and forms the the right-hand side of the nonlinear problem on the given time
grid. This value is only nonzero when providing a residual with braid_SetResidual. More information on how to
use this optional feature is given below.

Here advancing the solution just involves the scalar .

Generated by Doxygen

22 CONTENTS

int
my_Step (braid_App app,
braid_Vector ustop,
braid_Vector fstop,
braid_Vector u,
braid_StepStatus status)
{
double tstart; /* current time */
double tstop; /+ evolve to this timex*/

braid_StepStatusGetTstartTstop (status, &tstart, &tstop);

/+ Use backward Euler to propagate solution */
(u->value) = 1./(1l. + tstop-tstart)x (u->value);

return 0;

2. Init: This function tells XBraid how to initialize a vector at time t. Here that is just allocating and setting a scalar
on the heap.

int
my_Init (braid_App app,

double t,
braid_Vector =u_ptr)

my_Vector =xu;

u = (my_Vector x) malloc(sizeof (my_Vector));
if (t == 0.0) /* Initial condition =*/
{

(u->value) = 1.0;

}
else /+ All other time points set to arbitrary value x/
{
(u->value) = 0.456;
}

*u_ptr = u;

return 0;

3. Clone: This function tells XBraid how to clone a vector into a new vector.

int

my_Clone (braid_App app,
braid_vVector u,
braid_Vector *v_ptr)

my_Vector xv;
v = (my_Vector x) malloc(sizeof (my_Vector));

(v—=>value) (u->value) ;
*v_ptr = v;

return 0;

4. Free: This function tells XBraid how to free a vector.

int
my_Free (braid_App app,
braid_Vector u)
{
free(u);

return 0;

Generated by Doxygen

4.1 The Simplest Example 23

5. Sum: This function tells XBraid how to sum two vectors (AXPY operation).

int

my_Sum (braid_App app,
double alpha,
braid_Vector x,
double beta,

braid_Vector vy)
(y—>value) = alphax (x—->value) + betax (y->value);

return 0;

6. SpatialNorm: This function tells XBraid how to take the norm of a braid_Vector and is used for halting. This norm
is only over space. A common norm choice is the standard Euclidean norm, but many other choices are possible,
such as an L2-norm based on a finite element space. The norm choice should be based on what makes sense
for your problem. How to accumulate spatial norm values to obtain a global space-time residual norm for halting
decisions is controlled by braid_SetTemporalNorm.

int

my_SpatialNorm (braid_App app,
braid_Vector u,
double *norm_ptr)

double dot;

dot = (u->value) x (u->value);
*norm_ptr = sqgrt (dot);

return 0;

7. Access: This function allows the user access to XBraid and the current solution vector at time t. This is most
commonly used to print solution(s) to screen, file, etc... The user defines what is appropriate output. Notice how
you are told the time value t of the vector u and even more information in astatus. This lets you tailor the output
to only certain time values at certain XBraid iterations. Querying astatus for such information is done through
braid_AccessStatusGetxx(..) routines.

The frequency of the calls to access is controlled through braid_SetAccessLevel. For instance, if access_level
is set to 2, then access is called every XBraid iteration and on every XBraid level. In this case, querying astatus
to determine the current XBraid level and iteration will be useful. This scenario allows for even more detailed
tracking of the simulation. The default access_level is 1 and gives the user access only after the simulation ends
and only on the finest time-grid.

Eventually, this routine will allow for broader access to XBraid and computational steering.

See examples/ex-03anddrivers/drive-diffusion for more advanced uses of the access function.
Indrive-diffusion, access is used to write solution vectors to a GLVIS visualization port, and ex—03 uses
access to write to .vtu files.

int

my_Access (braid_App app,
braid_Vector u,
braid_AccessStatus astatus)

int index;
char filename[255];
FILE *file;

braid_AccessStatusGetTIndex (astatus, &index);
sprintf (filename, "%s.%04d.%03d", "ex-0l.out", index, app->rank);

Generated by Doxygen

24 CONTENTS

file = fopen(filename, "w");

fprintf (file, "%.14e\n", (u->value));
fflush(file);

fclose(file);

return 0;

}

8. BufSize, BufPack, BufUnpack: These three routines tell XBraid how to communicate vectors between proces-
sors. BufPack packs a vector into a void x buffer for MPI and then BufUnPack unpacks the void x buffer into
a vector. Here doing that for a scalar is trivial. BufSize computes the upper bound for the size of an arbitrary vector.

Note how BufPack also sets the size in bstatus. This value is optional, but if set it should be the exact number
of bytes packed, while BufSize should provide only an upper-bound on a possible buffer size. This flexibility
allows for the buffer to be allocated the fewest possible times, but smaller messages to be sent when needed.
For instance, this occurs when using variable spatial grid sizes. To avoid MPI issues, it is very important that
BufSize be pessimistic, provide an upper bound, and return the same value across processors.

In general, the buffer should be self-contained. The receiving processor should be able to pull all necessary
information from the buffer in order to properly interpret and unpack the buffer.

int
my_BufSize (braid_App app,
int *size_ptr,
braid_BufferStatus bstatus)
{
*size_ptr = sizeof (double);
return 0;
}
int
my_BufPack (braid_App app,
braid_Vector u,
void *buffer,

braid_BufferStatus bstatus)
double xdbuffer = buffer;

dbuffer[0] = (u->value);
braid_BufferStatusSetSize(bstatus, sizeof (double));

return 0;

}

int
my_BufUnpack (braid_App app,
void *pbuffer,
braid_Vector *u_ptr,
braid_BufferStatus bstatus)
{
double *dbuffer = buffer;

my_Vector =xu;
u = (my_Vector) malloc(sizeof (my_Vector));
(u->value) = dbuffer[0];

*u_ptr = u;

return 0;

4.1.1 Running XBraid for the Simplest Example

A typical flow of events in the main function is to first initialize the app structure.

Generated by Doxygen

4.2 Some Advanced Features 25

/* set up app structure =/
app = (my_App *) malloc(sizeof (my_App));
(app—->rank) = rank;

Then, the data structure definitions and wrapper routines are passed to XBraid. The core structure is used by XBraid
for internal data structures.

braid_Core core;

braid_Init (MPI_COMM_WORLD, comm, tstart, tstop, ntime, app,
my_Step, my_Init, my_Clone, my_Free, my_Sum, my_SpatialNorm,
my_Access, my_BufSize, my_BufPack, my_BufUnpack, &core);

Then, XBraid options are set.

braid_SetPrintLevel (core, 1);
braid_SetMaxLevels (core, max_levels);
braid_SetAbsTol (core, tol);
braid_SetCFactor (core, -1, cfactor);

Then, the simulation is run.

braid_Drive (core);

Then, we clean up.

braid_Destroy (core);

Finally, to run ex-01, type

ex-01

4.2 Some Advanced Features

We now give an overview of some optional advanced features that will be implemented in some of the following exam-
ples.

1. SCoarsen, SRestrict: These are advanced options that allow for coarsening in space while you coarsen in
time. This is useful for maintaining stable explicit schemes on coarse time scales and is not needed here.
See examples/ex—02 for a simple example of this feature, and then drivers/drive-diffusion and
drivers/drive-diffusion-2D for more advanced examples of this feature.

These functions allow you to vary the spatial mesh size on XBraid levels as depicted here where the spatial and
temporal grid sizes are halved every level.

Generated by Doxygen

26

CONTENTS

hi, he
2y, 20
Ahy, dhy

8hy, 8hy

2. Residual: A user-defined residual can be provided with the function braid_SetResidual and can result in substan-

tial computational savings, as explained below. However to use this advanced feature, one must first understand
how XBraid measures the residual. XBraid computes residuals of this equation,

Ai(uivui—l) = fi,

where A;(,) evaluates one block-row of the the global space-time operator A. The forcing f; is the XBraid forcing,
which is the FAS right-hand-side term on coarse grids and 0 on the finest grid. The PDE forcing goes inside of
A;.

Since XBraid assumes one-step methods, A;() is defined to be

Ai(uiyui—1) = =P(ui—1) + V(uy),

i.e., the subdiagonal and diagonal blocks of A.

Default setting: In the default XBraid setting (no residual option used), the user only implements Step() and
Step() will simply apply ®(), because ¥() is assumed to be the identity. Thus, XBraid can compute the residual
using only the user-defined Step() function by combining Step() with the Sum() function, i.e.

ri = fi + ®(ui—1) — us

The fstop parameter in Step() corresponds to f;, but is always passed in as NULL to the user in this setting and
should be ignored. This is because XBraid can compute the contribution of f; to the residual on its own using the
Sum() function.

An implication of this is that the evaluation of ®() on the finest grid must be very accurate, or the residual will
not be accurate. This leads to a nonintrusive, but expensive algorithm. The accuracy of ®() can be relaxed on
coarser grids to save computations.

Residual setting: The alternative to the above default least-intrusive strategy is to have the user define

Ai(uiyui—1) = =P(ui—1) + V(uy),

directly, which is what the Residual function implements (set with braid_PtFcnResidual). In other words, the
user now defines each block-row of the space-time operator, rather than only defining ®(). The user Residual()
function computes A; (u;, u;—1) and XBraid then subtracts this from f; to compute 7;.

However, more care must now be taken when defining the Step() function. In particular, the fstop value (i.e., the
fi value) must be taken into account. Essentially, the definition of Step() changes so that it no longer defines ®(),
but instead defines a (possibly inexact) solve of the equation defined by

Ai(uuui—l) = fi~

Thus, Step() must be compatible with Residual(). Expanding the previous equation, we say that Step() must now
compute

Generated by Doxygen

4.2 Some Advanced Features 27

U; = ‘If_l(fi + (I)(Uifl)).

It is clear that the fstop value (i.e., the f; value) must now be given to the Step() function so that this equation can
be solved by the user. In other words, fstop is now no longer NULL.

Essentially, one can think of Residual() as defining the equation, and Step() defining a preconditioner for that row
of the equation, or an inexact solve for w;.

As an example, let ¥ = (I 4+ AtL), where L is a Laplacian and & = I. The application of the residual
function will only be a sparse matrix-vector multiply, as opposed to the default case where an inversion is re-
quired for ® = (I + AtL)~! and ¥ = I. This results in considerable computational savings. Moreover, the
application of Step() now involves an inexact inversion of ¥, e.g., by using just one spatial multigrid V-cycle. This
again results in substantial computation savings when compared with the naive approach of a full matrix inversion.

Another way to think about the compatibility between ¥ and @ is that

fi — Ai(ui,ui—1) =0
must hold exactly if u; is an exact propagation of u;_1, that is,
fi — Ai(Step(ui—1, fi),ui—1) =0

must hold. When the accuracy of the Step() function is reduced (as mentioned above), this exact equality with 0
is lost, but this should evaluate to something small. There is an XBraid test function braid_TestResidual that
tests for this compatibility.

The residual feature is implemented in the examples examples/ex-01-expanded.c, examples/ex—-02.
c,and examples/ex—-03.c.

3. Adaptive and variable time stepping: This feature is available by first calling the function braid_SetRefine in the
main driver and then using braid_StepStatusSetRFactor in the Step routine to set a refinement factor for interval
[tstart, tstop]. In this way, user-defined criteria can subdivide intervals on the fly and adaptively refine in time. For
instance, returning a refinement factor of 4 in Step will tell XBraid to subdivide that interval into 4 evenly spaced
smaller intervals for the next iteration. Refinement can only be done on the finest XBraid level.

The final time grid is constructed adaptively in an FMG-like cycle by refining the initial grid according to the
requested refinement factors. Refinement stops when the requested factors are all one or when various upper
bounds are reached such as the max number of time points or max number of time grid refinement levels allowed.
No restriction on the refinement factors is applied within XBraid, so the user may want to apply his own upper
bound on the refinement factors to avoid over-refinement. See examples/ex-0l-refinement.c and
examples/ex—-03. c for an implementation of this.

4. Richardson-based Error Estimation and Extrapolation: This feature allows the user to access built-in
Richardson-based error estimates and accuracy improving extrapolation. The error estimates and/or extrapolation
can be turned on by using braid_SetRichardsonEstimation . Moreover, this feature can be used in conjunction
with the above discussed function, braid_StepStatusSetRFactor, to achieve easy-to-use adaptive refinement in
time.

Essentially, Richardson extrapolation (RE) is used to improve the accuracy of the solution at the C-points on the
finest level. When the built-in error estimate option is turned on, RE is used to estimate the local truncation error
at each point. These estimates can be accessed through StepStatus and AccessStatus functions.

The Richardson-based error estimates and extrapolation are only available after the first Braid iteration, in that
the coarse level solution must be available to compute the error estimate and/or extrapolation. Thus, after an

adaptive refinement (and new hierarchy is constructed), another iteration is again required for the error estimates
to be available. If the error estimate isn't available, Braid returns a value of -1. See this example for more details

examples/ex-06.c

Generated by Doxygen

28 CONTENTS

5. Shell-vector: This feature supports the use of multi-step methods. The strategy for BDF-K methods is to allow
for the lumping of k time points into a single XBraid vector. So, if the problem had 100 time points and the time-
stepper was BDF-2, then XBraid would only see 50 time points but each XBraid vector would contain two separate
time points. By lumping 2 time points into one vector, the BDF-2 scheme remains one-step and compatible with
XBraid.

However, the time-point spacing between the two points internal to the vector stays the same on all time grids,
while the spacing between vectors grows on coarse time grids. This creates an irregular spacing which is prob-
lematic for BDF-k methods. Thus the shell-vector strategy lets meta-data be stored at all time points, even for
F-points which are usually not stored, so that the irregular spacings can be tracked and accounted for with the
BDF method. (Note, there are other possible uses for shell-vectors.)

There are many strategies for handling the coarse time-grids with BDF methods (dropping the BDF order, ad-
justing time-point spacings inside the lumped vectors, etc...). Prospective users are encouraged to contact the
devlopers through the XBraid Github page and issue tracker. This area is active research.

See examples/ex—-01l-expanded-bdf2.c.

6. Storage: This option (see braid_SetStorage) allows the user to specify storage at all time points (C and F) or only
at C-points. This extra storage is useful for implicit methods, where the solution value from the previous XBraid
iteration for time step ¢ can be used as the initial guess when computing step ¢ with the implicit solver. This is
often a better initial guess than using the solution value from the previous time step ¢ — 1. The default is to store

only C-point values, thus the better initial guess is only available at C-points in the default setting. When storage
is turned on at F-points, the better initial guess becomes available everywhere.

In general, the user should always use the ustop parameter in Step() as the initial guess for an implicit solve. If
storage is turned on (i.e., set to 0), then this value will always be the improved initial guess for C- and F-points.
If storage is not turned on, then this will be the improved guess only for C-points. For F-points, it will equal the
solution from the previous time step.

See examples/ex-03 for an example which uses this feature.

4.3 Simplest example expanded

These examples build on The Simplest Example, but still solve the scalar ODE,

U = A\u.

The goal here is to show more advanced features of XBraid.

* examples/ex—-0l-expanded.c: same as ex-01. c but adds more XBraid features such as the residual
feature, the user defined initial time-grid and full multigrid cycling.

* examples/ex—-0l-expanded-bdf2.c: same as ex-01-expanded.c, but uses BDF2 instead of backward
Euler. This example makes use of the advanced shell-vector feature in order to implement BDF2.

* examples/ex—-01-expanded-f.f90: same as ex-01-expanded.c, but implemented in f90.

* examples/ex—-01l-refinement.c: same as ex-01.c, but adds the refinement feature of XBraid. The re-
finement can be arbitrary or based on error estimate.

Generated by Doxygen

4.4 One-Dimensional Heat Equation 29

4.4 One-Dimensional Heat Equation

In this example, we assume familiarity with The Simplest Example. This example is a time-only parallel example that
implements the 1D heat equation,

0/0; u(x,t) = Au(x,t) + g(z, 1),

as opposed to The Simplest Example, which implements only a scalar ODE for one degree-of-freedom in space. There
is no spatial parallelism, as a serial cyclic reduction algorithm is used to invert the tri-diagonal spatial operators. The
space-time discretization is the standard 3-point finite difference stencil ([—1, 2, —1]), scaled by mesh widths. Backward
Euler is used in time.

This example consists of three files and two executables.

*» examples/ex—-02-serial.c: This file compiles into its own executable ex-02-serial and represents
a simple example user application that does sequential time-stepping. This file represents where a new XBraid
user would start, in terms of converting a sequential time-stepping code to XBraid.

+ examples/ex—02.c: This file compiles into its own executable ex—-02 and represents a time-parallel XBraid
wrapping of the user application ex-02-serial.

* ex—-02-11ib. c: This file contains shared functions used by the time-serial version and the time-parallel version.
This file provides the basic functionality of this problem. For instance, take_step(u, tstart, tstop, ...) carries out a
step, moving the vector u from time tstart to time tstop.

4.5 Two-Dimensional Heat Equation

In this example, we assume familiarity with The Simplest Example and describe the major ways in which this example
differs. This example is a full space-time parallel example, as opposed to The Simplest Example, which implements
only a scalar ODE for one degree-of-freedom in space. We solve the heat equation in 2D,

8/6¢ u(w,y,t) = Au(z,y,t) + g(z,y,t).

For spatial parallelism, we rely on the hypre package where the SemiStruct interface is used to define our spatial
discretization stencil and form our time stepping scheme, the backward Euler method. The spatial discretization is just
the standard 5-point finite difference stencil ([—1; —1,4, —1; —1]), scaled by mesh widths, and the PFMG solver is
used for the solves required by backward Euler. Please see the hypre manual and examples for more information on the
SemiStruct interface and PFMG. Although, the hypre specific calls have mostly been abstracted away for this example,
and so it is not necessary to be familiar with the SemiStruct interface for this example.

This example consists of three files and two executables.

« examples/ex-03-serial.c: This file compiles into its own executable ex-03-serial and represents a simple
example user application. This file supports only parallelism in space and represents a basic approach to doing
efficient sequential time stepping with the backward Euler scheme. Note that the hypre solver used (PFMG) to
carry out the time stepping is highly efficient.

+ examples/ex-03.c: This file compiles into its own executable ex—03 and represents a basic example of wrapping
the user application ex—-03-serial. We will go over the wrappers below.

+ ex-03-lib.c: This file contains shared functions used by the time-serial version and the time-parallel version. This
is where most of the hypre specific calls reside. This file provides the basic functionality of this problem. For
instance, take_step(u, tstart, tstop, ...) carries out a step, moving the vector u from time fstart to time tstop and
setUplmplicitMatrix(...) constructs the matrix to be inverted by PFMG for the backward Euler method.

Generated by Doxygen

https://computation.llnl.gov/project/linear_solvers/software.php

30 CONTENTS

User Defined Structures and Wrappers

We now discuss in more detail the important data structures and wrapper routines in examples/ex-03.c. The
actual code for this example is quite simple and it is recommended to read through it after this overview.

The two data structures are:

1. App: This holds a wide variety of information and is global in that it is passed to every user function. This structure
holds everything that the user will need to carry out a simulation. One important structure contained in the app is
the simulation_manager. This is a structure native to the user code ex-03-11ib. c. This structure conveniently
holds the information needed by the user code to carry out a time step. For instance,

app->man—>A

is the time stepping matrix,
app->man->solver

is the hypre PFMG solver object,

app—>man—>dt

is the current time step size. The app is defined as

typedef struct _braid_App_struct {

MPI_Comm comm; /* global communicator =/
MPI_Comm comm_t; /* communicator for parallelizing in time «/
MPI_Comm comm_X; /* communicator for parallelizing in space «*/
int pt; /* number of processors in time */
simulation_manager +man; /* user’s simulation manager structure =/
HYPRE_SStructVector e; /* temporary vector used for error computations x/
int nA; /* number of spatial matrices created */
HYPRE_SStructMatrix =*A; /* array of spatial matrices, size nA, one per levelx/
double *dt_A; /* array of time step sizes, size nA, one per levelx/
HYPRE_StructSolver xsolver; /+ array of PFMG solvers, size nA, one per levelx/
int use_rand; /* binary value, use random or zero initial guess =/
int sruntime_max_iter; /% runtime info for number of PFMG iterationsx*/
int *max_iter_x; /* maximum iteration limits for PFMG x/

} my_App;

The app contains all the information needed to take a time step with the user code for an arbitrary time step size. See
the Step function below for more detail.

1. Vector: this defines a state vector at a certain time value. Here, the vector is a structure containing a native hypre
data-type, the SStructVector, which describes a vector over the spatial grid. Note that my_Vector is used to define
braid_Vector.

typedef struct _braid_Vector_struct {
HYPRE_SStructVector X;
} my_Vector;

The user must also define a few wrapper routines. Note, that the app structure is the first argument to every function.
1. Step: This function tells XBraid how to take a time step, and is the core user routine. This function advances the

vector u from time tstart to time tstop. A few important things to note are as follows.

« The time values are given to the user through the status structure and associated Get routines.

Generated by Doxygen

4.5 Two-Dimensional Heat Equation 31

« The basic strategy is to see if a matrix and solver already exist for this dt value. If not, generate a new matrix
and solver and store them in the app structure. If they do already exist, then re-use the data.

» To carry out a step, the user routines from ex-03-11b. c rely on a few crucial data members man->dft,
man->A and man-solver. We overwrite these members with the correct information for the time step size in
question. Then, we pass man and u to the user function take_step(...) which evolves u.

« The forcing term g; is wrapped into the take_step(...) function. Thus, ®(u;) — u;t1.
int my_Step (braid_App app,

braid_Vector u,
braid_StepStatus status)

double tstart; /* current time =*/

double tstop; /* evolve u to this timex/
int i, A_idx;

int iters_taken = -1;

/+ Grab status of current time step =*/
braid_StepStatusGetTstartTstop (status, &tstart, &tstop);

/* Check matrix lookup table to see if this matrix already existsx/

A_idx = -1.0;
for(1 = 0; i < app->nA; i++){
if(fabs(app->dt_A[i] - (tstop-tstart))/ (tstop-tstart) < le-10) {
A_idx = i;
break;

}

/* We need to "trick" the user’s manager with the new dt =/
app—>man—->dt = tstop - tstart;

/+ Set up a new matrix and solver and store in app */

if(A_idx == -1.0){
A_idx = 1i;
app—->nA++;
app->dt_A[A_idx] = tstop-tstart;

setUpImplicitMatrix(app->man);
app->A[A_idx] = app->man—->A;

setUpStructSolver (app—>man, u—->x, u—->x);
app->solver[A_idx] = app->man->solver;

}

/* Time integration to next time point: Solve the system Ax = b.

*+ First, "trick" the user’s manager with the right matrix and solver =/
app->man->A = app->A[A_idx];
app->man->solver = app->solver[A_idx];

/+ Take step */
take_step (app->man, u->x, tstart, tstop);

;ééurn 0;
}
2. There are other functions, Init, Clone, Free, Sum, SpatialNorm, Access, BufSize, BufPack and BufUnpack,
which also must be written. These functions are all simple for this example, as for the case of The Simplest

Example. All we do here is standard operations on a spatial vector such as initialize, clone, take an inner-product,
pack, etc... We refer the reader to ex—-03. c.

Running XBraid for this Example

To initialize and run XBraid, the procedure is similar to The Simplest Example. Only here, we have to both initialize
the user code and XBraid. The code that is specific to the user's application comes directly from the existing serial

Generated by Doxygen

32 CONTENTS

simulation code. If you compare ex-03-serial.c and ex—03.c, you will see that most of the code setting up the
user's data structures and defining the wrapper functions are simply lifted from the serial simulation.

Taking excerpts from the function main() in ex-03.c, we first initialize the user's simulation manager with code like

app->man->px =1; /+ my processor number in the x-direction =/

app->man->py = 1; /* my processor number in the y-direction */
/* px*py=num procs in space =/

app->man—>nx = 17; /* number of points in the x-dim =/

app->man->ny = 17; /* number of points in the y-dim =/

app->man—->nt = 32; /* number of time steps x/

We also define default XBraid parameters with code like

max_levels = 15; /* Max levels for XBraid solver =*/

min_coarse = 3; /* Minimum possible coarse grid size x/
nrelax = 1; /* Number of CF relaxation sweeps on all levels =/

The XBraid app must also be initialized with code like

app->comm = comm;

app—->tstart = tstart;
app—>tstop = tstop;
app->ntime = ntime;

Then, the data structure definitions and wrapper routines are passed to XBraid.

braid_Core core;

braid_Init (MPI_COMM_WORLD, comm, tstart, tstop, ntime, app,
my_Step, my_Init, my_Clone, my_Free, my_Sum, my_SpatialNorm,
my_Access, my_BufSize, my_BufPack, my_BufUnpack, &core);

Then, XBraid options are set with calls like

braid_SetPrintLevel (core, 1);
braid_SetMaxLevels (core, max_levels);
braid_SetNRelax (core, -1, nrelax);

Then, the simulation is run.
braid_Drive (core);

Then, we clean up.

braid_Destroy (core);

Finally, to run ex-03, type

ex-03 -help

As a simple example, try the following.

mpirun -np 8 ex-03 -pgrid 2 2 2 -nt 256

Generated by Doxygen

4.5 Two-Dimensional Heat Equation 33

64
32 \\,_———"—’ 1
—»—time stepping

-O-V-cycle, FCF \'
2--@-V-cycle, F-FCF H
F-cyc!e, F

1 4 16 64 128 256 512 1024 2048 4096
processors

time [seconds]

4.5.1 Scaling Study with this Example

Here, we carry out a simple strong scaling study for this example. The "time stepping" data set represents sequential
time stepping and was generated using examples/ex—-03-serial. The time-parallel data set was generated using
examples/ex—-03. The problem setup is as follows.

» Backwards Euler is used as the time stepper. This is the only time stepper supported by ex-03.

» We used a Linux cluster with 4 cores per node, a Sandybridge Intel chipset, and a fast Infiniband interconnect.
+ The space-time problem size was 1292 x 16, 192 over the unit cube [0, 1] x [0, 1] x [0, 1] .

« The coarsening factor was m = 16 on the finest level and m = 2 on coarser levels.

» Since 16 processors optimized the serial time stepping approach, 16 processors in space are also used for
the XBraid experiments. So for instance 512 processrs in the plot corresponds to 16 processors in space and
32 processors in time, 16 x 32 = 512. Thus, each processor owns a space-time hypercube of (1292/16) x
(16,192/32). See Parallel decomposition and memory for a depiction of how XBraid breaks the problem up.

« Various relaxation and V and F cycling strategies are experimented with.

— V-cycle, FCF denotes V-cycles and FCF-relaxation on each level.
— Vteycle, F-FCF denotes V-cycles and F-relaxation on the finest level and FCF-relaxation on all coarser levels.

— F-cycle, F denotes F-cycles and F-relaxation on each level.
» The initial guess at time values for ¢ > 0 is zero, which is typical.
« The halting tolerance corresponds to a discrete L2-norm and was

1078
V(ho)?he

where h, and h; are the spatial and temporal grid spacings, respectively.

tol =

This corresponds to passing tol to braid_SetAbsTol, passing 2 to braid_SetTemporalNorm and defining braid«
_PtFcnSpatialNorm to be the standard Euclidean 2-norm. All together, this appropriately scales the space-time
residual in way that is relative to the number of space-time grid points (i.e., it approximates the L2-norm).

To re-run this scaling study, a sample run string for ex-03 is

mpirun -np 64 ex-03 -pgrid 4 4 4 -nx 129 129 -nt 16129 -cf0 16 -cf 2 -nu 1 -use_rand 0

To re-run the baseline sequential time stepper, ex-03-serial, try

Generated by Doxygen

34 CONTENTS

mpirun -np 64 ex-03-serial -pgrid 8 8 -nx 129 129 -nt 16129
For explanations of the command line parameters, type

ex—-03-serial -help
ex-03 -help

Regarding the performance, we can say

» The best speedup is 10x and this would grow if more processors were available.

+ Although not shown, the iteration counts here are about 10-15 XBraid iterations. See Parallel Time
Integration with Multigrid for the exact iteration counts.

+ At smaller core counts, serial time stepping is faster. But at about 256 processors, there is a crossover and XBraid
is faster.

* You can see the impact of the cycling and relaxation strategies discussed in Cycling and relaxation strategies.
For instance, even though V-cycle, F-FCF is a weaker relaxation strategy than V-cycle, FCF (i.e., the XBraid
convergence is slower), V-cycle, F-FCF has a faster time to solution than V-cycle, FCF because each cycle is
cheaper.

« In general, one level of aggressive coarsening (here by a factor 16) followed by slower coarsening was found to

be best on this machine.

Achieving the best speedup can require some tuning, and it is recommended to read Parallel Time
Integration with Multigrid where this 2D heat equation example is explored in much more detail.

4.6 Simplest XBraid_Adjoint example
The file examples/ex-01-adjoint.c extends the simple scalar ODE example in ex-01.c for computing
adjoint-based sensitivities. See The Simplest Example. The scalar ODE is

we(t) = Au(t) Vte (0,7T),

where) is considered the design variable. We consider an objective function of the form

T
T = [Flute) P

User Defined Structures and Wrappers
The two user-defined data structures are:

1. Vector: This structure is unchanged from The Simplest Example, and contains a single scalar representing the
state at a given time.

typedef struct _braid_Vector_struct
{

double value;
} my_Vector;

Generated by Doxygen

https://computation.llnl.gov/project/linear_solvers/pubs/mgritPaper-2014.pdf
https://computation.llnl.gov/project/linear_solvers/pubs/mgritPaper-2014.pdf
https://computation.llnl.gov/project/linear_solvers/pubs/mgritPaper-2014.pdf
https://computation.llnl.gov/project/linear_solvers/pubs/mgritPaper-2014.pdf

4.6 Simplest XBraid_Adjoint example 35

2. App: This structure holds two additional elements when compared to The Simplest Example : the design and the
reduced gradient. This ensures that both are accessible in all user routines.

typedef struct _braid_App_struct
{

int rank;

double design;

double gradient;
} my_App;

The user must also define a few additional wrapper routines. Note, that the app structure continues to be the first
argument to every function.

1. All user-defined routines from examples/ex-01. c stay the same, except Step (), which must be changed
to account for the new design parameter in app.

2. The user's Step routine queries the app to get the design and propagates the braid_Vector u forward in
time for one time step:

int
my_Step (braid_App app,
braid_Vector ustop,
braid_Vector fstop,
braid_Vector u,
braid_StepStatus status)
{
double tstart; /* current time */
double tstop; /* evolve to this timex/

braid_StepStatusGetTstartTstop (status, &tstart, &tstop);

/* Get the design variable from the app */
double lambda = app->design;

/+ Use backward Euler to propagate the solution =/
(u->value) = 1./(1. - lambda x (tstop-tstart))x (u->value);

return 0;

}

3. ObjectiveT: This new routine evaluates the time-dependent part of the objective function at a local time ¢;, i.e. it
returns the integrand f(u;,) = = [|u; 13-

int

my_ObjectiveT (braid_App app,
braid_Vector u,
braid_ObjectiveStatus ostatus,
double xobjectiveT_ptr)

/* Get the total number of time steps */
braid_ObjectiveStatusGetNTPoints (ostatus, &ntime);

/* Evaluate the local objective: 1/N u(t)"2 =/
objT = 1. / ntime * (u->value) * (u->value);

*objectiveT_ptr = objT;
return 0;

The ObjectiveStatus can be queried for information about the current status of XBraid (e.g., what is the
current time value, time-index, number of time steps, current iteration number, etc...).

XBraid_Adjoint calls the Ob ject iveT function on the finest time-grid level during the down-cycle of the multigrid
algorithm and adds the value to a global objective function value with a simple summation. Thus, any user-specific
integration formula of the objective function must be here.

Generated by Doxygen

36

CONTENTS

4. ObjectiveT_diff: This new routine updates the adjoint variable u_bar and the reduced gradient with the trans-
posed partial derivatives of Object iveT multiplied by the scalar input F, i.e.,

T T
a; = 0f(ui, A) F and p+ = 0f(wi,) F.
ou; ap

Note that u; gets overwritten (" ="), whereas p is updated (" + =").

int
my_Ob

in
do
do

/ *
br

/*

jectiveT_diff (braid_App app,
braid_Vector u,
braid_Vector u_bar,
braid_Real F_bar,
braid_ObjectiveStatus ostatus)

t ntime;
uble ddu; /+ Derivative wrt u =/

uble ddesign; /* Derivative wrt design =/

Get the total number of time steps */
aid_ObjectiveStatusGetNTPoints (ostatus, &ntime);

Partial derivative with respect to u times F_bar =*/

ddu = 2. / ntime *» u->value * F_bar;

/%

Partial derivative with respect to design times F_barx/

ddesign = 0.0 » F_bar;

/ *

U_

ap

re

Update u_bar and gradient */
bar->value = ddu;
p->gradient += ddesign;

turn 0;

5. Step_diff: This new routine computes transposed partial derivatives of the Step routine multiplied with the

adjoint v

ector u_bar (u;), i.e.,

8@i iy T 8@i i
u:(mum> 4 and p+:(+l<w)

Ve,

Ou; ap
int
my_Step_diff (braid_App app,
braid_Vector ustop,
braid_Vector u,
braid_Vector ustop_bar,
braid_Vector u_bar,
braid_StepStatus status)
{
double ddu; /* Derivative wrt u =/

double ddesign; /% Derivative wrt design */

/* Get the time step size =/

double tstop, tstart, deltat;
braid_StepStatusGetTstartTstop (status, &tstart, &tstop);
deltat = tstop - tstart;

/* Get the design from the app */
double lambda = app->design;

/+ Transposed derivative of step wrt u times u_bar =/
ddu = 1./(1. - lambda % deltat) =* (u_bar->value);

/+ Transposed derivative of step wrt design times u_bar =/
ddesign = (deltat x (u->value)) / pow(l. - deltatxlambda,?2)

*

(u_bar->value) ;

Generated by Doxygen

4.6 Simplest XBraid_Adjoint example 37

/* Update u_bar and gradient =*/

u_bar->value = ddu;
app->gradient += ddesign;
return 0;

}

Important note on the usage of ustop: If the St ep routine uses the input vector ustop instead of u (typically
for initializing a (non-)linear solve within ®), then Step_diff must update ustop_bar instead of u_bar and
set u_bar to zero:

0P;41(ustop, p

. N
ustop—i—:(> u; and w@; = 0.0.

dustop
6. ResetGradient: This new routine sets the gradient to zero.

int
my_ResetGradient (braid_App app)
{

app->gradient = 0.0;

return 0;

}

XBraid_Adjoint calls this routine before each iteration such that old gradient information is removed properly.

Running XBraid_Adjoint for this example

The workflow for computing adjoint sensitivities with XBraid_Adjoint alongside the primal state computation closely
follows XBraid's workflow. The user's main file will first set up the app structure, holding the additional information on
an initial design and zero gradient. Then, all the setup calls done in Running XBraid for the Simplest Example will also
be done.

The XBraid_Adjoint specific calls are as follows. Afterbraid_TInit (...) iscalled, the user initializes XBraid_Adjoint
by calling

/* Initialize XBraid_Adjoint =/
braid_InitAdjoint (my_ObjectiveT, my_ObjectiveT_diff, my_Step_diff, my_ResetGradient, &core);

Next, in addition to the usual XBraid options for controlling the multigrid iterations, the adjoint solver's accuracy is set by
calling

braid_SetAbsTolAdjoint (core, le-6);
After that, one call to

/* Run simulation and adjoint-based gradient computation =/
braid_Drive (core) ;

runs the multigrid iterations with additional adjoint sensitivity computations (i.e. the piggy-back iterations). After it
finishes, the objective function value can be accessed by calling

/+ Get the objective function value from XBraid =/
braid_GetObjective (core, &objective);

Further, the reduced gradient, which is stored in the user's App structure, holds the sensitivity information d.J/dp.
As this information is local to all the time-processors, the user is responsible for summing up the gradients from all
time-processors, if necessary. This usually involves an MPI_Allreduce call asin

/+ Collect sensitivities from all processors =/
double mygradient = app->gradient;
MPI_Allreduce (&émygradient, & (app->gradient), 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD) ;

Lastly, the gradient computed with XBraid_Adjoint is verified using Finite Differences. See the source code
examples/ex—-01-adjoint . c for details.

Generated by Doxygen

38 CONTENTS

4.7 Optimization with the Simplest Example

The file examples/ex-0l-optimization.c implements a simple optimization iteration by extending
examples/ex-01-adjoint.c, described in Simplest XBraid_Adjoint example. This example solves an inverse
design problem for the simple scalar ODE example:

2
. T
min 5 (o Hu(t)|dt ~ Jraga) + FIA2

st Zu(t)=Au(t) Vte(0,T)
where Jraget is @ fixed and precomputed target value and v > O is a fixed relaxation parameter. Those fixed values are

stored within the App.

User Defined Structures and Wrappers

In order to evaluate the time-independent part of the objective function (e.g. the postprocessing function F') and its
derivative, two additional user routines are necessary. There are no new user-defined data structures.

1. PostprocessObjective: This function evaluates the tracking-type objective function and the regularization term.
The input variable integral contains the integral-part of the objective and returns the objective that is to be
minimized F(I):

/* Evaluate the time-independent part of the objective function */

int
my_PostprocessObjective (braid_App app,
double integral,
double *postprocess
)
{
double F;

/* Tracking-type functional =/
F = 1./2. % pow(integral - app->target,2);

/* Regularization term =/
F += (app->gamma) / 2. » pow(app->design,?2);

*postprocess = F;
return O;

1. PostprocessObjective_diff: This provides XBraid_Adjoint with the partial derivatives of the Postprocess«
Objective routine, i.e.

FoOFUN R
= ——" 7 an = 7
oI p o

int

my_PostprocessObjective_diff (braid_App app,
double integral,
double *F_bar

)

/* Derivative of tracking type function */
*F_bar = integral - app—->target;

/* Derivative of regularization term x/
app->gradient += (app->gamma) * (app->design);
return 0;

Generated by Doxygen

4.8 A Simple Optimal Control Problem 39

These routines are optional for XBraid_Adjoint. Therefore, they need to be passed to XBraid_Adjoint after the initializa-
tion with braid_Init (...) andbraid_InitAdjoint (...) inthe user's mainfile:

/* Optional: Set the tracking type objective function and derivative =/
braid_SetPostprocessObjective (core, my_PostprocessObjective);
braid_SetPostprocessObjective_diff (core, my_PostprocessObjective_diff);

Running an Optimization Cycle with XBraid_Adjoint

XBraid_Adjoint does not natively implement any optimization algorithms. Instead, we provide examples showing how
one can easily use XBraid_Adjoint inside an optimization cycle. Here, one iteration of the optimization cycle consists of
the following steps:

1. First, we run XBraid_Adjoint to solve the primal and adjoint dynamics:
braid_Drive (core) ;

2. Get the value of the objective function with
braid_GetObjective (core, &objective);

3. Gradient information is stored in the app structure. Since it is local to all temporal processors, we need to invoke
an MPI_Allreduce call which sums up the local sensitivities:

mygradient = app->gradient;
MPI_Allreduce (&mygradient, &app->gradient, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD) ;

Note: For time-dependent design variables, summing over all processors might not be necessary, since informa-
tion is needed only locally in time. See examples/ex—-04 . c for a time-dependent design example.

4. Update the design variable using the gradient information. Here, we implement a simple steepest descent update
into the direction of the negative gradient:

app->design —-= stepsize x app->gradient;

Here, a fixed step size is used to update the design variable. Usually, a line-search procedure should be im-
plemented in order to find a suitable step length that minimizes the objective function along the update direc-
tion. However to carry out a line search, we must re-evaluate the objective function for different design value(s).
Thus, the option braid_SetObjectiveOnly(core, 1) can be used. After this option has been set, any further call to
braid_Drive (core) will then only run a primal XBraid simulation and carry out an objective function evalu-
ation. No gradients will be computed, which saves computational time. After the line search, make sure to reset
XBraid_Adjoint for gradient computation with braid_SetObjectiveOnly (core, 0).

5. The optimization iterations are stopped when the norm of the gradient is below a prescribed tolerance.

4.8 A Simple Optimal Control Problem

This example demonstrates the use of XBraid_Adjoint for solving an optimal control problem with time-dependent design
variables: .
min [u1(t)? 4 uz(t)® + ye(t)? di

st Zui(t) =ua(t) vt € (0,1)
Siuz2(t) = —ua(t) +c(t) Vte (0,1)
with initial condition u1(0) = 0, u2(0) = —1 and piecewise constant control (design) variable c(t).

The example consists of three files, meant to indicate how one can take a time-serial implementation for an optimal
control problem and create a corresponding XBraid_Adjoint implementation.

Generated by Doxygen

40 CONTENTS

* examples/ex—04-serial.c: Compiles into its own executable examples/ex-04-serial, which
solves the optimal control problem using time-serial forward-propagation of state variables and time-serial
backward-propagation of the adjoint variables in each iteration of an outer optimization cycle.

* examples/ex—-04.c: Compiles into ex-04. This solves the same optimization problem in time-parallel by
replacing the forward- and backward-propagation of state and adjoint by the time-parallel XBraid and XBraid_+«
Adjoint solvers.

* examples/ex—-04-1ib.c: Contains the routines that are shared by both the serial and the time-parallel
implementation. Study this file, and discover that most of the important code setting up the user-defined data
structures and wrapper routines are simply lifted from the serial simulation.

4.9 Running and Testing XBraid

The best overall test for XBraid, is to set the maximum number of levels to 1 (see braid_SetMaxLevels) which will carry
out a sequential time stepping test. Take the output given to you by your Access function and compare it to output from
a non-XBraid run. Is everything OK? Once this is complete, repeat for multilevel XBraid, and check that the solution is
correct (that is, it matches a serial run to within tolerance).

At a lower level, to do sanity checks of your data structures and wrapper routines, there are also XBraid test functions,
which can be easily run. The test routines also take as arguments the app structure, spatial communicator comm_x,
a stream like stdout for test output and a time step size df to test. After these arguments, function pointers to wrapper
routines are the rest of the arguments. Some of the tests can return a boolean variable to indicate correctness.

/* Test init (), access(), free() =*/
braid_TestInitAccess(app, comm_x, stdout, dt, my_Init, my_Access, my_Free);

/+ Test clone() x/
braid_TestClone(app, comm_x, stdout, dt, my_Init, my_Access, my_Free, my_Clone);

/+ Test sum() =*/
braid_TestSum(app, comm_x, stdout, dt, my_Init, my_Access, my_Free, my_Clone, my_Sum);

/+ Test spatialnorm() =/
correct = braid_TestSpatialNorm(app, comm_x, stdout, dt, my_Init, my_Free, my_Clone,
my_Sum, my_SpatialNorm);

/* Test bufsize(), bufpack(), bufunpack() =*/
correct = braid_TestBuf(app, comm_x, stdout, dt, my_Init, my_Free, my_Sum, my_SpatialNorm,
my_BufSize, my_BufPack, my_BufUnpack);

/+ Test coarsen and refine */
correct = braid_TestCoarsenRefine (app, comm_x, stdout, 0.0, dt, 2+dt, my_Init,
my_Access, my_Free, my_Clone, my_Sum, my_SpatialNorm,
my_CoarsenInjection, my_Refine);
correct = braid_TestCoarsenRefine (app, comm_x, stdout, 0.0, dt, 2+dt, my_Init,
my_Access, my_Free, my_Clone, my_Sum, my_SpatialNorm,
my_CoarsenBilinear, my_Refine);

410 Fortan90 Interface, C++ Interface, Python Interface, and More Complicated Examples

We have Fortran90, C++, and Python interfaces. For Fortran 90, see examples/ex-01f.£90. For C++
see braid.hpp and examples/ex-01-pp.cpp For more complicated C++ examples, see the various C++
examples in drivers/drive—xx.cpp. For Python, see the directories examples/ex-01l-cython and
examples/ex-0l-cython-alt.

For a discussion of more complex problems please see our project publications website for our recent publi-
cations concerning some of these varied applications.

Generated by Doxygen

http://computation.llnl.gov/projects/parallel-time-integration-multigrid/publications

5 Examples: compiling and running 41

5 Examples: compiling and running

For C/C++/Fortran examples, type
ex-+ —help

for instructions on how to run. To run the C/C++/Fortran examples, type
mpirun -np 4 ex-* [args]

For the Cython examples, see the corresponding *.pyx file.

1. ex-01 is the simplest example. It implements a scalar ODE and can be compiled and run with no outside depen-
dencies. See Section (The Simplest Example) for more discussion of this example. There are seven versions of
this example,

* ex-01.c: simplest possible implementation, start reading this example first

» ex-01-expanded.c. same as ex-01.c but adds more XBraid features

» ex-01-expanded-bdf2.c: same as ex-01-expanded.c, but uses BDF2 instead of backward Euler
» ex-01-expanded-f.f90. same as ex-01-expanded.c, but implemented in f90

« ex-01-refinement.c: same as ex-01.c, but adds the refinement feature

» ex-01-adjoint.c: adds adjoint-based gradient computation to ex-01.c

» ex-01-optimization.c: gradient-based optimization cycle for ex-01-c

» ex-01-cython/: is a directory containing an example using the Braid-Cython interface defined in braid.«
pyx (braid/braid.pyx). It solves the same scalar ODE equation as the ex-01 series described above. This
example uses a Python-like syntax, in contrast to the ex-01-cython-alt example, which uses a C-style syntax.
For instructions on running and compiling, see

examples/ex—-0l-cython/ex_01.pyx
and

examples/ex—-01l-cython/ex_0l-setup.py
» ex-01-cython-alt/: is a directory containing another example using the Braid-Cython interface defined in
braid.pyx (braid/braid.pyx). It solves the same scalar ODE equation as the ex-01 series described above.
This example uses a lower-level C-like syntax for most of it's code, in contrast to the ex-01-cython example,

which uses a Python-style syntax.
For instructions on running and compiling, see

examples/ex—0l-cython-alt/ex_01_alt.pyx
and
examples/ex—-0l-cython-alt/ex_01_alt-setup.py
2. ex-02 implements the 1D heat equation on a regular grid, using a very simple implementation. This is the next
example to read after the various ex-01 cases.

3. ex-03 implements the 2D heat equation on a regular grid. You must have hypre installed and these variables in
examples/Makefile set correctly

HYPRE_DIR = ../../linear_solvers/hypre
HYPRE_FLAGS = -I$(HYPRE_DIR)/include
HYPRE_LIB = -LS$ (HYPRE_DIR)/lib —-1HYPRE

Generated by Doxygen

https://computation.llnl.gov/project/linear_solvers/software.php

42

CONTENTS

Only implicit time stepping (backward Euler) is supported. See Section (Two-Dimensional Heat Equation) for more
discussion of this example. The driver

drivers/drive-diffusion

is a more sophisticated version of this simple example that supports explicit time stepping and spatial coarsening.

. ex-04 solves a simple optimal control problem with time-dependent design variable using a simple steepest-

descent optimization iteration.

Directory ex-05-cython/ solves a simple 1D heat equation using the Cython interface
examples/ex-05-cython/ex_05.pyx
and

examples/ex—05-cython/ex_05-setup.py

ex-06 solve a simple scalar ODE, but allows for use of the built-in Richardson-based error estimator and accuracy
improving extrapolation. With the "-refinet" option, the error estimator allows for adaptive refinement in time, and
with the "-richardson" option, Richardson extrapolation is used improve the solution at fine-level C-points.

The viz script,

examples/viz-ex-06.py

allows you to visualize the solution, error, and error estimate. The use of "-richardson" notably improves the
accuracy of the solution.

The Richardson-based error estimates and/or extrapolation are only available after the first Braid iteration, in
that the coarse level solution must be available to compute the error estimate and extrapolation. Thus, after an
adaptive refinement (and new hierarchy is constructed), another iteration is again required for the error estimate to
be available. If the error estimate isn't available, Braid returns a value of -1. See this example and the comments
therein for more details.

6 Drivers: compiling and running

Type

drive-* -help

for instructions on how to run any driver.

To run the examples, type

mpirun -np 4 drive-x [args]

. drive-diffusion-2D implements the 2D heat equation on a regular grid. You must have hypre installed and these

variables in examples/Makefile set correctly

HYPRE_DIR = ../../linear_solvers/hypre
HYPRE_FLAGS = -IS$(HYPRE_DIR)/include
HYPRE_LIB = -LS$ (HYPRE_DIR)/lib —-1HYPRE

Generated by Doxygen

https://computation.llnl.gov/project/linear_solvers/software.php

6 Drivers: compiling and running 43

This driver also support spatial coarsening and explicit time stepping. This allows you to use explicit time stepping
on each Braid level, regardless of time step size.

2. drive-burgers-1D implements Burger's equation (and also linear advection) in 1D using forward or backward Euler
in time and Lax-Friedrichs in space. Spatial coarsening is supported, allowing for stable time stepping on coarse
time-grids.

See also viz-burgers.py for visualizing the output.
3. drive-lorenzimplements the Lorenz equation, with it's trademark attractors. This problem has not been researched

very extensively, and XBraid's behavior is not yet well understood. Convergence stagnates, but is the solution
"good enough" from a statistical point-of-view?

See also viz-lorenz.py for visualizing the output.

4. drive-diffusion is a sophisticated test bed for finite element discretizations of the heat equation. It relies on the
mfem package to create general finite element discretizations for the spatial problem. Other packages must be
installed in this order.

» Unpack and install Met is

» Unpack and install hypre
* Unpack mfem. Then make sure to set these variables correctly in the mfem Makefile:

USE_METIS_5 = YES
HYPRE_DIR = where_ever_linear_solvers_is/hypre

» Make the parallel version of mfem first by typing
make parallel
* Make GLVIS. Setthese variables in the glvis makefile

MFEM_DIR
MFEM_LIB

mfem_location
-L$ (MFEM_DIR) -lmfem

» Go to braid/examples and set these Makefile variables,

METIS_DIR = ../../metis-5.1.0/1ib

MFEM_DIR = ../../mfem

MFEM_FLAGS = -I$(MFEM_DIR)

MFEM_LIB = -L$ (MFEM_DIR) —-lmfem -L$ (METIS_DIR) —lmetis
then type

make drive-diffusion
* To run drive-diffusion and glvis, open two windows. In one, start a glvis session
./glvis
Then, in the other window, run drive-diffusion
mpirun -np ... drive-diffusion [args]
Givis will listen on a port to which drive-diffusion will dump visualization information.
5. The other drive-.cpp files use MFEM to implement other PDEs
* drive-adv-diff-DG: implements advection(-diffusion) with a discontinuous Galerkin discretization. This driver
is under developement.

* drive-diffusion-1D-moving-mesh: implements the 1D heat equation, but with a moving mesh that adapts to
the forcing function so that the mesh equidistributes the arc-length of the solution.

« drive-diffusion-1D-moving-mesh-serial: implements a serial time-stepping version of the above problem.
« drive-pLaplacian: implements the 2D the p-Laplacian (nonlinear diffusion).

« drive-diffusion-ben: implements the 2D/3D diffusion equation with time-dependent coefficients. This is es-
sentially equivalent to drive-diffusion, and could be removed, but we're keeping it around because it imple-
ments linear diffusion in the same way that the p-Laplacian driver implemented nonlinear diffusion. This
makes it suitable for head-to-head timings.

Generated by Doxygen

http://mfem.org
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://computation.llnl.gov/project/linear_solvers/software.php
http://mfem.org
http://glvis.org

44 CONTENTS

* drive-lin-elasticity: implements time-dependent linearized elasticity and is under development.

« drive-nonlin-elasticity: implements time-dependent nonlinear elasticity and is under development.

6. Directory drive-adv-diff-1D-Cython/ solves a simple 1D advection-diffussion equation using the Cython interface
and numerous spatial and temporal discretizations

drivers/drive—-adv-diff-1D-Cython/drive_adv_diff_1D.pyx
and

drivers/drive-adv-diff-1D-Cython/drive_adv_diff_1D-setup.py

7 Coding Style

Code should follow the ellemtel style. See braid/misc/sample_c_code.c, and for emacs and vim style files, see
braid/misc/sample.vimrc, and braid/misc/sample.emacs.

8 File naming conventions

These are the general filenaming conventions for Braid

User interface routines in braid begin with braid__and all other internal non-user routines begin with _braid_. This
helps to prevent name clashes when working with other libraries and helps to clearly distinguish user routines that are
supported and maintained.

To keep things somewhat organized, all user header files and implementation files should have names that begin with
braid, forexample, braid.h, braid.c, braid_status.c, ... There should be no user interface prototypes or

implementations that appear elsewhere.

Note that it is okay to include internal prototypes and implementations in these user interface files when it makes sense
(say, as supporting routines), but this should generally be avoided.

An attempt has been made to simplify header file usage as much as possible by requiring only one header file for users,
braid.h, and one header file for developers, _braid.h.

9 Using Doxygen

To build the documentation, doxygen must be version 1.8 or greater. XBraid documentation uses a markdown syntax
both in source file comments and in x.md files.

To make the documentation,

$ make user_manual
$ acroread user_manual.pdf

or to make a more extensive reference manual for developers,

Generated by Doxygen

http://www.stack.nl/~dimitri/doxygen/manual/markdown.html

9 Using Doxygen 45

$ make developer_manual
$ acroread developer_manual.pdf

Developers can run doxygen from a precompiled binary, which may or may not work for your machine,

/usr/casc/hypre/braid/share/doxygen/bin/doxygen

or build doxygen from

/usr/casc/hypre/braid/share/doxygen.tgz

» Compiling doxygen requires a number of dependencies like Bison, GraphViz and Flex. Configure will tell you what
you're missing

» Unpack doxygen.tgz, then from the doxygen directory
./configure --prefix some_dir_in_your_path

make
make install

Documentation Strategy

« The doxygen comments are to be placed in the header files.

» A sample function declaration using the documenation approach using markdown (including typesetting equa-
tions) is in braid.h for the function braid_Init()

» A sample structure documentation is in _braid.h for _braid_Core_struct
« Descriptors for files can also be added, as at the top of braid.h

» The Doxygen manualisat http://www.stack.nl/~dimitri/doxygen/manual/index.html

XBraid Doxygen details

The user and developer manuals are ultimately produced by Latex. The formatting of the manuals is configured accord-
ing to the following.

 docs/local_doxygen.sty
— Latex style file used
» docs/user_manual_header.tex
— User manual title page and header info
» docs/developer_manual_header.tex
— Developer manual title page and header info
e x.md

— Any file ending in .md is extra documentation in markdown format, like Introduction.md or the various
Readme.md files in each directory. This material can be read in plain-text or when it's compiled by Doxygen
and Latex.

Generated by Doxygen

http://www.stack.nl/~dimitri/doxygen/manual/index.html

46 CONTENTS

» docs/user_manual.conf

— Doxygen configure file for the user manual
— The FILE_NAMES tag is a filter to only include the user interface routines in braid.h
— The INPUT tag orders the processing of the files and hence the section ordering

« docs/reference_manual.conf
— Same as user_manual.conf, but the FILE_NAMES tag does not exclude any file from processing.
 docs/img

— Contains the images

+ To regenerate generic doxygen latex files, type

$ doxygen -w latex header.tex footer.tex doxygen.sty doxy.conf

If this is done, then the .conf file must be changed to use the new header file and to copy the local_doxygen.sty
file to the latex directory.

10 Regression Testing

Overview

» There are three levels in the testing framework. At each level, the fine-grain output from a testscript.shis
dumped into a directory testscript .dir, with the standard out and error stored in testscript.out and
testscript.err. Thetesttestscript.sh passesiftestscript.err is empty (nothing is written to
standard error).

« Basic instructions: run a test with a command like

$./test.sh diffusion2D.sh

Then, see if diffusion2D.err is of size 0. If it is not, look at it's contents to see which test failed.

+ To add a new regression test, create a new lowest level script like diffusion2D. sh and then call it from a
machine script at level 2.

» Regression tests should be run before pushing code. It is recommended to run the basic (lowest level) tests like
diffusion2d. sh or machine test like machine-tux.sh

Lowest Level Test Scripts

As an example, here we look at one of the lowest level tests, the diffusion2d test.
Files used:

* test.sh
e diffusion2D.sh

e diffusion2D.saved

Output:

Generated by Doxygen

10 Regression Testing 47

e diffusion2D.dir
e diffusion2D.err

e diffusion2D.out

At this level, we execute

$./test.sh diffusion2D.sh

or just

$./diffusion2D.sh

The script diffusion2D.sh must create diffusion2D.dir and place all fine-grain test output in this direc-
tory. test.sh captures the standard out and error in diffusion2D.out and diffusion2D.err. The test
diffusion2D.sh passesifdiffusion2D.err is empty (nothing is written to standard error).

The strategy for low level scripts like diffusion2D. shis to run a sequence of tests such as

$ mpirun -np 1 ../examples/ex-02 -pgrid 1 1 1 -nt 256
$ mpirun -np 4 ../examples/ex-02 -pgrid 1 1 4 -nt 256

The output from the first mpirun test must then be written to files named

diffusion2D.dir/unfiltered.std.out.0
diffusion2D.dir/std.out.0
diffusion2D.dir/std.err.0

and the second mpirun test similarly writes the files

diffusion2D.dir/unfiltered.std.out.l
diffusion2D.dir/std.out.1
diffusion2D.dir/std.err.1

Subsequent tests are written to higher numbered files. The unfiltered.std.out.num file contains all of the
standard out for the test, while std.out .num contains filtered output (usually from a grep command) and could
contain the output lines such as iteration numbers and number of levels. The file std.err.num contains the standard
error output.

To see if a test ran correctly, std.out .num is compared to saved output in diffusion2D.saved. The file
diffusion2D.saved contains the concatenated output from all the tests that di ffusion2D. sh will run. For
the above example, this file could look like

Begin Test 1

numpber of levels =6
iterations = 16
Begin Test 2

number of levels = 4
iterations =

This saved output is split into an individual file for each test (using # Begin Test as a delimiter) and these new files
are placed in diffusion2D.dir. So, after running these two regression tests, diffusion2D.dir will contain

Generated by Doxygen

48 CONTENTS

diffusion2D.saved.0
diffusion2D.saved.1
unfiltered.std.out.0
std.out.0

std.err.0
unfiltered.std.out.1l
std.out.1l

std.err.1

An individual test has passed if std.err.num is empty. The file std.err.num contains a diff between
diffusion2D.save.numand std.out .num (the diff ignores whitespace and the delimiter # Begin Test).

Last in the directy where youran . /test.sh diffusion2d. sh, the files

diffusion2D.err
diffusion2D.out

will be created. If all the tests passed then diffusion2D.err will be empty. Otherwise, it will contain the filenames
of the std.err.num files that are non-empty, representing failed tests.

Level 2 Scripts

As an example, here we look at one of the Level 2 tests, the machine-tux test that Jacob runs.
Files used:

* machine-tux.sh

Output:

* machine—-tux.dir
* machine-tux.err (only generated if autotest.shis used to run machine-tux. sh)

* machine-tux.out (only generated if autotest.shisusedtorun machine-tux. sh)
At this level, we execute
./machine-tux.sh

The autotest framework (autotest.sh) calls machine scripts in this way. Each machine script should be
short and call lower-level scripts like diffusion2D.sh. The output from lower-level scripts must be moved to
machine—-tux.dir like this:

$./test.sh diffusion2D.sh

$ mv -f diffusion2D.dir machine-tux.dir
$ mv -f diffusion2D.out machine-tux.dir
$ mv -f diffusion2D.err machine-tux.dir

All error files from diffusion2D.sh will be placed in machine-tux.dir, so if machine-tux.dir has all
zero x . err files, then the machine-tux test has passed.

To begin testing on a new machine, like vulcan, add a new machine script similar to machine-tux. sh and change

autotest . shtorecognize and run the new machine test. To then use autotest . sh with the machine script, you'll
have to set up a passwordless connection from the new machine to

/usr/casc/hypre/braid/testing

Generated by Doxygen

10 Regression Testing 49

Level 3 Script

Here we look at the highest level, where autotest . sh runs all of the level 2 machine tests and emails out the results.

Files used:

e autotest.sh

Output:

e test/autotest_finished
* /usr/casc/hypre/braid/testing/AUTOTEST-20%x* . %x.*x—-Day
+ Email to recipients listed in autotest . sh

At the highest level sits autotest . sh and is called automatically as a cronjob. If you just want to check to see if
you've broken anything with a commit, just use lower level scripts.

There are four steps to running autotest.

» Step 1
$./autotesh.sh -init

will do a pull from master for the current working repository and recompile Braid. The autotest output files
(autotest.err and autotest.out) and the output directory (autotest_finished) are initialized.

» Step 2
$./autotest.sh —-tux343

will run the autotests on tux343. This command will look for a machine-tux. sh, and execute it, moving the
resulting

machine-tux.dir

machine-tux.err
machine-tux.out

into test/autotest_finished.
» Step 3
$./autotest.sh -remote-copy
will copy /test/autotest_finished/x* to atime-stamped directory such as
/usr/casc/hypre/braid/testing/AUTOTEST-2013.11.18-Mon
Alternatively,

$./autotesh.sh -remote-copy tux343

will ssh through tux343 to copy to /usr/casc. Multiple machines may independently be running regression
tests and then copy to AUTOTEST-2013.11.18-Mon.

« Step 4
$./autotest.sh —-summary-email

will email everyone listed in the $email_list (an autotest.sh variable)

Generated by Doxygen

50

CONTENTS

Cronfile

To add entries to your crontab, First, put your new cronjob lines into cronfile. Then see what you already have in

your crontab file with

$ crontab -1

Next, append to cronfile whatever you already have

$ crontab -1 >> cronfile

Finally, tell crontab to use your cronfile

$ crontab cronfile

Then make sure it took affect with

$ crontab -1

Crontab entry format uses 'x' to mean "every" and 'x/m' to mean "every m-th". The first five entries on each line

correspond respectively to:

* minute (0-56)

* hour (0-23)

» day of month (1-31)
« month (1-12)

+ day of week (0-6)(0=Sunday)

Jacob's crontab (on tux343):

00 01 = = = source /etc/profile;
10 01 = = x source /etc/profile;
40 01 = x= » source /etc/profile;
50 01 * % % source /etc/profile;
00 02 % * * source /etc/profile;

11 Module Index

11.1 Modules

Here is a list of all modules:

Fortran 90 interface options

Error Codes

source
source
source
source
source

SHOME/ .
SHOME/ .
SHOME/ .
SHOME/ .
SHOME/ .

bashrc;
bashrc;
bashrc;
bashrc;
bashrc;

cd
cd
cd
cd
cd

SHOME/joint_repos/braid/test; ./autotest.
SHOME/ joint_repos/braid/test; ./autotest.
SHOME/ joint_repos/braid/test; ./autotest.
SHOME/ joint_repos/braid/test; ./autotest.
SHOME/ joint_repos/braid/test; ./autotest.

52

54

Generated by Doxygen

sh
sh
sh
sh
sh

—-init
—tux343
—remote-c
—summary-—
—create-t

12 Data Structure Index 51

User-written routines 55
User-written routines for XBraid_Adjoint 60
User interface routines 62
General Interface routines 63
Interface routines for XBraid_Adjoint 82
XBraid status structures 87
XBraid status routines 88
Inherited XBraid status routines 102
XBraid status macros 114
XBraid test routines 115

12 Data Structure Index

12.1 Data Structures

Here are the data structures with brief descriptions:

_braid_Action 123
_braid_CommHandle 125
_braid_Core 127
_braid_Grid 143
_braid_Status 146
_braid_Tape 147
braid_AccessStatus 148
braid_BaseVector 148
braid_BufferStatus 149
braid_CoarsenRefStatus 150
braid_ObjectiveStatus 150
braid_Optim 151
braid_StepStatus 153
braid_SyncStatus 154
braid_VectorBar 154

Generated by Doxygen

52

CONTENTS

13

13.1

File Index

File List

Here is a list of all files with brief descriptions:

_braid.h
Define headers for XBraid internal (developer) routines and XBraid internal structure declarations 155

adjoint.h

Define internal XBraid headers for the adjoint feature

base.h

Define XBraid internal headers for wrapper routines of user-defined functions

braid.h

Define headers for user-interface routines

braid_defs.h

Definitions of braid types, error flags, etc..

braid_status.h
Define headers for the user-interface with the XBraid status structures, allowing the user to get/set

status structure values

braid_test.h

Define headers for XBraid user-test routines

mpistubs.h
XBraid internal headers to define fake MPI stubs. This ultimately allows the user to generate purely

serial codes without MPI

status.h
Define the XBraid internal headers for the XBraid status structure routines, and define the status

structures themselves

tape.h

Define the XBraid internal headers for the action-tape routines (linked list for AD)

util.h

Define XBraid internal headers for utility routines

14 Module Documentation
14.1 Fortran 90 interface options
Macros

#define braid_FMANGLE 1

#define braid_Fortran_SpatialCoarsen 0
#define braid_Fortran_Residual 1
#define braid_Fortran_TimeGrid 1
#define braid_Fortran_Sync 1

172

174

186

188

190

194

195

195

199

203

Generated by Doxygen

14.1 Fortran 90 interface options

53

14.1.1 Detailed Description

Allows user to manually, at compile-time, turn on Fortran 90 interface options

14.1.2 Macro Definition Documentation

14.1.2.1 braid_FMANGLE

#define braid_FMANGLE 1

Define Fortran name-mangling schema, there are four supported options, see braid_F90_iface.c

14.1.2.2 braid_Fortran_Residual

#define braid_Fortran_Residual 1

Turn on the optional user-defined residual function

14.1.2.3 braid_Fortran_SpatialCoarsen

#define braid_Fortran_SpatialCoarsen 0

Turn on the optional user-defined spatial coarsening and refinement functions

14.1.2.4 braid_Fortran_Sync

#define braid_ Fortran_Sync 1

Turn on the optional user-defined sync function

14.1.2.5 braid_Fortran_TimeGrid

#define braid_Fortran_TimeGrid 1

Turn on the optional user-defined time-grid function

Generated by Doxygen

54 CONTENTS

14.2 Error Codes

Macros

#define braid_INVALID _RNORM -1

#define braid ERROR_GENERIC 1 /x generic error */

#define braid ERROR_MEMORY 2 /x unable to allocate memory =/
#define braid_ ERROR_ARG 4 /x argument error x/

14.2.1 Detailed Description

14.2.2 Macro Definition Documentation

14.2.2.1 braid_ERROR_ARG

#define braid_ERROR_ARG 4 /% argument error */

14.2.2.2 braid_ERROR_GENERIC

#define braid_ERROR_GENERIC 1 /% generic error x/

14.2.2.3 braid ERROR_MEMORY

#define braid_ ERROR_MEMORY 2 /% unable to allocate memory */

14.2.2.4 braid_INVALID_RNORM

#define braid INVALID_RNORM -1

Value used to represent an invalid residual norm

Generated by Doxygen

14.3

User-written routines 55

14.3 User-written routines
Modules
» User-written routines for XBraid_Adjoint
Typedefs
« typedef struct _braid_App_struct x braid_App
« typedef struct _braid_Vector_struct *x braid_Vector
+ typedef braid_Int(x braid_PtFcnStep) (braid_App app, braid_Vector ustop, braid_Vector fstop, braid_Vector u,
braid_StepStatus status)
+ typedef braid_Int(x braid_PtFcnlnit) (braid_App app, braid_Real t, braid_Vector xu_ptr)
« typedef braid_Int(x braid_PtFcnClone) (braid_App app, braid_Vector u, braid_Vector *v_ptr)
* typedef braid_Int(x braid_PtFcnFree) (braid_App app, braid_Vector u)
* typedef braid_Int(x braid_PtFcnSum) (braid_App app, braid_Real alpha, braid_Vector x, braid_Real beta, braid«
_Vectory)
* typedef braid_Int(x braid_PtFcnSpatialNorm) (braid_App app, braid_Vector u, braid_Real xnorm_ptr)
« typedef braid_Int(x braid_PtFcnAccess) (braid_App app, braid_Vector u, braid_AccessStatus status)
+ typedef braid_Int(x braid_PtFcnSync) (braid_App app, braid_SyncStatus status)
* typedef braid_Int(x braid_PtFcnBufSize) (braid_App app, braid_Int xsize_ptr, braid_BufferStatus status)
* typedef braid_Int(x braid_PtFcnBufPack) (braid_App app, braid_Vector u, void xbuffer, braid_BufferStatus status)
« typedef braid_Int(* braid_PtFcnBufUnpack) (braid_App app, void *buffer, braid_Vector xu_ptr, braid_BufferStatus
status)
* typedef braid_Int(x braid_PtFcnResidual) (braid_App app, braid_Vector ustop, braid_Vector r, braid_StepStatus
status)
* typedef braid_Int(x braid_PtFcnSCoarsen) (braid_App app, braid_Vector fu, braid_Vector xcu_ptr, braid_«
CoarsenRefStatus status)
* typedef braid_Int(x braid_PtFcnSRefine) (braid_App app, braid_Vector cu, braid_Vector *fu_ptr, braid_Coarsen«
RefStatus status)
* typedef braid_Int(x braid_PtFcnSlInit) (braid_App app, braid_Real t, braid_Vector xu_ptr)
+ typedef braid_Int(x braid_PtFcnSClone) (braid_App app, braid_Vector u, braid_Vector *v_ptr)
« typedef braid_Int(x braid_PtFcnSFree) (braid_App app, braid_Vector u)
* typedef braid_Int(x braid_PtFcnTimeGrid) (braid_App app, braid_Real ta, braid_Int xilower, braid_Int xiupper)
14.3.1 Detailed Description

These are all the user-written data structures and routines. There are two data structures (braid_App and braid_Vector)
for the user to define. And, there are a variety of function interfaces (defined through function pointer declarations) that
the user must implement.

14.3.2 Typedef Documentation

Generated by Doxygen

56 CONTENTS

14321 braid_App

typedef struct _braid_App_struct* braid_App

This holds a wide variety of information and is global in that it is passed to every function. This structure holds
everything that the user will need to carry out a simulation. For a simple example, this could just hold the global MPI
communicator and a few values describing the temporal domain.

14.3.2.2 braid_PtFcnAccess

typedef braid_Int (x braid_PtFcnAccess) (braid_App app, braid_Vector u, braid_AccessStatus status)

Gives user access to XBraid and to the current vector u at time t. Most commonly, this lets the user write the vector
to screen, file, etc... The user decides what is appropriate. Note how you are told the time value t of the vector u and
other information in status. This lets you tailor the output, e.g., for only certain time values at certain XBraid iterations.
Querrying status for such information is done through braid_AccessStatusGetsx(..) routines.

The frequency of XBraid's calls to access is controlled through braid_SetAccessLevel. For instance, if access_level
is set to 3, then access is called every XBraid iteration and on every XBraid level. In this case, querrying status to
determine the current XBraid level and iteration will be useful. This scenario allows for even more detailed tracking of
the simulation.

Eventually, access will be broadened to allow the user to steer XBraid.

14.3.2.3 braid_PtFcnBufPack

typedef braid_Int (¥ braid_PtFcnBufPack) (braid App app, braid_Vector u, void xbuffer, braid +«
BufferStatus status)

This allows XBraid to send messages containing braid_Vectors. This routine packs a vector uinto a void x buffer for MPI.

The status structure holds information regarding the message. This is accessed through the braid_BufferStatusGetsx(..)
routines. Optionally, the user can set the message size through the status structure.

14.3.2.4 braid_PtFcnBufSize

typedef braid_Int (x braid_PtFcnBufSize) (braid_App app, braid_Int *xsize_ptr, braid_BufferStatus

status)

This routine tells XBraid message sizes by computing an upper bound in bytes for an arbitrary braid_Vector. This size
must be an upper bound for what BufPack and BufUnPack will assume.

14.3.2.5 braid_PtFcnBufUnpack

typedef braid_Int (*x braid_PtFcnBufUnpack) (braid_App app, void xbuffer, braid_Vector *u_ptr, braid«
_BufferStatus status)

This allows XBraid to receive messages containing braid_Vectors. This routine unpacks a void x buffer from MPI into a
braid_Vector. The status structure, contains information conveying the type of message inside the buffer. This can be
accessed through the braid_BufferStatusGetxx(..) routines.

Generated by Doxygen

14.3 User-written routines 57

14.3.2.6 braid_PtFcnClone

typedef braid_Int (x braid_PtFcnClone) (braid_ App app, braid_Vector u, braid_Vector *xv_ptr)

Clone uinto v_ptr

14.3.2.7 braid_PtFcnFree

typedef braid_Int (x braid_PtFcnFree) (braid_App app, braid_Vector u)

Free and deallocate u

14.3.2.8 braid_PtFcninit

typedef braid_Int (x braid_PtFcnInit) (braid_App app, braid_Real t, braid_Vector #*u_ptr)

Initializes a vector u_ptr at time ¢

14.3.2.9 braid_PtFcnResidual

typedef braid_Int (x braid_PtFcnResidual) (braid_App app, braid_Vector ustop, braid_Vector r, braid«+
_StepStatus status)

This function (optional) computes the residual r at time tstop. On input, r holds the value of u at tstart, and ustop is the
value of u at tstop. If used, set with braid_SetResidual.

Query the status structure with braid StepStatusGetTstart(status, &tstart) and braid_StepStatusGetTstop(status,
&tstop) to get tstart and tstop.

14.3.2.10 braid_PtFcnSClone

typedef braid_Int (x braid_PtFcnSClone) (braid_App app, braid_Vector u, braid_Vector *xv_ptr)

Shell clone (optional)

14.3.2.11 braid_PtFcnSCoarsen

typedef braid_Int (* braid_PtFcnSCoarsen) (braid_App app, braid Vector fu, braid Vector xcu_ptr,

braid_CoarsenRefStatus status)

Spatial coarsening (optional). Allows the user to coarsen when going from a fine time grid to a coarse time grid. This
function is called on every vector at each level, thus you can coarsen the entire space time domain. The action of this
function should match the braid_PtFcnSRefine function.

The user should query the status structure at run time with braid_CoarsenRefGetxx() calls in order to determine how
to coarsen. For instance, status tells you what the current time value is, and what the time step sizes on the fine and
coarse levels are.

Generated by Doxygen

58 CONTENTS

14.3.2.12 braid_PtFcnSFree

typedef braid_Int (x braid_PtFcnSFree) (braid_App app, braid_Vector u)

Free the data of u, keep its shell (optional)

14.3.2.13 braid_PtFcnSInit

typedef braid_Int (*x braid_PtFcnSInit) (braid App app, braid_Real t, braid Vector #*u_ptr)

Shell initialization (optional)

14.3.2.14 braid_PtFcnSpatialNorm

typedef braid_Int (x braid_PtFcnSpatialNorm) (braid_ App app, braid_Vector u, braid_Real *norm_ptr)

Carry out a spatial norm by taking the norm of a braid_Vector norm_ptr = || u || A common choice is the standard
Eucliden norm, but many other choices are possible, such as an L2-norm based on a finite element space. See braid«
_SetTemporalNorm for information on how the spatial norm is combined over time for a global space-time residual norm.
This global norm then controls halting.

14.3.2.15 braid_PtFcnSRefine

typedef braid_Int (x braid_PtFcnSRefine) (braid_App app, braid_Vector cu, braid_Vector xfu_ptr,

braid_CoarsenRefStatus status)

Spatial refinement (optional). Allows the user to refine when going from a coarse time grid to a fine time grid. This
function is called on every vector at each level, thus you can refine the entire space time domain. The action of this
function should match the braid_PtFcnSCoarsen function.

The user should query the status structure at run time with braid_CoarsenRefGet«x() calls in order to determine how
to coarsen. For instance, status tells you what the current time value is, and what the time step sizes on the fine and
coarse levels are.

14.3.2.16 braid_PtFcnStep

typedef braid_Int (x braid_PtFcnStep) (braid_App app, braid_Vector ustop, braid_Vector fstop, braid«+
_Vector u, braid_StepStatus status)

Defines the central time stepping function that the user must write.

The user must advance the vector u from time tstartto tstop. The time step is taken assuming the right-hand-side vector
fstop at time tstop. The vector ustop may be the same vector as u (in the case where not all unknowns are stored). The
vector fstop is set to NULL to indicate a zero right-hand-side.

Query the status structure with braid StepStatusGetTstart(status, &tstart) and braid_StepStatusGetTstop(status,
&tstop) to get tstart and tstop. The status structure also allows for steering. For example, braid_StepStatusSetR«—
Factor(...) allows for setting a refinement factor, which tells XBraid to refine this time interval.

Generated by Doxygen

14.3 User-written routines 59

14.3.2.17 braid_PtFcnSum

typedef braid_Int (x braid_PtFcnSum) (braid_App app, braid_Real alpha, braid_Vector x, braid_Real
beta, braid_Vector y)

AXPY, alpha x + betay —> y

14.3.2.18 braid_PtFcnSync

typedef braid_Int (x braid_PtFcnSync) (braid_App app, braid_SyncStatus status)
Gives user access to XBraid and to the user's app at various points (primarily once per iteration inside FRefine and

outside in the main cycle loop). This function is called once per-processor (not for every state vector stored on the
processor, like access).

14.3.2.19 braid_PtFcnTimeGrid

typedef braid_Int (x braid_PtFcnTimeGrid) (braid_App app, braid_Real x*ta, braid_Int xilower, braid«

_Int *iupper)

Set time values for temporal grid on level 0 (time slice per processor)

14.3.2.20 braid_Vector

typedef struct _braid_Vector_struct*x braid_Vector

This defines (roughly) a state vector at a certain time value. It could also contain any other information related to this
vector which is needed to evolve the vector to the next time value, like mesh information.

Generated by Doxygen

60 CONTENTS

14.4 User-written routines for XBraid_Adjoint

Typedefs

* typedef braid_Int(x braid_PtFcnObjectiveT) (braid_App app, braid_Vector u, braid ObjectiveStatus ostatus,
braid_Real xobjectiveT_ptr)

« typedef braid_Int(x braid_PtFcnObijectiveTDiff) (braid_App app, braid_Vector u, braid_Vector u_bar, braid_Real
F_bar, braid_ObjectiveStatus ostatus)

* typedef braid Int(x braid_PtFcnPostprocessObjective) (braid_App app, braid_Real sum_obj, braid_Real
xpostprocess_ptr)

« typedef braid_Int(x braid_PtFcnPostprocessObjective_diff) (braid_App app, braid_Real sum_obj, braid_Real *F+«
_bar_ptr)

* typedef braid_Int(x braid_PtFcnStepDiff) (braid_App app, braid_Vector ustop, braid Vector u, braid_Vector
ustop_bar, braid_Vector u_bar, braid_StepStatus status)

« typedef braid_Int(x braid_PtFcnResetGradient) (braid_App app)

14.4.1 Detailed Description

These are all the user-written routines needed to use XBraid_Adjoint. There are no new user-written data structures
here. But, the braid_App structure will typically be used to store some things like optimization parameters and gradients.

14.4.2 Typedef Documentation

14.4.2.1 braid_PtFcnObjectiveT

typedef braid_Int (*x braid_PtFcnObjectiveT) (braid_App app, braid_Vector u, braid ObjectiveStatus

ostatus, braid Real xobjectiveT_ptr)

This routine evaluates the time-dependent part of the objective function, at a current time ¢, i.e. the integrand. Query the
braid_ObjectiveStatus structure for information about the current time and status of XBraid_Adjoint.

14.4.2.2 braid_PtFcnObjectiveTDiff

typedef braid_Int (x braid_PtFcnObjectiveTDiff) (braid_App app, braid_Vector u, braid_Vector u_bar,
braid_Real F_bar, braid_ObjectiveStatus ostatus)

This is the differentiated version of the braid_PtFcnObjectiveT routine. It provides the derivatives of ObjectiveT() multi-
plied by the scalar input F_bar.

First output: the derivative with respect to the state vector must be returned to XBraid_Adjoint in u_bar.

Second output: The derivative with respect to the design must update the gradient, which is stored in the braid_App.

Generated by Doxygen

14.4 User-written routines for XBraid_Adjoint 61

14.4.2.3 braid_PtFcnPostprocessObjective

typedef braid_Int (x braid_PtFcnPostprocessObjective) (braid_App app, braid_Real sum_obj, braid_<-

Real *postprocess_ptr)
(Optional) This function can be used to postprocess the time-integral objective function. For example, when inverse
design problems are considered, you can use a tracking-type objective function by substracting a target value from

postprocess_ptr, and squaring the result. Relaxation or penalty terms can also be added to postprocess ptr. For a
description of the postprocessing routine, see the Section Objective function evaluation .

14.4.2.4 braid_PtFcnPostprocessObjective_diff

typedef braid_Int (*x braid_PtFcnPostprocessObjective_diff) (braid_App app, braid_Real sum_obj,
braid_Real *F_bar_ptr)

(Optional) Differentiated version of the Postprocessing routine.

First output: Return the partial derivative of the braid_PtFcnPostprocessObjective routine with respect to the time-
integral objective function, and placing the result in the scalar value F_bar_ptr

Second output: Update the gradient with the partial derivative with respect to the design. Gradients are usually stored
in braid_App .

For a description of the postprocessing routine, see the Section Objective function evaluation .

14.4.2.5 braid_PtFcnResetGradient

typedef braid_Int (* braid_PtFcnResetGradient) (braid_App app)

Set the gradient to zero, which is usually stored in braid_App .

14.4.2.6 braid_PtFcnStepDiff

typedef braid_Int (¥ braid_PtFcnStepDiff) (braid_App app, braid Vector ustop, braid Vector u, braid<«

_Vector ustop_bar, braid Vector u_bar, braid_StepStatus status)

This is the differentiated version of the time-stepping routine. It provides the transposed derivatives of Step() multiplied
by the adjoint input vector u_bar (or ustop_bar).

First output: the derivative with respect to the state u updates the adjoint vector u_bar (or ustop_bar).

Second output: The derivative with respect to the design must update the gradient, which is stored in braid_App .

Generated by Doxygen

62 CONTENTS

14,5 User interface routines

Modules

» General Interface routines

« Interface routines for XBraid_Adjoint
» XBraid status structures

» XBraid status routines

* Inherited XBraid status routines

» XBraid status macros

14.5.1 Detailed Description

These are all the user interface routines.

Generated by Doxygen

14.6 General Interface routines 63

14.6 General Interface routines

Macros

* #define braid_RAND_MAX 32768

Typedefs

« typedef struct _braid_Core_struct * braid_Core

Functions

* braid_Int braid_Init (MPI_Comm comm_world, MPI_Comm comm, braid_Real tstart, braid_Real tstop, braid_«
Int ntime, braid_App app, braid_PtFcnStep step, braid_PtFcnlnit init, braid_PtFcnClone clone, braid_PtFcnFree
free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnAccess access, braid_PtFcnBuf«—
Size bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack, braid_Core xcore_ptr)

* braid_Int braid_Drive (braid_Core core)

* braid_Int braid_Destroy (braid_Core core)

* braid_Int braid_PrintStats (braid_Core core)

* braid_Int braid_WriteConvHistory (braid_Core core, const char xfilename)

* braid_Int braid_SetMaxLevels (braid_Core core, braid_Int max_levels)

* braid_Int braid_SetincrMaxLevels (braid_Core core)

* braid_Int braid_SetSkip (braid_Core core, braid_Int skip)

* braid_Int braid_SetRefine (braid_Core core, braid_Int refine)

* braid_Int braid_SetMaxRefinements (braid_Core core, braid_Int max_refinements)

* braid_Int braid_SetTPointsCutoff (braid_Core core, braid_Int tpoints_cutoff)

* braid_Int braid_SetMinCoarse (braid_Core core, braid_Int min_coarse)

* braid_Int braid_SetAbsTol (braid_Core core, braid_Real atol)

* braid_Int braid_SetRelTol (braid_Core core, braid_Real rtol)

* braid_Int braid_SetNRelax (braid_Core core, braid_Int level, braid_Int nrelax)

* braid_Int braid_SetCRelaxWt (braid_Core core, braid_Int level, braid_Real Cwt)

* braid_Int braid_SetCFactor (braid_Core core, braid_Int level, braid_Int cfactor)

* braid_Int braid_SetMaxlter (braid_Core core, braid_Int max_iter)

* braid_Int braid_SetFMG (braid_Core core)

* braid_Int braid_SetNFMG (braid_Core core, braid_Int k)

* braid_Int braid_SetNFMGVcyc (braid_Core core, braid_Int nfmg_Vcyc)

* braid_Int braid_SetStorage (braid_Core core, braid_Int storage)

* braid_Int braid_SetTemporalNorm (braid_Core core, braid_Int tnorm)

* braid_Int braid_SetResidual (braid_Core core, braid_PtFcnResidual residual)

* braid_Int braid_SetFullRNormRes (braid_Core core, braid_PtFcnResidual residual)

* braid_Int braid_SetTimeGrid (braid_Core core, braid_PtFcnTimeGrid tgrid)

« braid_Int braid_SetPeriodic (braid_Core core, braid_Int periodic)

* braid_Int braid_SetSpatialCoarsen (braid_Core core, braid_PtFcnSCoarsen scoarsen)

* braid_Int braid_SetSpatialRefine (braid_Core core, braid_PtFcnSRefine srefine)

* braid_Int braid_SetSync (braid_Core core, braid_PtFcnSync sync)

* braid_Int braid_SetPrintLevel (braid_Core core, braid_Int print_level)

* braid_Int braid_SetFilelOLevel (braid_Core core, braid_Int io_level)

+ braid_Int braid_SetPrintFile (braid_Core core, const char xprintfile_name)

« braid_Int braid_SetDefaultPrintFile (braid_Core core)

Generated by Doxygen

64

CONTENTS

14.6.1

braid_Int braid_SetAccessLevel (braid_Core core, braid_Int access_level)

braid_Int braid_SplitCommworld (const MPI_Comm xcomm_world, braid_Int px, MPI_Comm xcomm_x, MPI_«
Comm xcomm_t)

braid_Int braid_SetShell (braid_Core core, braid_PtFcnSinit sinit, braid_PtFcnSClone sclone, braid_PtFcnSFree
sfree)

braid_Int braid_GetNumlter (braid_Core core, braid_Int xniter_ptr)

braid_Int braid_GetRNorms (braid_Core core, braid_Int xnrequest_ptr, braid_Real *xrnorms)

braid_Int braid_GetNLevels (braid_Core core, braid_Int xnlevels_ptr)

braid_Int braid_GetSpatialAccuracy (braid_StepStatus status, braid_Real loose_tol, braid_Real tight_tol, braid«

_Real xtol_ptr)

braid_Int braid_SetSeqSoln (braid_Core core, braid_Int seq_soln)
braid_Int braid_GetMyID (braid_Core core, braid_Int xmyid_ptr)
braid_Int braid_Rand (void)

Detailed Description

These are general interface routines, e.g., routines to initialize and run a XBraid solver, or to split a communicator into
spatial and temporal components.

14.6.2 Macro Definition Documentation

14.6.2.1 braid_RAND_MAX

#define braid_RAND_MAX 32768

Machine independent pseudo-random number generator is defined in Braid.c

14.6.3 Typedef Documentation

14.6.3.1 braid_Core

typedef struct _braid_Core_struct* braid_Core

points to the core structure defined in _braid.h

14.6.4 Function Documentation

14.6.4.1 braid_Destroy()

braid_Int braid_Destroy (

braid_Core core)

Clean up and destroy core.

Generated by Doxygen

14.6 General Interface routines

65

Parameters

‘ core ‘ braid_Core (_braid_Core) struct ‘

14.6.4.2 braid_Drive()

braid_Int braid_Drive (

braid_Core core)
Carry out a simulation with XBraid. Integrate in time.

Parameters

‘ core ‘ braid_Core (_braid_Core) struct ‘

14643 braid_GetMylD()

braid_Int braid_GetMyID (
braid_Core core,
braid_Int * myid _ptr)

Get the processor's rank.

Parameters

core braid_Core (_braid_Core) struct

myid_ptr | output: rank of the processor.

14.6.4.4 braid_GetNLevels()

braid_Int braid_GetNLevels (
braid_Core core,

braid_Int * nlevels ptr)

After Drive() finishes, this returns the number of XBraid levels

Parameters

core braid_Core (_braid_Core) struct

nlevels_ptr | output, holds the number of XBraid levels

Generated by Doxygen

66 CONTENTS

14.6.4.5 braid_GetNumlter()

braid_Int braid_GetNumIter (
braid_Core core,

braid_Int * niter ptr)

After Drive() finishes, this returns the number of iterations taken.

Parameters

core braid_Core (_braid_Core) struct

niter_ptr | output, holds number of iterations taken

14.6.4.6 braid_GetRNorms()

braid_Int braid_GetRNorms (
braid_Core core,
braid_Int * nrequest_ptr,

braid_Real * rnorms)

After Drive() finishes, this returns XBraid residual history. If nrequest_ptris negative, return the last nrequest_ptrresidual
norms. If positive, return the first nrequest_ptr residual norms. Upon exit, nrequest_ptr holds the number of residuals
actually returned.

Parameters

core braid_Core (_braid_Core) struct
nrequest _ptr | input/output, input: num requested resid norms, output: num actually returned

rnorms output, holds residual norm history array

14.6.4.7 braid_GetSpatialAccuracy()

braid_Int braid_GetSpatialAccuracy (
braid_StepStatus status,
braid_Real loose_tol,
braid_Real tight_tol,
braid_Real * tol_ptr)

Example function to compute a tapered stopping tolerance for implicit time stepping routines, i.e., a tolerance tol_ptr for
the spatial solves. This tapering only occurs on the fine grid.

This rule must be followed. The same tolerance must be returned over all processors, for a given XBraid and XBraid
level. Different levels may have different tolerances and the same level may vary its tolerance from iteration to iteration,
but for the same iteration and level, the tolerance must be constant.

Generated by Doxygen

14.6 General Interface routines

This additional rule must be followed. The fine grid tolerance is never reduced (this is important for convergence)

On the fine level,the spatial stopping tolerance tol_ptris interpolated from loose_tolto tight tol based on the relationship
between rnorm / rnorm0 and tol. Remember when rnorm / rnorm0 < tol, XBraid halts. Thus, this function lets us have
a loose stopping tolerance while the Braid residual is still relatively large, and then we transition to a tight stopping

tolerance as the Braid residual is reduced.

If the user has not defined a residual function, tight_tol is always returned.

The loose_tol is always used on coarse grids, excepting the above mentioned residual computations.

This function will normally be called from the user's step routine.

This function is also meant as a guide for users to develop their own routine.

Parameters
status Current XBraid step status
loose_tol | Loosest allowed spatial solve stopping tol on fine grid
tight tol | Tightest allowed spatial solve stopping tol on fine grid
tol_ptr output, holds the computed spatial solve stopping tol

14.6.4.8 braid_Init()

braid_Int braid_Init (

MPI_Comm comm_world,

MPI_Comm comm,

braid_Real tstart,

braid_Real tstop,

braid_Int ntime,

braid_App app,

braid_PtFcnStep step,
braid_PtFcnInit init,
braid_PtFcnClone clone,
braid_PtFcnFree free,
braid_PtFcnSum sum,
braid_PtFcnSpatialNorm spatialnorm,
braid_PtFcnAccess access,
braid_PtFcnBufSize bufsize,
braid_PtFcnBufPack bufpack,
braid_PtFcnBufUnpack bufunpack,

braid_Core * core_ptr)

Create a core object with the required initial data.

This core is used by XBraid for internal data structures. The output is

braid_Core structure.

Generated by Doxygen

core_ptr which points to the newly created

68

CONTENTS

Parameters
comm_world | Global communicator for space and time
comm Communicator for temporal dimension
tstart start time
tstop End time
ntime Initial number of temporal grid values
app User-defined _braid_App structure
step User time stepping routine to advance a braid_Vector forward one step
init Initialize a braid_Vector on the finest temporal grid
clone Clone a braid_Vector
free Free a braid_Vector
sum Compute vector sum of two braid_Vectors
spatialnorm | Compute norm of a braid_Vector, this is a norm only over space
access Allows access to XBraid and current braid_Vector
bufsize Computes size for MPI buffer for one braid_Vector
bufpack Packs MPI buffer to contain one braid_Vector
bufunpack Unpacks MPI buffer into a braid_Vector
core_ptr Pointer to braid_Core (_braid_Core) struct

14.6.4.9 braid_PrintStats()

braid_Int braid_PrintStats (

braid_Core core)

Print statistics after a XBraid run.

Parameters

‘ core ‘ braid_Core (_braid_Core) struct ‘

14.6.410 braid_Rand()

braid_Int braid_Rand (

void)

Define a machine independent random number generator

14.6.4.11 braid_SetAbsTol()

braid_Int braid_SetAbsTol (
braid_Core core,

braid_Real atol)

Generated by Doxygen

14.6 General Interface routines

69

Set absolute stopping tolerance.

Recommended option over relative tolerance

Generated by Doxygen

70 CONTENTS

Parameters

core | braid_Core (_braid_Core) struct
atol | absolute stopping tolerance

14.6.4.12 braid_SetAccessLevel()

braid_Int braid_SetAccessLevel (
braid_Core core,

braid_Int access_level)

Set access level for XBraid. This controls how often the user's access routine is called.

 Level 0: Never call the user's access routine
» Level 1: Only call the user's access routine after XBraid is finished

 Level 2: Call the user's access routine every iteration and on every level. This is during _braid_FRestrict, during
the down-cycle part of a XBraid iteration.

Default is level 1.

Parameters

core braid_Core (_braid_Core) struct

access_level | desired access_level

14.6.4.13 braid_SetCFactor()

braid_Int braid_SetCFactor (
braid_Core core,
braid_Int level,

braid_Int cfactor)

Set the coarsening factor cfactor on grid level (level 0 is the finest grid). The default factor is 2 on all levels. To change
the default factor, use level = -1.

Parameters

core braid_Core (_braid_Core) struct
level level to set coarsening factor on

cfactor | desired coarsening factor

Generated by Doxygen

14.6 General Interface routines 71

14.6.4.14 braid_SetCRelaxWt()

braid_Int braid_SetCRelaxWt (
braid_Core core,
braid_Int level,
braid_Real Cwt)

Set the C-relaxation weight on grid level (level 0 is the finest grid). The default is 1.0 on all levels. To change the default
factor, use level x = -1.

Parameters

core | braid_Core (_braid_Core) struct

level | levelto set Cwton
Cwt | C-relaxation weight to use on level

14.6.4.15 braid_SetDefaultPrintFile()

braid_Int braid_SetDefaultPrintFile (

braid_Core core)

Use default filename, braid_runtime.out for runtime print messages. This function is particularly useful for Fortran codes,
where passing filename strings between C and Fortran is troublesome. Level of printing is controlled by braid_Set«-
PrintLevel.

Parameters

‘ core ‘ braid_Core (_braid_Core) struct ‘

14.6.4.16 braid_SetFilelOLevel()

braid_Int braid_SetFileIOLevel (
braid_Core core,

braid_Int io_level)

Set output level for XBraid. This controls how much information is saved to files .

 Level 0: no output

» Level 1: save the cycle in braid.out.cycle

Default is level 1.

Generated by Doxygen

72

CONTENTS

Parameters

core braid_Core (_braid_Core) struct

io_level | desired output-to-file level

14.6.4.17 braid_SetFMG()

braid_Int braid_SetFMG (

braid_Core core)

Once called, XBraid will use FMG (i.e., F-cycles.

Parameters

‘ core ‘ braid_Core (_braid_Core) struct ‘

14.6.4.18 Dbraid_SetFullRNormRes()

braid_Int braid_SetFullRNormRes (
braid_Core core,

braid_PtFcnResidual residual)

Set user-defined residual routine for computing full residual norm (all C/F points).

Parameters

core braid_Core (_braid_Core) struct

residual | function pointer to residual routine

14.6.4.19 braid_SetincrMaxLevels()

braid_Int braid_SetIncrMaxLevels (

braid_Core core)

Increase the max number of multigrid levels after performing a refinement.

14.6.4.20 braid_SetMaxIter()

braid_Int braid_SetMaxIter (
braid_Core core,

braid_Int max_iter)

Set max number of multigrid iterations.

Generated by Doxygen

14.6 General Interface routines

73

Parameters

core braid_Core (_braid_Core) struct

max_iter | maximum iterations to allow

14.6.4.21 braid_SetMaxLevels()

braid_Int braid_SetMaxLevels (
braid_Core core,

braid_Int max levels)

Set max number of multigrid levels.

Parameters

core braid_Core (_braid_Core) struct

max_levels | maximum levels to allow

14.6.4.22 braid_SetMaxRefinements()

braid_Int braid_SetMaxRefinements (
braid_Core core,

braid_Int max_refinements)

Set the max number of time grid refinement levels allowed.

Parameters

core braid_Core (_braid_Core) struct

max_refinements | maximum refinement levels allowed

14.6.4.23 braid_SetMinCoarse()

braid_Int braid_SetMinCoarse (
braid_Core core,

braid_Int min_coarse)

Set minimum allowed coarse grid size. XBraid stops coarsening whenever creating the next coarser grid will result in a

grid smaller than min_coarse. The maximum possible coarse grid size will be min_coarsesxcoarsening_factor.

Generated by Doxygen

74 CONTENTS

Parameters

core braid_Core (_braid_Core) struct

min_coarse | minimum coarse grid size

14.6.4.24 braid_SetNFMG()

braid_Int braid_SetNFMG (
braid_Core core,
braid_Int k)

Once called, XBraid will use FMG (i.e., F-cycles.

Parameters

core | braid_Core (_braid_Core) struct

k number of initial F-cycles to do before switching to V-cycles

14.6.4.25 braid_SetNFMGVcyc()

braid_Int braid_SetNFMGVcyc (
braid_Core core,

braid_Int nfmg_Vcyc)

Set number of V-cycles to use at each FMG level (standard is 1)

Parameters

core braid_Core (_braid_Core) struct

nfmg_Vcyc | number of V-cycles to do each FMG level

14.6.4.26 braid_SetNRelax()

braid_Int braid_SetNRelax (
braid_Core core,
braid_Int level,

braid_Int nrelax)

Set the number of relaxation sweeps nrelax on grid level (level 0 is the finest grid). The default is 1 on all levels. To
change the default factor, use level = -1. One sweep is a CF relaxation sweep.

Generated by Doxygen

14.6 General Interface routines 75

Parameters

core braid_Core (_braid_Core) struct
level level to set nrelax on
nrelax | number of relaxations to do on level

14.6.4.27 braid_SetPeriodic()

braid_Int braid_SetPeriodic (
braid_Core core,

braid_Int periodic)

Set periodic time grid. The periodicity on each grid level is given by the number of points on each level. Requirements:
The number of points on the finest grid level must be evenly divisible by the product of the coarsening factors between
each grid level. Currently, the coarsening factors must be the same on all grid levels. Also, braid_SetSeqSoln must not
be used.

Parameters

core braid_Core (_braid_Core) struct
periodic | boolean to specify if periodic

14.6.4.28 braid_SetPrintFile()

braid_Int braid_SetPrintFile (
braid_Core core,

const char * printfile name)

Set output file for runtime print messages. Level of printing is controlled by braid_SetPrintLevel. Default is stdout.

Parameters

core braid_Core (_braid_Core) struct

printfile_name | output file for XBraid runtime output

14.6.4.29 braid_SetPrintLevel()

braid_Int braid_SetPrintLevel (
braid_Core core,

braid_Int print_level)

Set print level for XBraid. This controls how much information is printed to the XBraid print file (braid_SetPrintFile).

Generated by Doxygen

76

CONTENTS

* Level 0: no output
« Level 1: print runtime information like the residual history
* Level 2: level 1 output, plus post-Braid run statistics (default)

+ Level 3: level 2 output, plus debug level output.

Default is level 1.

Parameters

core braid_Core (_braid_Core) struct
print_level | desired print level

14.6.4.30 braid_SetRefine()

braid_Int braid_SetRefine (
braid_Core core,

braid_Int refine)

Turn time refinement on (refine = 1) or off (refine = 0).

Parameters

core braid_Core (_braid_Core) struct

refine | boolean, refine in time or not

14.6.4.31 braid_SetRelTol()

braid_Int braid_SetRelTol (
braid_Core core,
braid_Real rtol)

Set relative stopping tolerance, relative to the initial residual. Be careful. If your initial guess is all zero, then the initial
residual may only be nonzero over one or two time values, and this will skew the relative tolerance. Absolute tolerances

are recommended.

Parameters

core | braid_Core (_braid_Core) struct
rtol | relative stopping tolerance

Generated by Doxygen

14.6 General Interface routines 77

14.6.4.32 braid_SetResidual()

braid_Int braid_SetResidual (
braid_Core core,

braid_PtFcnResidual residual)

Set user-defined residual routine.

Parameters

core braid_Core (_braid_Core) struct

residual | function pointer to residual routine

14.6.4.33 braid_SetSeqSoln()

braid_Int braid_SetSegSoln (
braid_Core core,

braid_Int seq_soln)
Set the initial guess to XBraid as the sequential time stepping solution. This is primarily for debugging. When used with
storage=-2, the initial residual should evaluate to exactly 0. The residual can also be 0 for other storage options if the

time stepping is exact, e.g., the implicit solve in Step is done to full precision.

The value seq_solnis a Boolean

+ 0: The user's Init() function initializes the state vector (default)

+ 1: Sequential time stepping, with the user's initial condition from Init(t=0) initializes the state vector

Default is 0.

Parameters

core braid_Core (_braid_Core) struct
seq_soln | 1: Init with sequential time stepping soln, 0: Use user's Init()

14.6.4.34 braid_SetShell()

braid_Int braid_SetShell (
braid_Core core,
braid PtFcnSInit sinit,
braid_PtFcnSClone sclone,

braid_PtFcnSFree sfree)

Activate the shell vector feature, and set the various functions that are required :

Generated by Doxygen

78 CONTENTS

« sinit : create a shell vector
« sclone : clone the shell of a vector

- sfree : free the data of a vector, keeping its shell This feature should be used with storage option = -1. It allows
the used to keep metadata on all points (including F-points) without storing the all vector everywhere. With these
options, the vectors are fully stored on C-points, but only the vector shell is kept on F-points.

14.6.4.35 Dbraid_SetSkip()

braid_Int braid_SetSkip (
braid_Core core,

braid_Int skip)

Set whether to skip all work on the first down cycle (skip = 1). On by default.

Parameters

core | braid_Core (_braid_Core) struct

Skip | boolean, whether to skip all work on first down-cycle

14.6.4.36 braid_SetSpatialCoarsen()

braid_Int braid_SetSpatialCoarsen (
braid_Core core,

braid_PtFcnSCoarsen scoarsen)

Set spatial coarsening routine with user-defined routine. Default is no spatial refinment or coarsening.

Parameters

core braid_Core (_braid_Core) struct

scoarsen | function pointer to spatial coarsening routine

14.6.4.37 braid_SetSpatialRefine()

braid_Int braid_SetSpatialRefine (
braid_Core core,

braid_PtFcnSRefine srefine)

Set spatial refinement routine with user-defined routine. Default is no spatial refinment or coarsening.

Generated by Doxygen

14.6 General Interface routines 79

Parameters

core braid_Core (_braid_Core) struct

srefine | function pointer to spatial refinement routine

14.6.4.38 Dbraid_SetStorage()

braid_Int braid_SetStorage (
braid_Core core,

braid_Int storage)

Sets the storage properties of the code. -1 : Default, store only C-points 0 : Full storage of C- and F-Points on all levels
x > 0 : Full storage on all levels >= x

Parameters

core braid_Core (_braid_Core) struct
storage | storage property

14.6.4.39 braid_SetSync()

braid_Int braid_SetSync (
braid_Core core,

braid_PtFcnSync sync)

Set sync routine with user-defined routine. Sync gives user access to XBraid and the user's app at various points
(primarily once per iteration inside FRefine and outside in the main cycle loop). This function is called once per-
processor (instead of for every state vector on the processor, like access). The use case is to allow the user to update
their app once-per iteration based on information from XBraid, for example to maintain the space-time grid when doing
time-space adaptivity. Default is no sync routine.

Parameters

core | braid_Core (_braid_Core) struct

sync | function pointer to sync routine

14.6.4.40 braid_SetTemporalNorm()

braid_Int braid_SetTemporalNorm (
braid_Core core,

braid_Int tnorm)

Generated by Doxygen

80 CONTENTS

Sets XBraid temporal norm.

This option determines how to obtain a global space-time residual norm. That is, this decides how to combine the spatial
norms returned by braid PtFcnSpatialNorm at each time step to obtain a global norm over space and time. It is this
global norm that then controls halting.

There are three options for setting tnorm. See section Halting tolerance for a more detailed discussion (in Introduction.«
md).

* tnorm=1: One-norm summation of spatial norms
 tnorm=2: Two-norm summation of spatial norms

 tnorm=3: Infinity-norm combination of spatial norms

The default choice is thorm=2

Parameters

core braid_Core (_braid_Core) struct

tnorm | choice of temporal norm

14.6.4.41 Dbraid_SetTimeGrid()

braid_Int braid_SetTimeGrid (
braid_Core core,
braid_PtFcnTimeGrid tgrid)

Set user-defined time points on finest grid

Parameters

core | braid_Core (_braid_Core) struct

tgrid | function pointer to time grid routine

14.6.4.42 Dbraid_SetTPointsCutoff()

braid_Int braid_SetTPointsCutoff (
braid_Core core,

braid_Int tpoints_cutoff)

Set the number of time steps, beyond which refinements stop. If num(tpoints) > tpoints_cutoff, then stop doing refine-
ments.

Generated by Doxygen

14.6 General Interface routines 81

Parameters

core braid_Core (_braid_Core) struct
tpoints_cutoff | cutoff for stopping refinements

14.6.4.43 braid_SplitCommworld()

braid_Int braid_SplitCommworld (
const MPI_Comm * comm_world,
braid_Int px,
MPI_Comm * comm_Xx,

MPI_Comm *x comm_t)

Split MPI commworld into comm_x and comm _t, the spatial and temporal communicators. The total number of proces-
sors will equal PxxPt, there Px is the number of procs in space, and Pt is the number of procs in time.

Parameters
comm_world | Global communicator to split
px Number of processors parallelizing space for a single time step
comm_x Spatial communicator (written as output)
comm_t Temporal communicator (written as output)

14.6.4.44 braid_WriteConvHistory()

braid_Int braid_WriteConvHistory (
braid_Core core,

const char x filename)

After Drive() finishes, this function can be called to write out the convergence history (residuals for each iteration) to a
file

Parameters

core braid_Core (_braid_Core) struct

filename | Output file name

Generated by Doxygen

82

CONTENTS

14.7

Interface routines for XBraid_Adjoint

Functions

14.7.1

braid_Int braid_InitAdjoint (braid_PtFcnObjectiveT objectiveT, braid_PtFcnObjective TDiff objectiveT_diff, braid«
_PtFenStepDiff step_diff, braid_PtFcnResetGradient reset_gradient, braid_Core xcore_ptr)

braid_Int braid_SetTStartObjective (braid_Core core, braid_Real tstart_obj)

braid_Int braid_SetTStopObjective (braid_Core core, braid_Real tstop_obj)

braid_Int braid_SetPostprocessObijective (braid_Core core, braid_PtFcnPostprocessObjective post_fcn)
braid_Int braid_SetPostprocessObjective_diff (braid_Core core, braid_PtFcnPostprocessObjective_diff post
fcn_diff)

braid_Int braid_SetAbsTolAdjoint (braid_Core core, braid_Real tol_adj)

braid_Int braid_SetRelTolAdjoint (braid_Core core, braid_Real rtol_adj)

braid_Int braid_SetObjectiveOnly (braid_Core core, braid_Int boolean)

braid_Int braid_GetObjective (braid_Core core, braid_Real xobjective_ptr)

braid_Int braid_GetRNormAdjoint (braid_Core core, braid_Real *xrnorm_adj)

braid_Int braid_SetRichardsonEstimation (braid_Core core, braid_Int est_error, braid_Int richardson, braid_Int
local_order)

Detailed Description

These are interface routines for computing adjoint sensitivities, i.e., adjoint-based gradients. These routines initialize the
XBraid_Adjoint solver, and allow the user to set XBraid_Adjoint solver parameters.

14.7.2

Function Documentation

14.7.2.1 braid_GetObjective()

braid_Int braid_GetObjective (

braid_Core core,

braid_Real * objective_ptr)

After braid_Drive has finished, this returns the objective function value.

Parameters

core

braid_Core struct

objective_ptr | output: value of the objective function

14.7.2.2 braid_GetRNormAdjoint()

braid

_Int braid_GetRNormAdjoint (

Generated by Doxygen

14.7 Interface routines for XBraid_Adjoint

83

braid_Core core,

braid_Real x rnorm adj)

After braid_Drive has finished, this returns the residual norm after the last XBraid iteration.

Parameters
core braid_Core struct
rnorm_adj | output: adjoint residual norm of last iteration

14.7.2.3 braid_InitAdjoint()

braid_Int braid_InitAdjoint (

braid_PtFcnObjectiveT objectiveT,
braid_PtFcnObjectiveTDiff objectiveTl diff,
braid_PtFcnStepDiff step diff,
braid_PtFcnResetGradient reset_gradient,

braid_Core * core_ptr)

Initialize the XBraid_Adjoint solver for computing adjoint sensitivities. Once this function is called, braid_Drive will then
compute gradient information alongside the primal XBraid computations.

Parameters

objectiveT

user-routine: evaluates the time-dependent objective function value at time t

objectiveT_diff | user-routine: differentiated version of the objectiveT function

step_diff

user-routine: differentiated version of the step function

reset_gradient | user-routine: set the gradient to zero (storage location of gradient up to user)

core_ptr

pointer to braid_Core (_braid_Core) struct

14.7.2.4 braid_SetAbsTolAdjoint()

braid_Int braid_SetAbsTolAdjoint (

braid_Core core,

braid_Real tol_adj)

Set an absolute halting tolerance for the adjoint residuals. XBraid_Adjoint stops iterating when the adjoint residual is
below this value.

Parameters

core braid_Core (_braid_Core) struct

tol_adj | absolute stopping tolerance for adjoint solve

Generated by Doxygen

84 CONTENTS

14.7.2.5 braid_SetObjectiveOnly()

braid_Int braid_SetObjectiveOnly (
braid_Core core,

braid_Int boolean)

Set this option with boolean = 1, and then braid_Drive(core) will skip the gradient computation and only compute the
forward ODE solution and objective function value. Reset this option with boolean = 0 to turn the adjoint solve and
gradient computations back on.

Parameters

core braid_Core (_braid_Core) struct

boolean | set to '1' for computing objective function only, '0' for computing objective function AND gradients

14.7.2.6 braid_SetPostprocessObjective()

braid_Int braid_SetPostprocessObjective (
braid_Core core,

braid_PtFcnPostprocessObjective post_fcn)

Pass the postprocessing objective function Fto XBraid_Adjoint. For a description of F, see the Section Objective function
evaluation .

Parameters

core braid_Core (_braid_Core) struct

post_fen | function pointer to postprocessing routine

14.7.2.7 braid_SetPostprocessObjective_diff()

braid_Int braid_SetPostprocessObjective_diff (
braid_Core core,

braid_PtFcnPostprocessObjective_diff post_fcn diff)

Pass the differentiated version of the postprocessing objective function F to XBraid_Adjoint. For a description of F, see
the Section Objective function evaluation .

Parameters

core braid_Core (_braid_Core) struct

post_fen_diff | function pointer to differentiated postprocessing routine

Generated by Doxygen

14.7 Interface routines for XBraid_Adjoint 85

14.7.2.8 braid_SetRelTolAdjoint()

braid_Int braid_SetRelTolAdjoint (
braid_Core core,
braid_Real rtol_adj)

Set a relative stopping tolerance for adjoint residuals. XBraid_Adjoint will stop iterating when the relative residual drops
below this value. Be careful when using a relative stopping criterion. The initial residual may already be close to zero,
and this will skew the relative tolerance. Absolute tolerances are recommended.

Parameters

core braid_Core (_braid_Core) struct

rtol_adj | relative stopping tolerance for adjoint solve

14.7.2.9 braid_SetRichardsonEstimation()

braid_Int braid_SetRichardsonEstimation (
braid_Core core,
braid_Int est_error,
braid_Int richardson,

braid_Int local_order)

Turn on built-in Richardson-based error estimation and/or extrapolation with XBraid. When enabled, the Richardson
extrapolation (RE) option (richardson == 1) is used to improve the accuracy of the solution at the C-points on the finest
level. When the built-in error estimate option is turned on (est_error == 1), RE is used to estimate the local truncation
error at each point. These estimates can be accessed through StepStatus and AccessStatus functions.

The last parameter is local_order, which represents the LOCAL order of the time integration scheme. e.g. local_order =
2 for Backward Euler.

Also, the Richardson error estimate is only available after roughly 1 Braid iteration. The estimate is given a dummy value
of -1.0, until an actual estimate is available. Thus after an adaptive refinement, and a new hierarchy is formed, another
iteration must pass before the error estimates are available again.

Parameters

core braid_Core (_braid_Core) struct

est _error Boolean, if 1 compute Richardson-based error estimates, if 0, then do not

richardson | Boolean, if 1 carry out Richardson-based extrapolation to enhance accuracy on the fine-grid, if 0,
then do not
local_order | Local order of the time integration scheme, e.g., local _order=2 for backward Euler

Generated by Doxygen

86

CONTENTS

14.7.2.10 braid_SetTStartObjective()

braid_Int braid_SetTStartObjective (

braid_Core core,

braid_Real tstart_obj)

Set a start time for integrating the objective function over time. Default is tstart of the primal XBraid run.

Parameters
core braid_Core (_braid_Core) struct
tstart obj | time value for starting the time-integration of the objective function

14.7.2.11 braid_SetTStopObjective()

braid_Int braid_SetTStopObjective (

braid_Core core,

braid_Real tstop_obj)

Set the end-time for integrating the objective function over time. Default is tstop of the primal XBraid run

Parameters
core braid_Core (_braid_Core) struct
tstop_obj | time value for stopping the time-integration of the objective function

Generated by Doxygen

14.8 XBraid status structures

87

14.8 XBraid status structures

Define the different status types.

Generated by Doxygen

88

CONTENTS

14.9

XBraid status routines

Functions

14.9.1

braid_Int braid_StatusGetT (braid_Status status, braid_Real xt_ptr)

braid_Int braid_StatusGetTIndex (braid_Status status, braid_Int xidx_ptr)

braid_Int braid_StatusGetlter (braid_Status status, braid_Int xiter_ptr)

braid_Int braid_StatusGetLevel (braid_Status status, braid_|Int xlevel_ptr)

braid_Int braid_StatusGetNLevels (braid_Status status, braid_Int xnlevels_ptr)

braid_Int braid_StatusGetNRefine (braid_Status status, braid_Int *nrefine_ptr)

braid_Int braid_StatusGetNTPoints (braid_Status status, braid_Int xntpoints_ptr)

braid_Int braid_StatusGetResidual (braid_Status status, braid_Real xrnorm_ptr)

braid_Int braid_StatusGetDone (braid_Status status, braid_Int xdone_ptr)

braid_Int braid_StatusGetTIUL (braid_Status status, braid_Int xiloc_upper, braid_Int xiloc_lower, braid_Int level)
braid_Int braid_StatusGetTimeValues (braid_Status status, braid_Real *x*tvalues_ptr, braid_Int i_upper, braid_Int
i_lower, braid_Int level)

braid_Int braid_StatusGetTILD (braid_Status status, braid_Real xt_ptr, braid_Int xiter_ptr, braid_Int xlevel_ptr,
braid_Int xdone_ptr)

braid_Int braid_StatusGetWrapperTest (braid_Status status, braid_Int xwtest_ptr)

braid_Int braid_StatusGetCallingFunction (braid_Status status, braid_Int xcfunction_ptr)

braid_Int braid_StatusGetCTprior (braid_Status status, braid_Real *ctprior_ptr)

braid_Int braid_StatusGetCTstop (braid_Status status, braid_Real xctstop_ptr)

braid_Int braid_StatusGetFTprior (braid_Status status, braid_Real *ftprior_ptr)

braid_Int braid_StatusGetFTstop (braid_Status status, braid_Real *ftstop_ptr)

braid_Int braid_StatusGetTpriorTstop (braid_Status status, braid_Real *t_ptr, braid_Real xftprior_ptr, braid_Real
«ftstop_ptr, braid_Real xctprior_ptr, braid_Real xctstop_ptr)

braid_Int braid_StatusGetTstop (braid_Status status, braid_Real *tstop_ptr)

braid_Int braid_StatusGetTstartTstop (braid_Status status, braid_Real «xtstart_ptr, braid_Real *tstop_ptr)
braid_Int braid_StatusGetTol (braid_Status status, braid_Real xtol_ptr)

braid_Int braid_StatusGetRNorms (braid_Status status, braid_Int xnrequest_ptr, braid_Real *xrnorms_ptr)
braid_Int braid_StatusGetOldFineTolx (braid_Status status, braid_Real xold_fine_tolx_ptr)

braid_Int braid_StatusSetOldFineTolx (braid_Status status, braid_Real old_fine_tolx)

braid_Int braid_StatusSetTightFineTolx (braid_Status status, braid_Real tight_fine_tolx)

braid_Int braid_StatusSetRFactor (braid_Status status, braid_Real rfactor)

braid_Int braid_StatusSetRefinementDtValues (braid_Status status, braid_Real rfactor, braid_Real xdtarray)
braid_Int braid_StatusSetRSpace (braid_Status status, braid_Real r_space)

braid_Int braid_StatusGetMessageType (braid_Status status, braid_Int xmessagetype_ptr)

braid_Int braid_StatusSetSize (braid_Status status, braid_Real size)

braid_Int braid_StatusGetSingleErrorEstStep (braid_Status status, braid_Real xestimate)

braid_Int braid_StatusGetSingleErrorEstAccess (braid_Status status, braid_Real xestimate)

braid_Int braid_StatusGetNumErrorEst (braid_Status status, braid_Int xnpoints)

braid_Int braid_StatusGetAllErrorEst (braid_Status status, braid_Real xerror_est)

Detailed Description

XBraid status structures and associated Get/Set routines are what tell the user the status of the simulation when their
routines (step, coarsen/refine, access) are called.

Generated by Doxygen

14.9 XBraid status routines 89

14.9.2 Function Documentation

14.9.2.1 braid_StatusGetAllErrorEst()

braid_Int braid_StatusGetAllErrorEst (
braid_Status status,

braid_Real x error_est)
Get All the Richardson based error estimates, e.g. from inside Sync. Use this function in conjuction with GetNumError«—
Est(). Workflow: use GetNumErrorEst() to get the size of the needed user-array that will hold the error estimates, then

pre-allocate array, then call this function to write error estimates to the user-array, then post-process array in user-code.
This post-processing will often occur in the Sync function. See examples/ex-06.c.

The error_est array must be user-allocated.

Parameters

status structure containing current simulation info

error_est | output, user-allocated error estimate array, written by Braid, equals -1 if not available yet (e.g., before
iteration 1, or after refinement)

14.9.2.2 braid_StatusGetCallingFunction()

braid_Int braid_StatusGetCallingFunction (
braid_Status status,

braid_Int * cfunction_ptr)

Return flag indicating from which function the vector is accessed

Parameters

status structure containing current simulation info

cfunction_ptr | output, function number (O=FInterp, 1=FRestrict, 2=FRefine, 3=FAccess, 4=FRefine after
refinement, 5=Drive Top of Cycle)

14.9.2.3 braid_StatusGetCTprior()

braid_Int braid_StatusGetCTprior (
braid_Status status,

braid_Real * ctprior_ptr)

Return the coarse grid time value to the left of the current time value from the Status structure.

Generated by Doxygen

90 CONTENTS

Parameters

status structure containing current simulation info

ctprior_ptr | output, time value to the left of current time value on coarse grid

14.9.2.4 braid_StatusGetCTstop()

braid_Int braid_StatusGetCTstop (
braid_Status status,

braid_Real * ctstop_ptr)

Return the coarse grid time value to the right of the current time value from the Status structure.

Parameters

status structure containing current simulation info

ctstop_ptr | output, time value to the right of current time value on coarse grid

14.9.2.5 braid_StatusGetDone()

braid_Int braid_StatusGetDone (
braid_Status status,

braid_Int * done_ptr)
Return whether XBraid is done for the current simulation.

done_ptr = 1 indicates that XBraid has finished iterating, (either maxiter has been reached, or the tolerance has been
met).

Parameters

status structure containing current simulation info

done_ptr | output, =1 if XBraid has finished, else =0

14.9.2.6 braid_StatusGetFTprior()

braid_Int braid_StatusGetFTprior (
braid_Status status,

braid_Real * ftprior _ptr)

Return the fine grid time value to the left of the current time value from the Status structure.

Generated by Doxygen

14.9 XBraid status routines

Parameters

status structure containing current simulation info

ftprior_ptr | output, time value to the left of current time value on fine grid

14.9.2.7 braid_StatusGetFTstop()

braid_Int braid_StatusGetFTstop (
braid_Status status,

braid_Real x ftstop_ptr)

Return the fine grid time value to the right of the current time value from the Status structure.

Parameters

status structure containing current simulation info

ftstop_ptr | output, time value to the right of current time value on fine grid

14.9.2.8 braid_StatusGetlter()

braid_Int braid_StatusGetIter (
braid_Status status,

braid_Int * iter_ptr)

Return the current iteration from the Status structure.

Parameters

status | structure containing current simulation info

iter_ptr | output, current XBraid iteration number

14.9.2.9 braid_StatusGetLevel()

braid_Int braid_StatusGetLevel (
braid_Status status,

braid_Int * level_ptr)

Return the current XBraid level from the Status structure.

Generated by Doxygen

92 CONTENTS

Parameters

status structure containing current simulation info

level_ptr | output, current level in XBraid

14.9.2.10 braid_StatusGetMessageType()

braid_Int braid_StatusGetMessageType (
braid_Status status,

braid_Int * messagetype_ptr)

Return the current message type from the Status structure.

Parameters

status structure containing current simulation info

messagetype_ptr | output, type of message, 0: for Step(), 1: for load balancing

14.9.2.11 braid_StatusGetNLevels()

braid_Int braid_StatusGetNLevels (
braid_Status status,

braid_Int * nlevels ptr)

Return the total number of XBraid levels from the Status structure.

Parameters

status structure containing current simulation info

nlevels_ptr | output, number of levels in XBraid

14.9.2.12 braid_StatusGetNRefine()

braid_Int braid_StatusGetNRefine (
braid_Status status,

braid_Int * nrefine ptr)

Return the number of refinements done.

Generated by Doxygen

14.9 XBraid status routines

93

Parameters
status structure containing current simulation info
nrefine_ptr | output, number of refinements done

14.9.2.13 braid_StatusGetNTPoints()

braid_Int braid_StatusGetNTPoints (

braid_Status status,

braid_Int * ntpoints_ptr)

Return the global number of time points on the fine grid.

Parameters

status

structure containing current simulation info

nipoints_ptr

output, number of time points on the fine grid

14.9.2.14 braid_StatusGetNumErrorEst()

braid_Int braid_StatusGetNumErrorEst (

braid_Status status,

braid_Int * npoints)

Get the number of local Richardson-based error estimates stored on this processor. Use this function in conjuction with
GetAllErrorEst(). Workflow: use this function to get the size of the needed user-array that will hold the error estimates,
then pre-allocate array, then call GetAllErrorEst() to write error estimates to the user-array, then post-process array in

user-code. This post-processing will often occur in the Sync function. See examples/ex-06.c.

Parameters

status structure containing current simulation info

npoints | output, number of locally stored Richardson error estimates

14.9.2.15 braid_StatusGetOldFineTolx()

braid_Int braid_StatusGetOldFineTolx (

braid_Status status,

braid_Real * old_fine tolx _ptr)

Return the previous old_fine_tolx set through braid_StatusSetOldFineTolx This is used especially by xbraid_Get«
SpatialAccuracy

Generated by Doxygen

94 CONTENTS

Parameters

status structure containing current simulation info

old_fine_tolx_ptr | output, previous old_fine_tolx, set through braid_StepStatusSetOldFineTolx

14.9.2.16 braid_StatusGetResidual()

braid_Int braid_StatusGetResidual (
braid_Status status,

braid_Real * rnorm ptr)

Return the current residual norm from the Status structure.

Parameters

status structure containing current simulation info

rnorm_ptr | output, current residual norm

14.9.2.17 braid_StatusGetRNorms()

braid_Int braid_StatusGetRNorms (
braid_Status status,
braid_Int * nrequest_ptr,

braid_Real * rnorms_ptr)

Return the current XBraid residual history. If nrequest_ptr is negative, return the last nrequest_ptr residual norms. If
positive, return the first nrequest ptr residual norms. Upon exit, nrequest_ptr holds the number of residuals actually
returned.

Parameters

status structure containing current simulation info

nrequest _ptr | input/output, input: number of requested residual norms, output: number actually copied

rnorms_ptr output, XBraid residual norm history, of length nrequest_ptr

14.9.2.18 braid_StatusGetSingleErrorEstAccess()

braid_Int braid_StatusGetSingleErrorEstAccess (
braid_Status status,

braid_Real x estimate)

Generated by Doxygen

14.9 XBraid status routines 95

Get the Richardson based error estimate at the single time point currently accessible from Access.

Note that Access needs specific logic distinct from Step, hence please use braid_StepStatusGetSingleErrorEstStep for
the user Step() function.

Parameters

status structure containing current simulation info

estimate | output, error estimate, equals -1 if not available yet (e.g., before iteration 1, or after refinement)

14.9.2.19 braid_StatusGetSingleErrorEstStep()

braid_Int braid_StatusGetSingleErrorEstStep (
braid_Status status,

braid_Real * estimate)

Get the Richardson based error estimate at the single time point currently being "Stepped", i.e., return the current error
estimate for the time point at "tstart".

Note that Step needs specific logic distinct from Access, hence please use braid_AccessStatusGetSingleErrorEst«
Access for the user Access() function.

Parameters

status structure containing current simulation info

estimate | output, error estimate, equals -1 if not available yet (e.g., before iteration 1, or after refinement)

14.9.2.20 braid_StatusGetT()

braid_Int braid_StatusGetT (
braid_Status status,

braid_Real * t_ptr)

Return the current time from the Status structure.

Parameters

status | structure containing current simulation info

t ptr output, current time

14.9.2.21 braid_StatusGetTILD()

braid_Int braid_StatusGetTILD (

Generated by Doxygen

96 CONTENTS

braid_Status status,
braid_Real * t_ptr,
braid_Int * iter_ptr,
braid_Int * level ptr,
braid_Int * done_ptr)

Return XBraid status for the current simulation. Four values are returned.
TILD : time, iteration, level, done

These values are also available through individual Get routines. These individual routines are the location of detailed
documentation on each parameter, e.g., see braid_StatusGetDone for more information on the done value.

Parameters
status structure containing current simulation info
t ptr output, current time

iter_ptr output, current XBraid iteration number

level_ptr | output, current level in XBraid

done_ptr | output, =1 if XBraid has finished, else =0

14.9.2.22 braid_StatusGetTimeValues()

braid_Int braid_StatusGetTimeValues (
braid_Status status,
braid_Real *x tvalues_ptr,
braid_Int i_upper,
braid_Int i_lower,

braid_Int level)

Returns an array of time values corresponding to the given inputs. The inputs are the level you want the time values
from, the upper time point index you want the value of, and the lower time point index you want the time value of. The
output is then filled with all time values from the upper index to the lower index, inclusive.

The caller is responsible for allocating and managing the memory for the array. Time values are filled in so that tvalues«
_ptr[0] corresponds to the lower time index.

Parameters

status structure containing current simulation info

tvalues ptr | output, time point values for the requested range of indices

i_upper input, upper index of the desired time value range (inclusive)
i_lower input, lower index of the desired time value range (inclusive)
level input, level for the desired time values

Generated by Doxygen

14.9 XBraid status routines 97

14.9.2.23 braid_StatusGetTIndex()

braid_Int braid_StatusGetTIndex (
braid_Status status,

braid_Int * idx ptr)
Return the index value corresponding to the current time value from the Status structure.

For Step(), this corresponds to the time-index of "tstart", as this is the time-index of the input vector. That is, NOT the
time-index of "tstop". For Access, this corresponds just simply to the time-index of the input vector.

Parameters

status | structure containing current simulation info

idx_ptr | output, global index value corresponding to current time value

14.9.2.24 braid_StatusGetTIUL()

braid_Int braid_StatusGetTIUL (
braid_Status status,
braid_Int * iloc_upper,
braid_Int *x iloc_lower,

braid_Int level)

Returns upper and lower time point indices on this processor. Two values are returned. Requires the user to specify
which level they want the time point indices from.

Parameters

status structure containing current simulation info

iloc_upper | output, the upper time point index on this processor

iloc_lower | output, the lower time point index on this processor

level input, level for the desired indices

14.9.2.25 braid_StatusGetTol()

braid_Int braid_StatusGetTol (
braid_Status status,

braid_Real * tol_ptr)

Return the current XBraid stopping tolerance

Parameters

status | structure containing current simulation info

tol ptr | output, current XBraid stopping tolerance

Generated by Doxygen

98 CONTENTS

14.9.2.26 braid_StatusGetTpriorTstop()

braid_Int braid_StatusGetTpriorTstop (
braid_Status status,
braid_Real * t_ptr,
braid_Real x ftprior_ ptr,
braid_Real x ftstop_ptr,
braid_Real * ctprior_ptr,

braid_Real x ctstop_ptr)
Return XBraid status for the current simulation. Five values are returned, tstart, f_tprior, f_tstop, c_tprior, c_tstop.

These values are also available through individual Get routines. These individual routines are the location of detailed
documentation on each parameter, e.g., see braid_StatusGetCTprior for more information on the c¢_tprior value.

Parameters
status structure containing current simulation info
t ptr output, current time

ftorior_ptr | output, time value to the left of current time value on fine grid

ftstop_ptr | output, time value to the right of current time value on fine grid

ctprior_ptr | output, time value to the left of current time value on coarse grid

ctstop_ptr | output, time value to the right of current time value on coarse grid

14.9.2.27 braid_StatusGetTstartTstop()

braid_Int braid_StatusGetTstartTstop (
braid_Status status,
braid_Real x tstart_ptr,
braid_Real * tstop_ptr)

Return XBraid status for the current simulation. Two values are returned, tstart and tstop.

These values are also available through individual Get routines. These individual routines are the location of detailed
documentation on each parameter, e.g., see braid_StatusGetTstart for more information on the tstart value.

Parameters

status structure containing current simulation info

tstart_ptr | output, current time

tstop_ptr | output, next time value to evolve towards

Generated by Doxygen

14.9 XBraid status routines

99

14.9.2.28 braid_StatusGetTstop()

braid_Int braid_StatusGetTstop (
braid_Status status,

braid_Real * tstop_ptr)

Return the time value to the right of the current time value from the Status structure.

Parameters

status structure containing current simulation info

tstop_ptr | output, next time value to evolve towards

14.9.2.29 braid_StatusGetWrapperTest()

braid_Int braid_StatusGetWrapperTest (
braid_Status status,

braid_Int * wtest_ptr)

Return whether this is a wrapper test or an XBraid run

Parameters

status structure containing current simulation info

wtest ptr | output, =1 if this is a wrapper test, =0 if XBraid run

14.9.2.30 braid_StatusSetOldFineTolx()

braid_Int braid_StatusSetOldFineTolx (
braid_Status status,
braid_Real old fine tolx)

Set old_fine_tolx, available for retrieval through braid_StatusGetOldFineTolx This is used especially by xbraid_Get«

SpatialAccuracy

Parameters

status structure containing current simulation info

old_fine_tolx | input, the last used fine_tolx

Generated by Doxygen

100 CONTENTS

14.9.2.31 braid_StatusSetRefinementDtValues()

braid_Int braid_StatusSetRefinementDtValues (
braid_Status status,
braid_Real rfactor,

braid_Real * dtarray)

Set time step sizes for refining the time interval non-uniformly.

Parameters

status | structure containing current simulation info

rfactor | input, number of subintervals

diarray | input, array of dt values for non-uniform refinement

14.9.2.32 braid_StatusSetRFactor()

braid_Int braid_StatusSetRFactor (
braid_Status status,

braid_Real rfactor)

Set the rfactor, a desired refinement factor for this interval. rfactor=1 indicates no refinement, otherwise, this inteval is
subdivided rfactor times (uniform refinement).

Parameters

status | structure containing current simulation info

rfactor | input, user-determined desired rfactor

14.9.2.33 braid_StatusSetRSpace()

braid_Int braid_StatusSetRSpace (
braid_Status status,

braid_Real r_space)

Set the r_space flag. When set = 1, spatial coarsening will be called, for all local time points, following the completion
of the current iteration, provided rfactors are not set at any global time point. This allows for spatial refinment without
temporal refinment

Parameters

status structure containing current simulation info

r_space | input, if 1, call spatial refinement on finest grid after this iter

Generated by Doxygen

14.9 XBraid status routines 101

14.9.2.34 braid_StatusSetSize()

braid_Int braid_StatusSetSize (
braid_Status status,

braid_Real size)

Set the size of the buffer. If set by user, the send buffer will be "size" bytes in length. If not, BufSize is used.

Parameters

status | structure containing current simulation info

size input, size of the send buffer

14.9.2.35 braid_StatusSetTightFineTolx()

braid_Int braid_StatusSetTightFineTolx (
braid_Status status,
braid_Real tight_fine_tolx)

Set tight_fine_tolx, boolean variable indicating whether the tightest tolerance has been used for spatial solves (implicit
schemes). This value must be 1 in order for XBraid to halt (unless maxiter is reached)

Parameters

status structure containing current simulation info

tight fine_tolx | input, boolean indicating whether the tight tolx has been used

Generated by Doxygen

102

CONTENTS

14.10

Inherited XBraid status routines

Functions

braid_Int braid_AccessStatusGetT (braid_AccessStatus s, braid_Real xv1)

braid_Int braid_AccessStatusGetTIndex (braid_AccessStatus s, braid_Int xv1)

braid_Int braid_AccessStatusGetlter (braid_AccessStatus s, braid_Int xv1)

braid_Int braid_AccessStatusGetlLevel (braid_AccessStatus s, braid_Int xv1)

braid_Int braid_AccessStatusGetNLevels (braid_AccessStatus s, braid_Int xv1)

braid_Int braid_AccessStatusGetNRefine (braid_AccessStatus s, braid_Int xv1)

braid_Int braid_AccessStatusGetNTPoints (braid_AccessStatus s, braid_Int *v1)

braid_Int braid_AccessStatusGetResidual (braid_AccessStatus s, braid_Real xv1)

braid_Int braid_AccessStatusGetDone (braid_AccessStatus s, braid_Int xv1)

braid_Int braid_AccessStatusGetTILD (braid_AccessStatus s, braid_Real *v1, braid_Int *v2, braid Int %v3,
braid_Int xv4)

braid_Int braid_AccessStatusGetWrapperTest (braid_AccessStatus s, braid_Int xv1)

braid_Int braid_AccessStatusGetCallingFunction (braid_AccessStatus s, braid_Int xv1)
braid_Int braid_AccessStatusGetSingleErrorEstAccess (braid_AccessStatus s, braid_Real *v1)
braid_Int braid_SyncStatusGetTIUL (braid_SyncStatus s, braid_Int xv1, braid_Int xv2, braid_Int v3)
braid_Int braid_SyncStatusGetTimeValues (braid_SyncStatus s, braid_Real *xv1, braid_Int v2, braid_Int v3,
braid_Int v4)

braid_Int braid_SyncStatusGetlter (braid_SyncStatus s, braid_Int xv1)

braid_Int braid_SyncStatusGetlLevel (braid_SyncStatus s, braid_Int *v1)

braid_Int braid_SyncStatusGetNLevels (braid_SyncStatus s, braid_Int xv1)

braid_Int braid_SyncStatusGetNRefine (braid_SyncStatus s, braid_Int *v1)

braid_Int braid_SyncStatusGetNTPoints (braid_SyncStatus s, braid_Int xv1)

braid_Int braid_SyncStatusGetDone (braid_SyncStatus s, braid_Int xv1)

braid_Int braid_SyncStatusGetCallingFunction (braid_SyncStatus s, braid_Int xv1)

braid_Int braid_SyncStatusGetNumErrorEst (braid_SyncStatus s, braid_Int xv1)

braid_Int braid_SyncStatusGetAllErrorEst (braid_SyncStatus s, braid_Real xv1)

braid_Int braid_CoarsenRefStatusGetT (braid_CoarsenRefStatus s, braid_Real *v1)

braid_Int braid_CoarsenRefStatusGetTIndex (braid_CoarsenRefStatus s, braid_Int xv1)
braid_Int braid_CoarsenRefStatusGetlter (braid_CoarsenRefStatus s, braid_Int xv1)

braid_Int braid_CoarsenRefStatusGetLevel (braid_CoarsenRefStatus s, braid_Int xv1)
braid_Int braid_CoarsenRefStatusGetNLevels (braid_CoarsenRefStatus s, braid_Int xv1)
braid_Int braid_CoarsenRefStatusGetNRefine (braid_CoarsenRefStatus s, braid_Int xv1)
braid_Int braid_CoarsenRefStatusGetNTPoints (braid_CoarsenRefStatus s, braid_Int xv1)
braid_Int braid_CoarsenRefStatusGetCTprior (braid_CoarsenRefStatus s, braid_Real xv1)
braid_Int braid_CoarsenRefStatusGetCTstop (braid_CoarsenRefStatus s, braid_Real xv1)
braid_Int braid_CoarsenRefStatusGetFTprior (braid_CoarsenRefStatus s, braid_Real xv1)
braid_Int braid_CoarsenRefStatusGetFTstop (braid_CoarsenRefStatus s, braid_Real *v1)
braid_Int braid_CoarsenRefStatusGetTpriorTstop (braid_CoarsenRefStatus s, braid_Real *v1, braid_Real *v2,
braid_Real xv3, braid_Real *v4, braid_Real *v5)

braid_Int braid_StepStatusGetT (braid_StepStatus s, braid_Real *v1)

braid_Int braid_StepStatusGetTIndex (braid_StepStatus s, braid_Int xv1)

braid_Int braid_StepStatusGetlter (braid_StepStatus s, braid_Int xv1)

braid_Int braid_StepStatusGetLevel (braid_StepStatus s, braid_Int xv1)

braid_Int braid_StepStatusGetNLevels (braid_StepStatus s, braid_Int xv1)

braid_Int braid_StepStatusGetNRefine (braid_StepStatus s, braid_Int xv1)

braid_Int braid_StepStatusGetNTPoints (braid_StepStatus s, braid_Int xv1)

braid_Int braid_StepStatusGetTstop (braid_StepStatus s, braid_Real *v1)

Generated by Doxygen

14.10

Inherited XBraid status routines

103

14.10.1

braid_Int braid_StepStatusGetTstartTstop (braid_StepStatus s, braid_Real xv1, braid_Real *v2)
braid_Int braid_StepStatusGetTol (braid_StepStatus s, braid_Real *v1)

braid_Int braid_StepStatusGetRNorms (braid_StepStatus s, braid_Int xv1, braid_Real *v2)
braid_Int braid_StepStatusGetOldFineTolx (braid_StepStatus s, braid_Real *v1)

braid_Int braid_StepStatusSetOldFineTolx (braid_StepStatus s, braid_Real v1)

braid_Int braid_StepStatusSetTightFineTolx (braid_StepStatus s, braid_Real v1)

braid_Int braid_StepStatusSetRFactor (braid_StepStatus s, braid_Real v1)

braid_Int braid_StepStatusSetRSpace (braid_StepStatus s, braid_Real v1)

braid_Int braid_StepStatusGetSingleErrorEstStep (braid_StepStatus s, braid_Real *v1)
braid_Int braid_BufferStatusGetMessageType (braid_BufferStatus s, braid_Int xv1)
braid_Int braid_BufferStatusSetSize (braid_BufferStatus s, braid_Real v1)

braid_Int braid_ObjectiveStatusGetT (braid_ObjectiveStatus s, braid_Real xv1)

braid_Int braid_ObjectiveStatusGetTIndex (braid_ObjectiveStatus s, braid_Int xv1)
braid_Int braid_ObjectiveStatusGetlter (braid_ObjectiveStatus s, braid_Int xv1)

braid_Int braid_ObjectiveStatusGetLevel (braid_ObjectiveStatus s, braid_Int xv1)

braid_Int braid_ObjectiveStatusGetNLevels (braid_ObjectiveStatus s, braid_Int xv1)
braid_Int braid_ObjectiveStatusGetNRefine (braid_ObjectiveStatus s, braid_Int xv1)
braid_Int braid_ObjectiveStatusGetNTPoints (braid_ObjectiveStatus s, braid_Int xv1)
braid_Int braid_ObjectiveStatusGetTol (braid_ObjectiveStatus s, braid_Real *v1)

Detailed Description

These are the ‘inherited’ Status Get/Set functions. See the XBraid status routines section for the description of each
function. For example, for braid_StepStatusGetT(...), you would look up braid_StatusGetT(...)

14.10.2 Function Documentation

14.10.2.1 braid_AccessStatusGetCallingFunction()

braid_Int braid_AccessStatusGetCallingFunction (

braid_AccessStatus s,
braid_Int x v1)

14.10.2.2 braid_AccessStatusGetDone()

braid_Int braid AccessStatusGetDone (

braid_AccessStatus s,
braid_Int x v1)

Generated by Doxygen

104 CONTENTS

14.10.2.3 braid_AccessStatusGetlter()

braid_Int braid_AccessStatusGetIter (
braid_AccessStatus s,
braid_Int *x vI)

14.10.2.4 braid_AccessStatusGetLevel()

braid_Int braid_AccessStatusGetLevel (
braid_AccessStatus s,
braid_Int *x vI)

14.10.2.5 braid_AccessStatusGetNLevels()

braid_Int braid_AccessStatusGetNLevels (
braid_AccessStatus s,
braid_Int *x vI)

14.10.2.6 braid_AccessStatusGetNRefine()

braid_Int braid_AccessStatusGetNRefine (
braid_AccessStatus s,
braid_Int x vi)

14.10.2.7 braid_AccessStatusGetNTPoints()

braid_Int braid AccessStatusGetNTPoints (
braid_AccessStatus s,
braid_Int x vI)

14.10.2.8 braid_AccessStatusGetResidual()

braid_Int braid AccessStatusGetResidual (
braid_AccessStatus s,
braid_Real x vi)

Generated by Doxygen

14.10 Inherited XBraid status routines 105

14.10.2.9 braid_AccessStatusGetSingleErrorEstAccess|()

braid_Int braid_AccessStatusGetSingleErrorEstAccess (
braid_AccessStatus s,
braid_Real *x vi)

14.10.2.10 braid_AccessStatusGetT()

braid_Int braid_AccessStatusGetT (
braid_AccessStatus s,
braid_Real *x vl)

14.10.2.11 braid_AccessStatusGetTILD()

braid_Int braid AccessStatusGetTILD (
braid_AccessStatus s,
braid_Real *x vI,
braid_Int *x v2,
braid_Int *x v3,
braid_Int *x v4)

14.10.2.12 braid_AccessStatusGetTIndex()

braid_Int braid_AccessStatusGetTIndex (
braid_AccessStatus s,
braid_Int *x vI)

14.10.2.13 braid_AccessStatusGetWrapperTest()

braid_Int braid_AccessStatusGetWrapperTest (
braid_AccessStatus s,
braid_Int x vi)

14.10.2.14 braid_BufferStatusGetMessageType()

braid_Int braid_BufferStatusGetMessageType (
braid_BufferStatus s,
braid_Int x vI)

Generated by Doxygen

106 CONTENTS

14.10.2.15 braid_BufferStatusSetSize()

braid_Int braid_BufferStatusSetSize (
braid_BufferStatus s,
braid_Real vl)

14.10.2.16 braid_CoarsenRefStatusGetCTprior()

braid_Int braid_CoarsenRefStatusGetCTprior (
braid_CoarsenRefStatus s,
braid_Real *x v1)

14.10.2.17 braid_CoarsenRefStatusGetCTstop)

braid_Int braid_CoarsenRefStatusGetCTstop (
braid_CoarsenRefStatus s,
braid_Real *x vi)

14.10.2.18 braid_CoarsenRefStatusGetFTprior()

braid_Int braid_CoarsenRefStatusGetFTprior (
braid_CoarsenRefStatus s,
braid_Real *x vi)

14.10.2.19 braid_CoarsenRefStatusGetFTstop()

braid_Int braid_CoarsenRefStatusGetFTstop (
braid_CoarsenRefStatus s,
braid_Real x vi)

14.10.2.20 braid_CoarsenRefStatusGetlter()

braid_Int braid_CoarsenRefStatusGetIter (
braid_CoarsenRefStatus s,
braid_Int x v1)

Generated by Doxygen

14.10 Inherited XBraid status routines 107

14.10.2.21 braid_CoarsenRefStatusGetLevel()

braid_Int braid_CoarsenRefStatusGetLevel (
braid_CoarsenRefStatus s,
braid_Int *x vI)

14.10.2.22 braid_CoarsenRefStatusGetNLevels()

braid_Int braid_CoarsenRefStatusGetNLevels (
braid_CoarsenRefStatus s,
braid_Int *x vI)

14.10.2.23 braid_CoarsenRefStatusGetNRefine()

braid_Int braid_CoarsenRefStatusGetNRefine (
braid_CoarsenRefStatus s,
braid_Int *x vI)

14.10.2.24 braid_CoarsenRefStatusGetNTPoints()

braid_Int braid_CoarsenRefStatusGetNTPoints (
braid_CoarsenRefStatus s,
braid_Int x vi)

14.10.2.25 braid_CoarsenRefStatusGetT()

braid_Int braid_CoarsenRefStatusGetT (
braid_CoarsenRefStatus s,
braid_Real x vi)

14.10.2.26 braid_CoarsenRefStatusGetTIndex()

braid_Int braid_CoarsenRefStatusGetTIndex (
braid_CoarsenRefStatus s,
braid_Int x v1)

Generated by Doxygen

108

CONTENTS

14.10.2.27 braid_CoarsenRefStatusGetTpriorTstop()

braid_Int braid_CoarsenRefStatusGetTpriorTstop

braid_CoarsenRefStatus s,

braid_Real
braid_Real
braid_Real
braid_Real
braid_Real

14.10.2.28 braid_ObjectiveStatusGetlter()

braid_Int braid_ObjectiveStatusGetIter

braid_ObjectiveStatus s,

*

*

*

*

vl
vZ2
v3
v4
v5

braid_Int * vI

14.10.2.29 braid_ObjectiveStatusGetLevel()

braid_Int braid_ObjectiveStatusGetLevel

braid_ObjectiveStatus s,

braid_Int * vI

14.10.2.30 braid_ObjectiveStatusGetNLevels()

7
7
7

7

)

)

)

(

(

braid_Int braid_ObjectiveStatusGetNLevels

braid_ObjectiveStatus s,

braid_Int *x vI

14.10.2.31

braid_Int braid_ObjectiveStatusGetNRefine

braid_ObjectiveStatus s,

braid_Int *x vi

14.10.2.32 braid_ObjectiveStatusGetNTPoints()

braid_Int braid_ObjectiveStatusGetNTPoints

braid_ObjectiveStatus s,

braid_Int *x vI

)

)

)

braid_ObjectiveStatusGetNRefine()

(

(

(

(

Generated by Doxygen

14.10 Inherited XBraid status routines 109

14.10.2.33 braid_ObjectiveStatusGetT()

braid_Int braid_ObjectiveStatusGetT (
braid_ObjectiveStatus s,
braid_Real *x v1)

14.10.2.34 braid_ObjectiveStatusGetTIndex()

braid_Int braid_ObjectiveStatusGetTIndex (
braid_ObjectiveStatus s,
braid_Int *x vI)

14.10.2.35 braid_ObjectiveStatusGetTol()

braid_Int braid_ObjectiveStatusGetTol (
braid_ObjectiveStatus s,
braid_Real *x vi)

14.10.2.36 braid_StepStatusGetlter()

braid_Int braid_StepStatusGetIter (
braid_StepStatus s,
braid_Int x vi)

14.10.2.37 braid_StepStatusGetLevel()

braid_Int braid_StepStatusGetLevel (
braid_StepStatus s,
braid_Int x vI)

14.10.2.38 braid_StepStatusGetNLevels()

braid_Int braid_StepStatusGetNLevels (
braid_StepStatus s,
braid_Int x v1)

Generated by Doxygen

110 CONTENTS

14.10.2.39 braid_StepStatusGetNRefine()

braid_Int braid_StepStatusGetNRefine (
braid_StepStatus s,
braid_Int *x vI)

14.10.2.40 braid_StepStatusGetNTPoints()

braid_Int braid_StepStatusGetNTPoints (
braid_StepStatus s,
braid_Int x vI)

14.10.2.41 braid_StepStatusGetOldFineTolx()

braid_Int braid_StepStatusGetOldFineTolx (
braid_StepStatus s,
braid_Real x vi1)

14.10.2.42 braid_StepStatusGetRNorms()

braid_Int braid_StepStatusGetRNorms (
braid_StepStatus s,
braid_Int * vI,
braid_Real x v2)

14.10.2.43 braid_StepStatusGetSingleErrorEstStep()

braid_Int braid_StepStatusGetSingleErrorEstStep (
braid_StepStatus s,
braid_Real *x v1)

14.10.2.44 braid_StepStatusGetT()

braid_Int braid_StepStatusGetT (
braid_StepStatus s,
braid_Real x vi)

Generated by Doxygen

14.10 Inherited XBraid status routines

111

14.10.2.45 braid_StepStatusGetTIndex()

braid_Int braid_StepStatusGetTIndex (
braid_StepStatus s,
braid_Int *x vI)

14.10.2.46 braid_StepStatusGetTol()

braid_Int braid_StepStatusGetTol (
braid_StepStatus s,
braid_Real x vi)

14.10.2.47 braid_StepStatusGetTstartTstop()

braid_Int braid_StepStatusGetTstartTstop
braid_StepStatus s,
braid_Real *x vI,

braid_Real x v2)

14.10.2.48 braid_StepStatusGetTstop()

braid_Int braid_StepStatusGetTstop (
braid_StepStatus s,
braid_Real x vi)

14.10.2.49 braid_StepStatusSetOldFineTolx()

braid_Int braid_StepStatusSetOldFineTolx
braid_StepStatus s,
braid_Real vl)

14.10.2.50 braid_StepStatusSetRFactor()

braid_Int braid_StepStatusSetRFactor (
braid_StepStatus s,
braid_Real vl)

(

(

Generated by Doxygen

112 CONTENTS

14.10.2.51 braid_StepStatusSetRSpace()

braid_Int braid_StepStatusSetRSpace (
braid_StepStatus s,
braid_Real vl)

14.10.2.52 braid_StepStatusSetTightFineTolx()

braid_Int braid_StepStatusSetTightFineTolx (
braid_StepStatus s,
braid_Real vl)

14.10.2.53 braid_SyncStatusGetAllErrorEst()

braid_Int braid_SyncStatusGetAllErrorEst (
braid_SyncStatus s,
braid_Real *x vi)

14.10.2.54 braid_SyncStatusGetCallingFunction()

braid_Int braid_SyncStatusGetCallingFunction (
braid_SyncStatus s,
braid_Int x vi)

14.10.2.55 braid_SyncStatusGetDone()

braid_Int braid_SyncStatusGetDone (
braid_SyncStatus s,
braid_Int x vI)

14.10.2.56 braid_SyncStatusGetlter()

braid_Int braid_SyncStatusGetIter (
braid_SyncStatus s,
braid_Int x v1)

Generated by Doxygen

14.10 Inherited XBraid status routines

113

14.10.2.57 braid_SyncStatusGetLevel()

braid_Int braid_SyncStatusGetLevel (
braid_SyncStatus s,
braid_Int *x vI)

14.10.2.58 braid_SyncStatusGetNLevels()

braid_Int braid_SyncStatusGetNLevels (
braid_SyncStatus s,
braid_Int x v1)

14.10.2.59 braid_SyncStatusGetNRefine()

braid_Int braid_SyncStatusGetNRefine (
braid_SyncStatus s,
braid_Int *x vI)

14.10.2.60 braid_SyncStatusGetNTPoints()

braid_Int braid_SyncStatusGetNTPoints (
braid_SyncStatus s,
braid_Int x v1)

14.10.2.61 braid_SyncStatusGetNumErrorEst()

braid_Int braid_SyncStatusGetNumErrorEst
braid_SyncStatus s,
braid_Int x vi)

14.10.2.62 braid_SyncStatusGetTimeValues()

braid_Int braid_SyncStatusGetTimeValues
braid_SyncStatus s,
braid_Real *x vI,
braid_Int v2,
braid_Int v3,
braid_Int v4)

14.10.2.63 braid_SyncStatusGetTIUL()

braid_Int braid_SyncStatusGetTIUL (
braid_SyncStatus s,
braid_Int * vI,
braid_Int x v2,
braid_Int v3)

(

(

Generated by Doxygen

114 CONTENTS

14.11 XBraid status macros

Macros

« #define braid_ASCaller_FInterp 0

- #tdefine braid_ASCaller_FRestrict 1

« #define braid_ASCaller_FRefine 2

« #define braid_ASCaller_FAccess 3

« #define braid_ASCaller_FRefine_AfterlnitHier 4
+ #define braid_ASCaller_Drive_TopCycle 5

14.11.1 Detailed Description

Macros defining Status values that the user can obtain during runtime, which will tell the user where in Braid the current
cycle is, e.g. in the Finterp function.

14.11.2 Macro Definition Documentation

14.11.2.1 braid_ASCaller_Drive_TopCycle

#define braid_ASCaller_Drive_TopCycle 5

When CallingFunction equals 5, Braid is at the top of the cycle
14.11.2.2 braid_ASCaller_FAccess

#define braid_ASCaller_FAccess 3

When CallingFunction equals 0, Braid is in FAccess
14.11.2.3 braid_ASCaller_Finterp

#define braid_ASCaller_ FInterp O

When CallingFunction equals 0, Braid is in Finterp
14.11.2.4 braid_ASCaller_FRefine

#define braid_ASCaller_FRefine 2

When CallingFunction equals 0, Braid is in FRefine
14.11.2.5 braid_ASCaller_FRefine_AfterInitHier

#define braid_ASCaller_FRefine_AfterInitHier 4

When CallingFunction equals 4, Braid is inside FRefine after the new finest level has been initialized
14.11.2.6 braid_ASCaller_FRestrict

#define braid_ASCaller_FRestrict 1

When CallingFunction equals 0, Braid is in FRestrict

Generated by Doxygen

14.12

XBraid test routines 115

14.12

XBraid test routines

Functions

14.12.1

braid_Int braid_TestInitAccess (braid_App app, MPI_Comm comm_x, FILE xfp, braid_Real t, braid_PtFcnlnit init,
braid_PtFcnAccess access, braid_PtFcnFree free)

braid_Int braid_TestClone (braid_App app, MPI_Comm comm_x, FILE xfp, braid_Real t, braid_PtFcnlnit init,
braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone)

braid_Int braid_TestSum (braid_App app, MPI_Comm comm_x, FILE xfp, braid_Real t, braid_PtFcnlnit init,
braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum)

braid_Int braid_TestSpatialNorm (braid_App app, MPI_Comm comm_x, FILE xfp, braid_Real t, braid_PtFcnlInit
init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm)
braid_Int braid_TestBuf (braid_App app, MPI_Comm comm_x, FILE xfp, braid_Real t, braid_PtFcnlnit init,
braid_PtFcnFree free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize,
braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack)

braid_Int braid_TestCoarsenRefine (braid_App app, MPI_Comm comm_x, FILE xfp, braid_Real t, braid_Real
fdt, braid_Real cdt, braid_PtFcnlnit init, braid_PtFcnAccess access, braid PtFcnFree free, braid_PtFcnClone
clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnSCoarsen coarsen, braid_Pt«
FcnSRefine refine)

braid_Int braid_TestResidual (braid_App app, MPI_Comm comm_x, FILE xfp, braid_Real t, braid_Real dt, braid«

_PtFenlnit myinit, braid_PtFcnAccess myaccess, braid_PtFcnFree myfree, braid_PtFcnClone clone, braid Pt«

FcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnResidual residual, braid_PtFcnStep step)
braid_Int braid_TestAll (braid_App app, MPI_Comm comm_x, FILE xfp, braid_Real t, braid_Real fdt, braid_«
Real cdt, braid_PtFcnlinit init, braid_PtFcnFree free, braid PtFcnClone clone, braid PtFcnSum sum, braid_Pt«
FcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack
bufunpack, braid_PtFcnSCoarsen coarsen, braid_PtFcnSRefine refine, braid_PtFcnResidual residual, braid_«
PtFcnStep step)

Detailed Description

These are sanity check routines to help a user test their XBraid code.

14.12.2 Function Documentation

14.12.2.1 braid_TestAll()

braid_Int braid_TestAll (

braid_App app,
MPI_Comm comm_x,

FILE * fp,

braid_Real ¢,
braid_Real fdt,
braid_Real cdt,
braid_PtFcnInit init,
braid_PtFcnFree free,
braid_PtFcnClone clone,

braid_PtFcnSum sum,

Generated by Doxygen

116

CONTENTS

braid_PtFcnSpatialNorm spatialnorm,
braid_PtFcnBufSize bufsize,
braid_PtFcnBufPack bufpack,
braid_PtFcnBufUnpack bufunpack,
braid_PtFcnSCoarsen coarsen,
braid_PtFcnSRefine refine,
braid_PtFcnResidual residual,

braid_PtFcnStep step)

Runs all of the individual braid_Test* routines

* Returns 0 if the tests fail

* Returns 1 if the tests pass

+ Check the log messages to see details of which tests failed.

Parameters
app User defined App structure
comm_x Spatial communicator
fo File pointer (could be stdout or stderr) for log messages
t Time value to initialize test vectors with
fdt Fine time step value that you spatially coarsen from
cat Coarse time step value that you coarsen to
init Initialize a braid_Vector on finest temporal grid
free Free a braid_Vector
clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors
spatialnorm | Compute norm of a braid_Vector, this is a norm only over space
bufsize Computes size in bytes for one braid_Vector MPI buffer
bufpack Packs MPI buffer to contain one braid_Vector
bufunpack Unpacks MPI buffer into a braid_Vector
coarsen Spatially coarsen a vector. If NULL, test is skipped.
refine Spatially refine a vector. If NULL, test is skipped.
residual Compute a residual given two consectuive braid_Vectors
step Compute a time step with a braid_Vector

14.12.2.2 braid_TestBuf()

braid_Int braid_TestBuf (

braid_App app,
MPI_Comm comm_x,

FILE * fp,

braid_Real ¢,
braid_PtFcnlInit init,

Generated by Doxygen

14.12 XBraid test routines 117

braid_PtFcnFree free,
braid_PtFcnSum sum,
braid_PtFcnSpatialNorm spatialnorm,
braid_PtFcnBufSize bufsize,
braid_PtFcnBufPack bufpack,
braid_PtFcnBufUnpack bufunpack)

Test the BufPack, BufUnpack and BufSize functions.
A vector is initialized at time {, packed into a buffer, then unpacked from a buffer. The unpacked result must equal the
original vector.

* Returns 0 if the tests fail
* Returns 1 if the tests pass

+ Check the log messages to see details of which tests failed.

Parameters
app User defined App structure
comm_x Spatial communicator
fo File pointer (could be stdout or stderr) for log messages
t Time value to test Buffer routines (used to initialize the vectors)
init Initialize a braid_Vector on finest temporal grid
free Free a braid_Vector
sum Compute vector sum of two braid_Vectors
spatialnorm | Compute norm of a braid_Vector, this is a norm only over space
bufsize Computes size in bytes for one braid_Vector MPI buffer
bufpack Packs MPI buffer to contain one braid_Vector
bufunpack Unpacks MPI buffer containing one braid_Vector

14.12.2.3 braid_TestClone()

braid_Int braid_TestClone (
braid_App app,
MPI_Comm comm_x,
FILE * fp,
braid_Real ¢t,
braid_PtFcnlInit init,
braid_PtFcnAccess access,
braid_PtFcnFree free,

braid_PtFcnClone clone)

Test the clone function.
A vector is initialized at time ¢, cloned, and both vectors are written. Then both vectors are free-d. The user is to check
(via the access function) to see if it is identical.

Generated by Doxygen

118 CONTENTS

Parameters
app User defined App structure
comm:— | Spatial communicator
X
fo File pointer (could be stdout or stderr) for log messages
t Time value to test clone with (used to initialize the vectors)
init Initialize a braid_Vector on finest temporal grid
access Allows access to XBraid and current braid_Vector (can be NULL for no writing)
free Free a braid_Vector
clone Clone a braid_Vector

14.12.2.4 braid_TestCoarsenRefine()

braid_Int braid_TestCoarsenRefine (
braid_App app,
MPI_Comm comm_Xx,
FILE * fp,
braid_Real ¢t,
braid_Real fdt,
braid_Real cdt,
braid_PtFcnInit init,
braid_PtFcnAccess access,
braid_PtFcnFree free,
braid_PtFcnClone clone,
braid_PtFcnSum sum,
braid_PtFcnSpatialNorm spatialnorm,
braid_PtFcnSCoarsen coarsen,

braid_PtFcnSRefine refine)

Test the Coarsen and Refine functions.
A vector is initialized at time ¢, and various sanity checks on the spatial coarsening and refinement routines are run.

* Returns 0 if the tests fail
* Returns 1 if the tests pass

» Check the log messages to see details of which tests failed.

Parameters
app User defined App structure
comm_x Spatial communicator
fo File pointer (could be stdout or stderr) for log messages
t Time value to initialize test vectors
fdt Fine time step value that you spatially coarsen from
cdt Coarse time step value that you coarsen to

Generated by Doxygen

14.12 XBraid test routines

119

Parameters
init Initialize a braid_Vector on finest temporal grid
access Allows access to XBraid and current braid_Vector (can be NULL for no writing)
free Free a braid_Vector
clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors
spatialnorm | Compute norm of a braid_Vector, this is a norm only over space
coarsen Spatially coarsen a vector
refine Spatially refine a vector
14.12.2.5 braid_TestInitAccess()

braid_Int b

raid_TestInitAccess (
braid_App app,
MPI_Comm comm_x,
FILE * fp,
braid_Real ¢t,
braid_PtFcnInit init,
braid_PtFcnAccess access,

braid_PtFcnFree free)

Test the init, access and free functions.

A vector is ini

tialized at time ¢, written, and then free-d

Parameters
app User defined App structure
comms« | Spatial communicator
X
fo File pointer (could be stdout or stderr) for log messages
t Time value to test init with (used to initialize the vectors)
init Initialize a braid_Vector on finest temporal grid
access Allows access to XBraid and current braid_Vector (can be NULL for no writing)
free Free a braid_Vector

14.12.2.6 braid_TestResidual()

braid_Int b

raid_TestResidual (
braid_App app,
MPI_Comm comm_x,
FILE * fp,
braid_Real ¢,

Generated by Doxygen

120

CONTENTS

braid_Real dt,

braid_PtFcnInit myinit,
braid_PtFcnAccess myaccess,
braid_PtFcnFree myfree,
braid_PtFcnClone clone,
braid_PtFcnSum sum,
braid_PtFcnSpatialNorm spatialnorm,
braid_PtFcnResidual residual,

braid_PtFcnStep step)

Test compatibility of the Step and Residual functions.
A vector is initialized at time t, step is called with df, followed by an evaluation of residual, to test the condition fstop -
residual(step(u, fstop), u) approx. 0

» Check the log messages to determine if test passed. The result should approximately be zero. The more accurate
the solution for u is computed in step, the closer the result will be to 0.

* The residual is also written to file

Parameters
app User defined App structure
comm_x Spatial communicator
fo File pointer (could be stdout or stderr) for log messages
t Time value to initialize test vectors
at Time step value to use in step
myinit Initialize a braid_Vector on finest temporal grid
myaccess Allows access to XBraid and current braid_Vector (can be NULL for no writing)
myfree Free a braid_Vector
clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors
spatialnorm | Compute norm of a braid_Vector, this is a norm only over space
residual Compute a residual given two consectuive braid_Vectors
step Compute a time step with a braid_Vector

14.12.2.7 braid_TestSpatialNorm()

braid_Int braid_TestSpatialNorm (

braid_App app,

MPI_Comm comm_x,

FILE % fp,

braid_Real ¢,
braid_PtFcnInit init,
braid_PtFcnFree free,
braid_PtFcnClone clone,
braid_PtFcnSum sum,

braid_PtFcnSpatialNorm spatialnorm)

Generated by Doxygen

14.12 XBraid test routines 121

Test the spatialnorm function.
A vector is initialized at time t and then cloned. Various norm evaluations like || 3v || /|| v || with known output are then
done.

* Returns 0 if the tests fail
* Returns 1 if the tests pass

» Check the log messages to see details of which tests failed.

Parameters
app User defined App structure
comm_x Spatial communicator
fo File pointer (could be stdout or stderr) for log messages
t Time value to test SpatialNorm with (used to initialize the vectors)
init Initialize a braid_Vector on finest temporal grid
free Free a braid_Vector
clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors
spatialnorm | Compute norm of a braid_Vector, this is a norm only over space

14.12.2.8 braid_TestSum()

braid_Int braid_TestSum (
braid_App app,
MPI_Comm comm_x,
FILE *x fp,
braid_Real ¢,
braid_PtFcnInit init,
braid_PtFcnAccess access,
braid_PtFcnFree free,
braid_PtFcnClone clone,

braid_PtFcnSum sum)

Test the sum function.

A vector is initialized at time ¢, cloned, and then these two vectors are summed a few times, with the results written.
The vectors are then free-d. The user is to check (via the access function) that the output matches the sum of the two
original vectors.

Parameters
app User defined App structure
comm:— | Spatial communicator
X
fo File pointer (could be stdout or stderr) for log messages
t Time value to test Sum with (used to initialize the vectors)

Generated by Doxygen

122 CONTENTS

Parameters
init Initialize a braid_Vector on finest temporal grid
access Allows access to XBraid and current braid_Vector (can be NULL for no writing)
free Free a braid_Vector
clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors

Generated by Doxygen

15 Data Structure Documentation 123

15 Data Structure Documentation

15.1 _braid_Action Struct Reference

Data Fields

« braid_Call braidCall

» braid Core core

» braid Real inTime

« braid_Real outTime

* braid_Int inTimeldx

* braid_Real sum_alpha
* braid_Real sum_beta
* braid_Int send_recv_rank
 braid_Int braid_iter

* braid_Int myid

* braid_Int level
 braid_Int nrefine

* braid_Int gupper

» braid Real tol

* braid_Int messagetype
 braid_Int size_buffer

15.1.1 Detailed Description

XBraid Action structure

Holds information for the called user routines

15.1.2 Field Documentation

15.1.2.1 braid_iter

braid_Int braid_iter

iteration number of xBraid

15.1.2.2 braidCall

_braid_Call braidCall

type of the user routine

Generated by Doxygen

124 CONTENTS

15.1.2.3 core

braid_Core core

pointer to braid's core structure

15.1.2.4 gupper

braid_Int gupper

global size of the fine grid

15.1.2.5 inTime

braid_Real inTime

time of the input vector

15.1.2.6 inTimeldx

braid_Int inTimeIdx

index of time of input vector

15.1.2.7 level

braid_Int level

current level in Braid

15.1.2.8 messagetype

braid_Int messagetype

message type, 0: for Step(), 1: for load balancing

15.1.2.9 myid

braid_Int myid

processors id

15.1.2.10 nrefine

braid_Int nrefine

number of refinements done

Generated by Doxygen

15.2 _braid_CommHandle Struct Reference 125

15.1.2.11 outTime

braid_Real outTime

time of the output vector
15.1.2.12 send_recv_rank

braid_Int send_recv_rank

processor rank of sender / receiver in my_bufpack / my_bufunpack

15.1.2.13 size_buffer

braid_Int size_buffer

if set by user, size of send buffer is "size" bytes

15.1.2.14 sum_alpha

braid_Real sum_alpha

first coefficient of my_sum

15.1.2.15 sum_beta

braid_Real sum_beta

second coefficient of my_sum
15.1.2.16 tol

braid_Real tol
primal stopping tolerance

The documentation for this struct was generated from the following file:

* tape.h

15.2 _braid_CommHandle Struct Reference

Data Fields

* braid_Int request_type

* braid_Int num_requests

* MPI_Request * requests

+ MPI_Status * status

« void * buffer

* braid_BaseVector * vector_ptr

Generated by Doxygen

126 CONTENTS

15.2.1 Detailed Description

XBraid comm handle structure

Used for initiating and completing nonblocking communication to pass braid_BaseVectors between processors.

15.2.2 Field Documentation

15.2.2.1 buffer

void* buffer

Buffer for message

15.2.2.2 num_requests

braid_Int num_requests

number of active requests for this handle, usually 1

15.2.2.3 request_type

braid_Int request_type

two values: recv type = 1, and send type = 0

15.2.2.4 requests

MPI_Request* requests

MPI request structure

15.2.2.5 status

MPI_Status* status

MPI status

15.2.2.6 vector_ptr

braid_BaseVector* vector_ptr
braid_vector being sent/received

The documentation for this struct was generated from the following file:

* _braid.h

Generated by Doxygen

15.3 _braid_Core Struct Reference

127

15.3 _braid Core Struct Reference

Data Fields

« MPI_Comm comm_world
 MPI_Comm comm

* braid_Int myid_world

* braid_Int myid

* braid_Real tstart

* braid_Real tstop

* braid_Int ntime

* braid_App app

* braid_PtFcnStep step

* braid_PtFcnlnit init

« braid_PtFcnSinit sinit

« braid_PtFcnClone clone
« braid_PtFcnSClone sclone
« braid_PtFcnFree free

* braid_PtFcnSFree sfree
* braid_PtFcnSum sum

+ braid_PtFcnSpatialNorm spatialnorm

» braid_PtFcnAccess access
* braid_PtFcnBufSize bufsize

+ braid_PtFcnBufPack bufpack

+ braid_PtFcnBufUnpack bufunpack
» braid PtFcnResidual residual

« braid_PtFcnSCoarsen scoarsen

* braid_PtFcnSRefine srefine
* braid_PtFcnSync sync

* braid_PtFcnTimeGrid tgrid
* braid_Int periodic

* braid_lInt initiali

* braid_Int access_level

* braid_Int print_level

* braid_Int io_level

* braid_Int seq_soln

* braid_Int max_levels

* braid_Int incr_max_levels
* braid_Int min_coarse

» braid_Real tol

* braid_Int rtol

* braid_Int x nrels
 braid_Int nrdefault

* braid_Real x* CWts

» braid_Real CWt_default
 braid_Int * cfactors

* braid_Int cfdefault

* braid_Int max_iter
 braid_Int niter

* braid_Int fmg

Generated by Doxygen

128 CONTENTS

* braid_Int nfmg

* braid_Int nfmg_Vcyc

* braid_Int warm_restart
 braid_Int tnorm

» braid Real x tnorm_a

» braid_Real rnorm0

» braid_Real * rnorms

* braid_PtFcnResidual full_rnorm_res
* braid_Real full_rnorm0

« braid_Real * full_rnorms

* braid_Int storage

 braid_Int useshell

* braid_Int gupper

 braid_Int refine

 braid_Int * rfactors

» braid Real *xx* rdtvalues

* braid_Int r_space

* braid_Int rstopped

 braid_Int nrefine

* braid_Int max_refinements

* braid_lInt tpoints_cutoff

* braid_Int skip

* braid_Int nlevels

» _braid_Grid *x grids

» braid_Real localtime

* braid_Real globaltime

* braid_Int richardson

* braid_Int est_error

 braid_Int order

* braid Real *x dtk

* braid_Real * estimate

* braid_Optim optim

* braid_Int adjoint

* braid_lInt record

* braid_Int obj_only

* braid_Int verbose_adj

» _braid_Tape * actionTape

» _braid_Tape * userVectorTape

+ _braid_Tape * barTape

« braid_PtFcnObjectiveT objectiveT
* braid_PtFcnStepDiff step_diff

* braid_PtFcnObjectiveTDiff objT_diff
+ braid_PtFcnResetGradient reset_gradient
* braid_PtFcnPostprocessObjective postprocess_obj
* braid_PtFcnPostprocessObjective_diff postprocess_obj_diff
» braid Realt

* braid_Int idx

* braid_Int level

» braid Real rnorm

* braid_Int done

* braid_Int wrapper_test

Generated by Doxygen

15.3 _braid_Core Struct Reference

129

* braid_Int calling_function
* braid_Real f_tprior
 braid_Real f_tstop

* braid_Real c_tprior

* braid_Real c_tstop

» braid_Real tnext

» braid Real old_fine_tolx
* braid_Int tight_fine_tolx
* braid_Int rfactor

* braid_Int messagetype
 braid_Int size_buffer

* braid_Int send_recv_rank

15.3.1 Detailed Description

The typedef _braid_Core struct is a critical part of XBraid and is passed to each routine in XBraid. It thus allows each

routine access to XBraid attributes.

15.3.2 Field Documentation

15.3.2.1 access

braid_PtFcnAccess access

user access function to XBraid and current vector

15.3.2.2 access_level

braid_Int access_level

determines how often to call the user's access routine

15.3.2.3 actionTape

_braid_Tape* actionTape

tape storing the actions while recording

15.3.2.4 adjoint

braid_Int adjoint

determines if adjoint run is performed (1) or not (0)

Generated by Doxygen

130 CONTENTS

15.3.2.5 app

braid_App app

application data for the user

15.3.2.6 barTape

_braid_Tapex* barTape

tape storing intermediate AD-bar variables while recording

15.3.2.7 bufpack

braid_PtFcnBufPack bufpack

pack a buffer

15.3.2.8 bufsize

braid_PtFcnBufSize bufsize

return buffer size

15.3.2.9 bufunpack

braid_PtFcnBufUnpack bufunpack

unpack a buffer

15.3.2.10 c_tprior

braid_Real c_tprior

time value to the left of tstart on coarse grid

15.3.2.11 c_tstop

braid_Real c_tstop

time value to the right of tstart on coarse grid

15.3.2.12 calling_function

braid_Int calling_function

from which function are we accessing the vector

Generated by Doxygen

15.3 _braid_Core Struct Reference

131

15.3.2.13 cfactors

braid_Intx cfactors

coarsening factors

156.3.2.14 cfdefault

braid_Int cfdefault

default coarsening factor

15.3.2.15 clone

braid_PtFcnClone clone

clone a vector

15.3.2.16 comm

MPI_Comm comm

communicator for the time dimension

15.3.2.17 comm_world

MPI_Comm comm_world

15.3.2.18 CWt_default

braid_Real CWt_default

default C-relaxtion weight

15.3.2.19 CWts

braid_Realx CWts

C-relaxation weight for each level

15.3.2.20 done

braid_Int done

boolean describing whether XBraid has finished

Generated by Doxygen

132

CONTENTS

15.3.2.21 dtk

braid_Realx dtk

holds value of sum_{i} dt_i"k for each C-interval
15.3.2.22 est_error

braid_Int est_error

turns on embedded error estimation, e.g., for refinement

15.3.2.23 estimate

braid_Real* estimate

holds value of the error estimate at each fine grid point
15.3.2.24 f_tprior

braid_Real f_tprior

CoarsenRefStatus properties time value to the left of tstart on fine grid
15.3.2.25 f tstop

braid_Real f_tstop

time value to the right of tstart on fine grid
15.3.2.26 fmg

braid_Int fmg

use FMG cycle

15.3.2.27 free

braid_PtFcnFree free

free up a vector
15.3.2.28 full_rnorm0

braid_Real full_rnormO

(optional) initial full residual norm

Generated by Doxygen

15.3 _braid_Core Struct Reference 133

15.3.2.29 full_rnorm_res

braid_PtFcnResidual full_rnorm_res

(optional) used to compute full residual norm

15.3.2.30 full_rnorms

braid_Real* full_rnorms

(optional) full residual norm history

15.3.2.31 globaltime

braid_Real globaltime

global wall time for braid_Drive()

15.3.2.32 grids

_braid_Gridsx grids

pointer to temporal grid structures for each level

15.3.2.33 gupper

braid_Int gupper

global size of the fine grid

15.3.2.34 idx

braid_Int idx

time point index value corresponding to t on the global time grid

15.3.2.35 incr_max_levels

braid_Int incr_max_levels

After doing refinement, increase the max number of levels by 1 (O=false, 1=true)

15.3.2.36 init

braid_PtFcnInit init

return an initialized braid_BaseVector

Generated by Doxygen

134

CONTENTS

15.3.2.37 initiali

braid_Int initiali

initial condition grid index (0: default; -1: periodic)

15.3.2.38 io_level

braid_Int io_level

determines amount of output printed to files (0,1)

15.3.2.39 level

braid_Int level

current level in XBraid

15.3.2.40 localtime

braid_Real localtime

local wall time for braid_Drive()

15.3.2.41 max_iter

braid_Int max_iter

maximum number of multigrid in time iterations

15.3.2.42 max_levels

braid_Int max_levels

maximum number of temporal grid levels

15.3.2.43 max_refinements

braid_Int max_refinements

maximum number of refinements

15.3.2.44 messagetype

braid_Int messagetype

BufferStatus properties message type, 0: for Step(), 1: for load balancing

Generated by Doxygen

15.3 _braid_Core Struct Reference

135

15.3.2.45 min_coarse

braid_Int min_coarse

minimum possible coarse grid size

15.3.2.46 myid

braid_Int myid

my rank in the time communicator

15.3.2.47 myid_world

braid_Int myid_world

my rank in the world communicator

15.3.2.48 nfmg

braid_Int nfmg

number of fmg cycles to do initially before switching to V-cycles

15.3.2.49 nfmg_Vcyc

braid_Int nfmg_Vcyc

number of V-cycle calls at each level in FMG

15.3.2.50 niter

braid_Int niter

number of iterations

15.3.2.51 nlevels

braid_Int nlevels

number of temporal grid levels

15.3.2.52 nrdefault

braid_Int nrdefault

default number of pre-relaxations

Generated by Doxygen

136 CONTENTS

15.3.2.53 nrefine

braid_Int nrefine

number of refinements done

15.3.2.54 nrels

braid_Intx nrels

number of pre-relaxations on each level

15.3.2.55 ntime

braid_Int ntime

initial number of time intervals

15.3.2.56 obj_only

braid_Int obj_only

determines if adjoint code computes ONLY objective, no gradients.

15.3.2.57 objectiveT

braid_PtFcnObjectiveT objectiveT

User function: evaluate objective function at time t

15.3.2.58 objT_diff

braid_PtFcnObjectiveTDiff objT_diff

User function: apply differentiated objective function

15.3.2.59 old_fine_tolx

braid_Real old_fine_tolx

Allows for storing the previously used fine tolerance from GetSpatialAccuracy

15.3.2.60 optim

braid_Optim optim

structure that stores optimization variables (objective function, etc.)

Generated by Doxygen

15.3 _braid_Core Struct Reference 137

15.3.2.61 order

braid_Int order

local order of time integration scheme

15.3.2.62 periodic

braid_Int periodic

determines if periodic

15.3.2.63 postprocess_obj

braid_PtFcnPostprocessObjective postprocess_obj

Optional user function: Modify the time-averaged objective function, e.g. for inverse design problems, adding relaxation
term etc.

15.3.2.64 postprocess_obj_diff

braid_PtFcnPostprocessObjective_diff postprocess_obj_diff

Optional user function: Derivative of postprocessing function

15.3.2.65 print_level

braid_Int print_level

determines amount of output printed to screen (0,1,2,3)

15.3.2.66 r_space

braid_Int r_space

spatial refinement flag

15.3.2.67 rdtvalues

braid_Real** rdtvalues

Array of pointers to arrays of dt values for non-uniform refinement

15.3.2.68 record

braid_Int record

determines if actions are recorded to the tape or not. This separate flag from adjoint is needed, because the final
FAccess call should not be recorded unless nlevels==1, but the adjoint flag must be true even if nlevels==1.

Generated by Doxygen

138

CONTENTS

15.3.2.69 refine

braid_Int refine

refine in time (refine = 1)

15.3.2.70 reset_gradient

braid_PtFcnResetGradient reset_gradient

User function: Set the gradient to zero. Is called before each iteration

15.3.2.71 residual

braid_PtFcnResidual residual

(optional) compute residual

15.3.2.72 rfactor

braid_Int rfactor

if set by user, allows for subdivision of this interval for better time accuracy

15.3.2.73 rfactors

braid_Int* rfactors

refinement factors for finest grid (if any)

15.3.2.74 richardson

braid_Int richardson

Richardson-based error estimation and refinement turns on Richardson extrapolation for accuracy

15.3.2.75 rnorm

braid_Real rnorm

AccessStatus properties residual norm

15.3.2.76 rnorm0

braid_Real rnormO

initial residual norm

Generated by Doxygen

15.3 _braid_Core Struct Reference

139

15.3.2.77 rnorms

braid_Real*x rnorms

residual norm history

15.3.2.78 rstopped

braid_Int rstopped

refinement stopped at iteration rstopped

15.3.2.79 rtol

braid_Int rtol

use relative tolerance

15.3.2.80 sclone

braid_PtFcnSClone sclone

(optional) clone the shell of a vector

15.3.2.81 scoarsen

braid_PtFcnSCoarsen scoarsen

(optional) return a spatially coarsened vector

15.3.2.82 send_recv_rank

braid_Int send_recv_rank

15.3.2.83 seq_soln

braid_Int seq_soln

boolean, controls if the initial guess is from sequential time stepping

15.3.2.84 sfree

braid_PtFcnSFree sfree

(optional) free up the data of a vector, keep the shell

Generated by Doxygen

140

CONTENTS

15.3.2.85 sinit

braid_PtFcnSInit sinit

(optional) return an initialized shell of braid_BaseVector

15.3.2.86 size_buffer

braid_Int size_buffer

if set by user, send buffer will be "size" bytes in length

15.3.2.87 skip

braid_Int skip

boolean, controls skipping any work on first down-cycle

15.3.2.88 spatialnorm

braid_PtFcnSpatialNorm spatialnorm

Compute norm of a braid_BaseVector, this is a norm only over space

15.3.2.89 srefine

braid_PtFcnSRefine srefine

(optional) return a spatially refined vector

15.3.2.90 step

braid_PtFcnStep step

apply step function

15.3.2.91 step_diff

braid_PtFcnStepDiff step_diff

User function: apply differentiated step function

15.3.2.92 storage

braid_Int storage

storage = 0 (C-points), = 1 (all)

Generated by Doxygen

15.3 _braid_Core Struct Reference

141

15.3.2.93 sum

braid_PtFcnSum sum

vector sum

15.3.2.94 sync

braid_PtFcnSync sync

(optional) user access to app once-per-processor

15.3.2.95 t

braid_Real t

Data elements required for the Status structures Common Status properties current time

15.3.2.96 tgrid

braid_PtFcnTimeGrid tgrid

(optional) return time point values on level 0

15.3.2.97 tight_fine_tolx

braid_Int tight_fine_tolx

Boolean, indicating whether the tightest fine tolx has been used, condition for halting

15.3.2.98 tnext

braid_Real tnext

StepStatus properties time value to evolve towards, time value to the right of tstart

15.3.2.99 tnorm

braid_Int tnorm

choice of temporal norm

15.3.2.100 tnorm_a

braid_Real*x tnorm_a

local array of residual norms on a proc's interval, used for inf-norm

Generated by Doxygen

142 CONTENTS

15.3.2.101 tol

braid_Real tol

stopping tolerance

15.3.2.102 tpoints_cutoff

braid_Int tpoints_cutoff

refinements halt after the number of time steps exceed this value

15.3.2.103 tstart

braid_Real tstart

start time

15.3.2.104 tstop

braid_Real tstop

stop time

15.3.2.105 userVectorTape

_braid_Tape* userVectorTape

tape storing primal braid_vectors while recording

15.3.2.106 useshell

braid_Int useshell

activate the shell structure of vectors

15.3.2.107 verbose_adj

braid_Int verbose_adj

verbosity of the adjoint tape, displays the actions that are pushed / popped to the tape

15.3.2.108 warm_restart

braid_Int warm_restart

boolean, indicates whether this is a warm restart of an existing braid_Core

Generated by Doxygen

15.4 _braid_Grid Struct Reference 143

15.3.2.109 wrapper_test

braid_Int wrapper_test
boolean describing whether this call is only a wrapper test

The documentation for this struct was generated from the following file:

* braid.h

15.4 _braid_Grid Struct Reference

Data Fields

* braid_Int level

* braid_Int ilower

* braid_Int iupper

* braid_Int clower

* braid_Int cupper

* braid_Int gupper

* braid_lInt cfactor

* braid_Int ncpoints

* braid_Int nupoints

« braid_BaseVector x ua

* braid_Real * ta

» braid_BaseVector x va

» braid_BaseVector x fa
 braid_Int recv_index

* braid_Int send_index

» _braid CommHandle * recv_handle
« braid CommHandle * send_handle
* braid_BaseVector x ua_alloc
» braid Real % ta_alloc

* braid_BaseVector x va_alloc
* braid_BaseVector * fa_alloc

15.4.1 Detailed Description

XBraid Grid structure for a certain time level

Holds all the information for a processor related to the temporal grid at this level.

15.4.2 Field Documentation

Generated by Doxygen

144

CONTENTS

15.4.2.1 cfactor

braid_Int cfactor

coarsening factor

15.4.2.2 clower

braid_Int clower

smallest C point index

15.4.2.3 cupper

braid_Int cupper

largest C point index

15.4.24 fa

braid_BaseVectorx fa

rhs vectors f (all points, NULL on level 0)

15.4.2.5 fa_alloc

braid_BaseVectorx fa_alloc

original memory allocation for fa

15.4.2.6 gupper

braid_Int gupper

global size of the grid

15.4.2.7 ilower

braid_Int ilower

smallest time index at this level

15.4.2.8 iupper

braid_Int iupper

largest time index at this level

Generated by Doxygen

15.4 _braid_Grid Struct Reference

145

15.4.2.9 level

braid_Int level

Level that grid is on

15.4.2.10 ncpoints

braid_Int ncpoints

number of C points

15.4.2.11 nupoints

braid_Int nupoints

number of unknown vector points

15.4.2.12 recv_handle

_braid_CommHandlex recv_handle

Handle for nonblocking receives of braid_BaseVectors

15.4.2.13 recv_index

braid_Int recv_index

-1 means no receive

15.4.2.14 send_handle

_braid_CommHandlex send_handle

Handle for nonblocking sends of braid_BaseVectors

15.4.2.15 send_index

braid_Int send_index

-1 means no send

15.4.2.16 ta

braid_Realx ta

time values (all points)

Generated by Doxygen

146

CONTENTS

15.4.2.17 ta_alloc

braid_Realx ta_alloc

original memory allocation for ta

15.4.2.18 ua

braid_BaseVectorx ua

unknown vectors (C-points at least)

15.4.2.19 ua_alloc

braid_BaseVectorx ua_alloc

original memory allocation for ua

154220 va

braid_BaseVectorx va

restricted unknown vectors (all points, NULL on level 0)

15.4.2.21 va_alloc

braid_BaseVectorx va_alloc

original memory allocation for va

The documentation for this struct was generated from the following file:

* _braid.h

15.5 _braid_Status Struct Reference

Data Fields

« _braid_Core core

15.5.1 Detailed Description

This is the main Status structure, that contains the properties of all the status. The user does not have access to this

structure, but only to the derived Status structures. This class is accessed only inside XBraid code.

Generated by Doxygen

15.6 _braid_Tape Struct Reference

147

15.5.2 Field Documentation

15.5.2.1 core

_braid_Core core

The documentation for this struct was generated from the following file:

* status.h

15.6 _braid_Tape Struct Reference

Data Fields
* int size

* void x data_ptr
« struct _braid_tape_struct x next

15.6.1 Detailed Description

C-Implementation of a linked list storing pointers to generic data This structure represents one tape element, holding a

pointer to data and a pointer to the next element int size holds the number of all elements in the tape

15.6.2 Field Documentation

15.6.2.1 data_ptr

void* data_ptr

15.6.2.2 next

struct _braid_tape_struct* next

Generated by Doxygen

148 CONTENTS

15.6.2.3 size

int size

The documentation for this struct was generated from the following file:

« tape.h

15.7 braid_AccessStatus Struct Reference

Data Fields

» braid Status status

15.7.1 Detailed Description

AccessStatus structure which defines the status of XBraid at a given instant on some level during a run. The user
accesses it through braid_AccessStatusGetsx () functions. This is just a pointer to the braid_Status.

15.7.2 Field Documentation

15.7.21 status

_braid_Status status

The documentation for this struct was generated from the following file:

« status.h

15.8 braid_BaseVector Struct Reference

Data Fields

* braid_Vector userVector
» braid_VectorBar bar

15.8.1 Detailed Description

Braid vector used for storage of all state and (if needed) adjoint information. Stores both the user's primal vector (braid«
_Vector type) and the associated bar vector (braid_VectorBar type) if the adjoint functionality is being used. If adjoint is
not being used, bar==NULL.

Generated by Doxygen

15.9 braid_BufferStatus Struct Reference 149

15.8.2 Field Documentation

15.8.2.1 bar

braid_VectorBar bar

holds the bar vector (shared pointer implementation)

15.8.2.2 userVector

braid_Vector userVector
holds the users primal vector

The documentation for this struct was generated from the following file:

* braid.h

15.9 braid_BufferStatus Struct Reference

Data Fields

« braid_Status status

15.9.1 Detailed Description

The user's bufpack, bufunpack and bufsize routines will receive a BufferStatus structure, which defines the status of
XBraid at a given buff (un)pack instance. The user accesses it through braid_BufferStatusGetsx () functions. This is just
a pointer to the braid_Status.

15.9.2 Field Documentation

15.9.2.1 status

_braid_Status status

The documentation for this struct was generated from the following file:

* status.h

Generated by Doxygen

150 CONTENTS

15.10 braid_CoarsenRefStatus Struct Reference

Data Fields

« _braid_Status status

15.10.1 Detailed Description

The user coarsen and refine routines will receive a CoarsenRefStatus structure, which defines the status of XBraid at
a given instant of coarsening or refinement on some level during a run. The user accesses it through braid_Coarsen«
RefStatusGetsx() functions. This is just a pointer to the braid_Status.

15.10.2 Field Documentation

15.10.2.1 status

_braid_Status status

The documentation for this struct was generated from the following file:

« status.h

15.11 braid_ObjectiveStatus Struct Reference

Data Fields

» _braid_Status status

15.11.1 Detailed Description

The user's objectiveT and PostprocessObijective will receive an ObjectiveStatus structure, which defines the status of
XBraid at a given instance of evaluating the objective function. The user accesses it through braid_ObjectiveStatus«—
Getxx() functions. This is just a pointer to the braid_Status.

15.11.2 Field Documentation

Generated by Doxygen

15.12 braid_Optim Struct Reference 151

15.11.2.1 status

_braid_Status status

The documentation for this struct was generated from the following file:

« status.h

15.12 braid_Optim Struct Reference

Data Fields

* braid_Real sum_user_obj
« braid_Real objective

* braid_Real tstart_obj

* braid_Real tstop_obj

* braid_Real f_bar

* braid_Real rnorm_adj

* braid_Real rnorm0_ad;]

« braid_Real rnorm

« braid_Real rnorm0

* braid_Real tol_adj

* braid_Int rtol_adj

* braid_Vector * adjoints

* braid_VectorBar * tapeinput
+ void x sendbuffer

* MPI_Request * request

15.12.1 Detailed Description

Data structure for storing the optimization variables

15.12.2 Field Documentation

15.12.2.1 adjoints

braid_Vectorx adjoints

vector for the adjoint variables
15.12.2.2 f bar

braid_Real f_bar

contains the seed for tape evaluation

Generated by Doxygen

152

CONTENTS

15.12.2.3 objective

braid_Real objective

global objective function value

15.12.2.4 request

MPI_Request* request

helper: Storing the MPI request of BufUnPackDiff

15.12.2.5 rnorm

braid_Real rnorm

norm of the state residual

15.12.2.6 rnorm0

braid_Real rnormO

initial norm of the state residual

15.12.2.7 rnorm0_adj

braid_Real rnormO_adj

initial norm of the adjoint residual

15.12.2.8 rnorm_adj

braid_Real rnorm_adj

norm of the adjoint residual

15.12.2.9 rtol_adj

braid_Int rtol_adj

flag: use relative tolerance for adjoint

15.12.2.10 sendbuffer

void* sendbuffer

helper: Memory for BufUnPackDiff communication

Generated by Doxygen

15.13 braid_StepStatus Struct Reference 153

15.12.2.11 sum_user_obj

braid_Real sum_user_obj

sum of user's objective function values over time
15.12.2.12 tapeinput

braid_VectorBar* tapeinput

helper: store pointer to input of one braid iteration
15.12.2.13 tol_adj

braid_Real tol_adj

tolerance of adjoint residual
15.12.2.14 tstart_obj

braid_Real tstart_obj

starting time for evaluating the user's local objective

15.12.2.15 tstop_obj

braid_Real tstop_obj
stopping time for evaluating the user's local objective

The documentation for this struct was generated from the following file:

* _braid.h

15.13 braid_StepStatus Struct Reference

Data Fields

« _braid_Status status

15.13.1 Detailed Description

The user's step routine routine will receive a StepStatus structure, which defines the status of XBraid at the given instant
for step evaluation on some level during a run. The user accesses it through braid_StepStatusGet+x() functions. This is
just a pointer to the braid_Status.

Generated by Doxygen

154

CONTENTS

15.13.2 Field Documentation

15.13.2.1 status

_braid_Status status

The documentation for this struct was generated from the following file:

« status.h

15.14 braid_SyncStatus Struct Reference

Data Fields

+ _braid_Status status

15.14.1 Detailed Description

SyncStatus structure which provides the status of XBraid at a given instant on some level during a run. This is vector
independent and called once per processor. The user accesses it through braid_SyncStatusGetxx() functions. This is

just a pointer to the braid_Status.

15.14.2 Field Documentation

15.14.2.1 status

_braid_Status status

The documentation for this struct was generated from the following file:

* status.h

15.15 braid_VectorBar Struct Reference

Data Fields

» braid_Vector userVector
* braid_Int useCount

Generated by Doxygen

16 File Documentation 155

15.15.1 Detailed Description

Braid Vector Structures:

There are three vector structures _braid_VectorBar Defined below braid_Vector Defined in braid.h braid_BaseVector
Defined below

The braid_BaseVector is the main internal Vector class, which is stored at each time point. It basically wraps the Vector
and braid_VectorBar (see below). The braid_VectorBar is only used if the adjoint capability is used, when it stores
adjoint variables. It's basically a smart pointer wrapper around a braid_Vector. Note that it is always the braid_Vector

that's passed to user-routines. Shared pointer implementation for storing the intermediat AD-bar variables while taping.
This is essentially the same as a userVector, except we need shared pointer capabilities to know when to delete.

15.15.2 Field Documentation

15.15.2.1 useCount

braid_Int useCount

counts the number of pointers to this struct

15.15.2.2 userVector

braid_Vector userVector

holds the u_bar data

The documentation for this struct was generated from the following file:

* braid.h

16 File Documentation

16.1 _braid.h File Reference

Data Structures

« struct braid_VectorBar

« struct braid_BaseVector

« struct braid_Optim

* struct _braid_CommHandle
* struct _braid_Grid

« struct _braid_Core

Generated by Doxygen

156

CONTENTS

Macros

#define _braid_Error(IERR, msg) _braid_ErrorHandler(__FILE__, _ LINE__, IERR, msg)
#define _braid_ErrorinArg(IARG, msg) _braid_Error(HYPRE_ERROR_ARG | IARG< <3, msg)
#define _braid_TAlloc(type, count) ((type x)malloc((size_t)(sizeof(type) * (count))))

#define _braid_CTAlloc(type, count) ((type *)calloc((size_t)(count), (size_t)sizeof(type)))
#define _braid_TReAlloc(ptr, type, count) ((type *)realloc((char)ptr, (size_t)(sizeof(type) * (count))))
#define _braid_TFree(ptr) (free((char x)ptr), ptr = NULL)

#define _braid_max(a, b) (((a)<(b)) ? (b) : (a))

#define _braid_min(a, b) (((a)<(b)) ? (a) : (b))

#define _braid_isnan(a) (a != a)

#define _braid_SendIndexNull -2

#define _braid_RecvindexNull -2

#define _braid_MapPeriodic(index, npoints) (index = ((index)+(npoints)) % (npoints)) /* this also handles nega-
tive indexes */

#define _braid_CommHandleElt(handle, elt) ((handle) -> elt)

#define _braid_GridElt(grid, elt) ((grid) -> elt)

#define _braid_CoreElt(core, elt) ((core) -> elt)

#define _braid_CoreFcn(core, fcn) (x((core) -> fcn))

#define _braid_MapFineToCoarse(findex, cfactor, cindex) (cindex = (findex)/(cfactor))

#define _braid_MapCoarseToFine(cindex, cfactor, findex) (findex = (cindex)x(cfactor))

#define _braid_IsFPoint(index, cfactor) ((index)%(cfactor))

#define _braid_IsCPoint(index, cfactor) (!|_braid_IsFPoint(index, cfactor))

#define _braid_NextCPoint(index, cfactor) (((braid_Int)((index)+(cfactor)-1)/(cfactor))=(cfactor))
#define _braid_PriorCPoint(index, cfactor) (((braid_Int)(index)/(cfactor))=(cfactor))

Functions

void _braid_ErrorHandler (const char xfilename, braid_Int line, braid_Int ierr, const char xmsg)

braid_Int _braid_GetBlockDistInterval (braid_Int npoints, braid_Int nprocs, braid_Int proc, braid_Int xilower_ptr,
braid_Int xiupper_ptr)

braid_Int _braid_GetBlockDistProc (braid_Int npoints, braid_Int nprocs, braid_Int index, braid_Int periodic, braid«

_Int xproc_ptr)

braid_Int _braid_GetDistribution (braid_Core core, braid_Int xilower_ptr, braid_Int xiupper_ptr)
braid_Int _braid_GetProc (braid_Core core, braid_Int level, braid_Int index, braid_Int sxproc_ptr)
braid_Int _braid_CommRecvlInit (braid_Core core, braid_Int level, braid_Int index, braid_BaseVector *vector_ptr,

_braid_CommHandle xxhandle_ptr)

braid_Int _braid_CommSendInit (braid_Core core, braid_Int level, braid_Int index, braid_BaseVector vector, _«
braid_CommHandle *xhandle_ptr)

braid_Int _braid_CommWait (braid_Core core, _braid_CommHandle *xhandle_ptr)

braid_Int _braid_UGetIndex (braid_Core core, braid_Int level, braid_Int index, braid_Int xuindex_ptr, braid_Int
xstore_flag_ptr)

braid_Int _braid_UGetVectorRef (braid_Core core, braid_Int level, braid_Int index, braid_BaseVector xu_ptr)
braid_Int _braid_USetVectorRef (braid_Core core, braid_Int level, braid_Int index, braid_BaseVector u)

braid_Int _braid_UGetVector (braid_Core core, braid_Int level, braid_Int index, braid_BaseVector xu_ptr)
braid_Int _braid_USetVector (braid_Core core, braid_Int level, braid_Int index, braid_BaseVector u, braid_Int
move)

braid_Int _braid _UComminitBasic (braid_Core core, braid_Int level, braid_Int recv_msg, braid_Int send_msg,
braid_Int send_now)

braid_Int _braid_UComminit (braid_Core core, braid_|Int level)

Generated by Doxygen

16.1 _braid.h File Reference 157

braid_Int _braid_UCommiInitF (braid_Core core, braid_Int level)

braid_Int _braid_UCommWait (braid_Core core, braid_lInt level)

braid_Int _braid_Step (braid_Core core, braid_Int level, braid_Int index, braid_BaseVector ustop, braid_Base«
Vector u)

braid_Int _braid_GetUInit (braid_Core core, braid_Int level, braid_Int index, braid_BaseVector u, braid_Base«
Vector xustop_ptr)

braid_Int _braid_Residual (braid_Core core, braid_Int level, braid_Int index, braid_BaseVector ustop, braid_«
BaseVector r)

braid_Int _braid_FASResidual (braid_Core core, braid_Int level, braid_Int index, braid_BaseVector ustop, braid«
_BaseVectorr)

braid_Int _braid_Coarsen (braid_Core core, braid_Int level, braid_Int f_index, braid_Int ¢_index, braid_BaseVector
fvector, braid_BaseVector xcvector)

braid_Int _braid_RefineBasic (braid_Core core, braid_Int level, braid_Int c_index, braid_Real *f_ta, braid_Real
*C_ta, braid_BaseVector cvector, braid_BaseVector xfvector)

braid_Int _braid_Refine (braid_Core core, braid_Int level, braid_Int f_index, braid_Int c¢_index, braid_BaseVector
cvector, braid_BaseVector xfvector)

braid_Int _braid_FRefineSpace (braid_Core core, braid_Int xrefined_ptr)

braid_Int _braid_GridInit (braid_Core core, braid_Int level, braid_Int ilower, braid_Int iupper, _braid_Grid *x*grid«
_ptr)

braid_Int _braid_GridClean (braid_Core core, _braid_Grid *grid)

braid_Int _braid_GridDestroy (braid_Core core, _braid_Grid *grid)

braid_Int _braid_SetRNorm (braid_Core core, braid_Int iter, braid_Real rnorm)

braid_Int _braid_GetRNorm (braid_Core core, braid_|Int iter, braid_Real *xrnorm_ptr)

braid_Int _braid_SetFullRNorm (braid_Core core, braid_lInt iter, braid_Real rnorm)

braid_Int _braid_GetFullRNorm (braid_Core core, braid_Int iter, braid_Real *rnorm_ptr)

braid_Int _braid_ComputeFullRNorm (braid_Core core, braid_Int level, braid_Real xreturn_rnorm)

braid_Int _braid_PrintSpatialNorms (braid_Core core, braid_Real xrnorms, braid_Int n)

braid_Int _braid_FCRelax (braid_Core core, braid_Int level)

braid_Int _braid_FRestrict (braid_Core core, braid_Int level)

braid_Int _braid_FInterp (braid_Core core, braid_Int level)

braid_Int _braid_FRefine (braid_Core core, braid_|Int xrefined_ptr)

braid_Int _braid_FAccess (braid_Core core, braid_Int level, braid_Int done)

braid_Int _braid_AccessVector (braid_Core core, braid_AccessStatus status, braid_BaseVector u)

braid_Int _braid_Sync (braid_Core core, braid_SyncStatus status)

braid_Int _braid_InitHierarchy (braid_Core core, _braid_Grid «fine_grid, braid_Int refined)

braid_Int _braid_FinalizeErrorEstimates (braid_Core core, braid_Real xestimate, braid_Int length)

braid_Int _braid_GetDtk (braid_Core core)

braid_Int _braid_GetCFactor (braid_Core core, braid_Int level, braid_Int xcfactor_ptr)

braid_Int _braid_InitGuess (braid_Core core, braid_Int level)

braid_Int _braid_CopyFineToCoarse (braid_Core core)

braid_Int _braid_Drive (braid_Core core, braid_Real localtime)

Variables

* braid_Int _braid_error_flag
* FILE x _braid_printfile

16.1.1 Detailed Description

Define headers for XBraid internal (developer) routines and XBraid internal structure declarations.

This file contains the headers for XBraid internal (developer) routines and structure declarations.

Generated by Doxygen

158 CONTENTS

16.1.2 Macro Definition Documentation

16.1.2.1 _braid_CommHandIeElt

#define _braid_CommHandleElt (
handle,
elt) ((handle) -> elt)

Accessor for _braid_CommHandle attributes

16.1.2.2 _braid_CoreElt

#define _braid_CoreElt (
core,

elt) ((core) —-> elt)

Accessor for _braid_Core attributes

16.1.2.3 _braid_CoreFcn

#define _braid_CoreFcn (
core,

fcn) (x((core) —-> fcn))

Accessor for _braid_Core functions

16.1.2.4 _braid_CTAlloc

#define _braid_CTAlloc (

type,
count) ((type *)calloc((size_t) (count), (size_t)sizeof (type)))

Allocation macro

16.1.2.5 _braid_Error

#define _braid_Error (
IERR,
msg) _braid_ErrorHandler (__FILE__ , _ LINE__, IERR, msg)

16.1.2.6 _braid_ErrorinArg

#define _braid_ErrorInArg
IARG,
msg) _braid_Error (HYPRE_ERROR_ARG \ IARG<K<3, msg)

Generated by Doxygen

16.1 _braid.h File Reference 159

16.1.2.7 _braid_GridElt

#define _braid_GridElt (
grid,
elt) ((grid) -> elt)

Accessor for _braid_Grid attributes

16.1.2.8 _braid_IsCPoint

#define _braid_IsCPoint (
index,

cfactor) (!_braid_IsFPoint (index, cfactor)

Boolean, returns whether a time index is an C-point

16.1.2.9 _braid_IsFPoint

#define _braid_IsFPoint (

index,

o

cfactor) ((index) % (cfactor)

Boolean, returns whether a time index is an F-point

16.1.2.10 _braid_isnan

#define _braid_isnan (

a) (a != a)

16.1.2.11 _braid_MapCoarseToFine

#define _braid_MapCoarseToFine (
cindex,
cfactor,

findex) (findex = (cindex)=x*(cfactor))

Map a coarse time index to a fine time index, assumes a uniform coarsening factor.

16.1.2.12 _braid_MapFineToCoarse

#define _braid_MapFineToCoarse (
findex,
cfactor,

cindex) (cindex = (findex)/ (cfactor))

Map a fine time index to a coarse time index, assumes a uniform coarsening factor.

Generated by Doxygen

160 CONTENTS

16.1.2.13 _braid_MapPeriodic

#define _braid MapPeriodic(

index,

o

npoints) (index = ((index)+ (npoints)) % (npoints)) /% this also handles negative

indexes x/

16.1.2.14 _braid_max

#define _braid_max (
a,

b) (((a)y<(b)) 2 (b) = (a))

16.1.2.15 _braid_min

#define _braid_min (
a,
b) (((a)y<(b)) 2 (a) : (b))

16.1.2.16 _braid_NextCPoint

#define _braid_NextCPoint (
index,

cfactor) (((braid_Int) ((index)+ (cfactor)-1)/ (cfactor))x*(cfactor)

Returns the index for the next C-point to the right of index (inclusive)

16.1.2.17 _braid_PriorCPoint

#define _braid_PriorCPoint (
index,

cfactor) (((braid_Int) (index)/ (cfactor))x*(cfactor))

Returns the index for the previous C-point to the left of index (inclusive)

16.1.2.18 _braid_RecvindexNull

#define _braid_RecvIndexNull -2

Generated by Doxygen

16.1 _braid.h File Reference 161

16.1.2.19 _braid_SendindexNull

#define _braid_SendIndexNull -2

16.1.2.20 _braid_TAlloc

#define _braid_TAlloc (

type,
count) ((type *)malloc((size_t) (sizeof (type) * (count))))

Allocation macro

16.1.2.21 _braid_TFree

#define _braid_TFree (
ptr) (free((char *)ptr), ptr = NULL)

Free memory macro

16.1.2.22 _braid_TReAlloc

#define _braid_TReAlloc(
ptr,
type,
count) ((type #*)realloc((char *)ptr, (size_t) (sizeof(type) * (count))))

Re-allocation macro

16.1.3 Function Documentation

16.1.3.1 _braid_AccessVector()

braid_Int _braid_AccessVector (
braid_Core core,
braid_AccessStatus status,

braid_BaseVector u)

Call user's access function in order to give access to XBraid and the current vector. Most commonly, this lets the user
write u to screen, disk, etc... The vector u corresponds to time step index on level. status holds state information about
the current XBraid iteration, time value, etc...

Generated by Doxygen

162 CONTENTS

16.1.3.2 _braid_Coarsen()

braid_Int _braid_Coarsen (
braid_Core core,
braid_Int level,
braid_Int f_index,
braid_Int c¢_index,
braid_BaseVector fvector,

braid_BaseVector * cvector)

Coarsen in space on level by calling the user's coarsen function. The vector corresponding to the time step index f_index
on the fine grid is coarsened to the time step index ¢ _index on the coarse grid. The output goes in cvector and the input
vector is fvector.

16.1.3.3 _braid_CommRecvinit()

braid_Int _braid_CommRecvInit (
braid_Core core,
braid_Int level,
braid_Int index,
braid_BaseVector * vector_ptr,

_braid_CommHandle ** handle ptr)

Initialize a receive to go into vector ptr for the given time index on level. Also return a comm handle handle_ptr for
querying later, to see if the receive has occurred.

16.1.3.4 _braid_CommSendinit()

braid_Int _braid CommSendInit (
braid_Core core,
braid_Int level,
braid_Int index,
braid_BaseVector vector,

_braid_CommHandle ** handle_ptr)

Initialize a send of vector for the given time index on level. Also return a comm handle handle_ptr for querying later, to
see if the send has occurred.

16.1.3.5 _braid_CommWait()

braid_Int _braid_CommWait (
braid_Core core,

_braid_CommHandle ** handle ptr)

Block on the comm handle handle_ptr until the MPI operation (send or recv) has completed

16.1.3.6 _braid_ComputeFullRNorm()

braid_Int _braid_ComputeFullRNorm (
braid_Core core,
braid_Int level,

braid_Real * return_rnorm)

Compute full temporal residual norm with user-provided residual routine. Output goes in *return_rnorm.

Generated by Doxygen

16.1 _braid.h File Reference 163

16.1.3.7 _braid_CopyFineToCoarse()

braid_Int _braid_CopyFineToCoarse (

braid_Core core)

Copy the initialized C-points on the fine grid, to all coarse levels. For instance, if a point k on level m corresponds to
point p on level 0, then they are equivalent after this function. The only exception is any spatial coarsening the user
decides to do. This function allows XBraid to skip all work on the first down cycle and start in FMG style on the coarsest
level. Assumes level 0 C-points are initialized.

16.1.3.8 _braid_Drive()

braid_Int _braid_Drive (
braid_Core core,

braid_Real localtime)

Main loop for MGRIT

16.1.3.9 _braid_ErrorHandler()

void _braid_ErrorHandler (
const char *x filename,
braid_Int line,
braid_Int ierr,

const char * msg)

16.1.3.10 _braid_FAccess()

braid_Int _braid FAccess (
braid_Core core,
braid_Int level,
braid_Int done)

Call the user's access function in order to give access to XBraid and the current vector at grid level and iteration xiter.
Most commonly, this lets the user write solutions to screen, disk, etc... The quantity rnorm denotes the last computed
residual norm, and done is a boolean indicating whether XBraid has finished iterating and this is the last Access call.

16.1.3.11 _braid_FASResidual()

braid_Int _braid_FASResidual (
braid_Core core,
braid_Int level,
braid_Int index,
braid_BaseVector ustop,

braid_BaseVector r)

Compute FAS residual = f - residual

Generated by Doxygen

164 CONTENTS

16.1.3.12 _braid_FCRelax()

braid_Int _braid_FCRelax (
braid_Core core,

braid_Int level)

Do nu sweeps of F-then-C relaxation on level

16.1.3.13 _braid_FinalizeErrorEstimates()

braid_Int _braid_FinalizeErrorEstimates (
braid_Core core,
braid_Real * estimate,

braid_Int length)

Finalize Richardson error estimates

16.1.3.14 _braid_Finterp()

braid_Int _braid FInterp (
braid_Core core,
braid_Int level)
F-Relax on level and interpolate to /evel-1
The output is set in the braid_Grid in core, so that the vector u on Jevel is created by interpolating from level+1.

If the user has set spatial refinement, then this user-defined routine is also called.

Parameters

core | braid_Core (_braid_Core) struct

level | interp from level to level+1

16.1.3.15 _braid_FRefine()

braid_Int _braid_FRefine (
braid_Core core,

braid_Int * refined ptr)

Create a new fine grid (level 0) and corresponding grid hierarchy by refining the current fine grid based on user-provided
refinement factors. Return the boolean refined ptr to indicate whether grid refinement was actually done. To simplify
the algorithm, refinement factors are automatically capped to be no greater than the coarsening factor (for level 0). The
grid data is also redistributed to achieve good load balance in the temporal dimension. If the refinement factor is 1 in
each time interval, no refinement is done.

Generated by Doxygen

16.1 _braid.h File Reference 165

16.1.3.16 _braid_FRefineSpace()

braid_Int _braid_FRefineSpace (
braid_Core core,

braid_Int * refined ptr)

Call spatial refinement on all local time steps if r_space has been set on the local processor. Returns refined_ptr == 2 if
refinment was completed at any point globally, otherwise returns 0. This is a helper function for _braid_FRefine().

16.1.3.17 _braid_FRestrict()

braid_Int _braid_FRestrict (
braid_Core core,
braid_Int level)

F-Relax on level and then restrict to level+1

The output is set in the braid_Grid in core, so that the restricted vectors va and fa will be created, representing level+1
versions of the unknown and rhs vectors.

If the user has set spatial coarsening, then this user-defined routine is also called.

If level==0, then rnorm_ptr will contain the residual norm.

Parameters

core | braid_Core (_braid_Core) struct

level | restrict from level to level+1

16.1.3.18 _braid_GetBlockDistInterval()

braid_Int _braid_GetBlockDistInterval (
braid_Int npoints,
braid_Int nprocs,
braid_Int proc,
braid_Int * ilower ptr,

braid_Int * iupper_ptr)

Returns the index interval for proc in a blocked data distribution.
16.1.3.19 _braid_GetBlockDistProc()

braid_Int _braid_GetBlockDistProc (
braid_Int npoints,
braid_Int nprocs,
braid_Int index,
braid_Int periodic,

braid_Int * proc_ptr)

Returns the processor that owns index in a blocked data distribution (returns -1 if index is out of range).

Generated by Doxygen

166

CONTENTS

16.1.3.20 _braid_GetCFactor()

braid_Int _braid_GetCFactor (
braid_Core core,
braid_Int level,
braid_Int * cfactor_ptr)

Returns the coarsening factor to use on grid level.

16.1.3.21 _braid_GetDistribution()

braid_Int _braid_GetDistribution (
braid_Core core,
braid_Int * ilower_ ptr,

braid_Int * iupper_ptr)

Returns the index interval for my processor on the finest grid level. For the processor rank calling this function, it returns
the smallest and largest time indices (ilower_ptr and iupper_ptr) that belong to that processor (the indices may be F or

C points).

16.1.3.22 _braid_GetDtk()

braid_Int _braid_GetDtk (

braid_Core core)

Propagate time step information required to compute the Richardson error estimate at each C-point. This can be done

at any time, but does require some communication. This fills in error_factors at the C points.

16.1.3.23 _braid_GetFullRNorm()

braid_Int _braid_GetFullRNorm (
braid_Core core,
braid_Int iter,

braid_Real * rnorm ptr)

Same as GetRNorm, but gets full residual norm.

16.1.3.24 _braid_GetProc()

braid_Int _braid_GetProc (
braid_Core core,
braid_Int level,
braid_Int index,

braid_Int * proc_ptr)

Returns the processor number in proc_ptr on which the time step index lives for the given level. Returns -1 if index is

out of range.

Generated by Doxygen

16.1 _braid.h File Reference 167

16.1.3.25 _braid_GetRNorm()

braid_Int _braid_GetRNorm (
braid_Core core,
braid_Int iter,

braid_Real % rnorm ptr)

Get the residual norm for iteration iter. If iter < 0, get the rnorm for the last iteration minus |iter|-1.

16.1.3.26 _braid_GetUInit()

braid_Int _braid_GetUInit (
braid_Core core,
braid_Int level,
braid_Int index,
braid_BaseVector u,

braid_BaseVector * ustop_ptr)

Return an initial guess in usfop_ptrto use in the step routine for implicit schemes. The value returned depends on the
storage options used. If the return value is NULL, no initial guess is available.

16.1.3.27 _braid_GridClean()

braid_Int _braid_GridClean (
braid_Core core,

_braid_Grid x grid)

Destroy the vectors on grid

16.1.3.28 _braid_GridDestroy()

braid_Int _braid_GridDestroy (
braid_Core core,

_braid_Grid x grid)

Destroy grid

16.1.3.29 _braid_GridInit()

braid_Int _braid_GridInit (
braid_Core core,
braid_Int level,
braid_Int ilower,
braid_Int iupper,
_braid_Grid *x grid ptr)

Create a new grid object grid_ptr with level indicator level. Arguments ilower and iupper correspond to the lower and
upper time index values for this processor on this grid.

Generated by Doxygen

168 CONTENTS

16.1.3.30 _braid_InitGuess()

braid_Int _braid_InitGuess (
braid_Core core,
braid_Int lIevel)

Set initial guess on level. Only C-pts are initialized on level 0, otherwise stored values are initialized based on restricted
fine-grid values.

16.1.3.31 _braid_InitHierarchy()

braid_Int _braid_InitHierarchy (
braid_Core core,
_braid_Grid * fine grid,
braid_Int refined)

Initialize grid hierarchy with fine_grid serving as the finest grid. Boolean refined indicates whether fine_grid was created
by refining a coarser grid (in the FRefine() routine), which has implications on how to define CF-intervals.

16.1.3.32 _braid_PrintSpatialNorms()

braid_Int _braid PrintSpatialNorms (
braid_Core core,
braid_Real * rnorms,

braid_Int n)

Print out the residual norm for every C-point. Processor 0 gathers all the rnorms and prints them in order through a
gatherv operator

16.1.3.33 _braid_Refine()

braid_Int _braid_Refine (
braid_Core core,
braid_Int level,
braid_Int f_index,
braid_Int c_index,
braid_BaseVector cvector,

braid_BaseVector *x fvector)

Refine in space on level by calling the user's refine function. The vector corresponding to the time step index c¢_index on
the coarse grid is refined to the time step index f_index on the fine grid. The output goes in fvector and the input vector
is cvector.

16.1.3.34 _braid_RefineBasic()

braid_Int _braid_RefineBasic (
braid_Core core,
braid_Int level,
braid_Int c¢_index,
braid_Real x f_ta,
braid_Real x c_ta,
braid_BaseVector cvector,

braid_BaseVector *x fvector)

Refine in space (basic routine)

Generated by Doxygen

16.1 _braid.h File Reference 169

16.1.3.35 _braid_Residual()

braid_Int _braid_Residual (
braid_Core core,
braid_Int level,
braid_Int index,
braid_BaseVector ustop,

braid_BaseVector r)

Compute residual r
16.1.3.36 _braid_SetFullRNorm()

braid_Int _braid_SetFullRNorm (
braid_Core core,
braid_Int iter,

braid_Real rnorm)

Same as SetRNorm, but sets full residual norm.
16.1.3.37 _braid_SetRNorm()

braid_Int _braid_SetRNorm (

braid_Core core,

braid_Int iter,

braid_Real rnorm)
Set the residual norm for iteration iter. If iter < 0, set the rnorm for the last iteration minus |iter|-1. Also set the initial
residual norm.

16.1.3.38 _braid_Step()

braid_Int _braid_Step (
braid_Core core,
braid_Int level,
braid_Int index,
braid_BaseVector ustop,

braid_BaseVector u)

Integrate one time step at time step index to time step index+1.

16.1.3.39 _braid_Sync()

braid_Int _braid_Sync (
braid_Core core,

braid_SyncStatus status)

Call user's sync function in order to give access to XBraid and the user's app. This is called once-per-processor at
various points in XBraid in order to allow the user to perform any book-keeping operations. status provides state
information about the current XBraid status and processor.

Generated by Doxygen

170 CONTENTS

16.1.3.40 _braid_UComminit()

braid_Int _braid_UCommInit (
braid_Core core,

braid_Int level)

This routine initiates communication under the assumption that work will be done on all intervals (F or C) on level. It
posts a receive for the point to the left of ilower (regardless whether ilower is F or C), and it posts a send of iupper if
iupper is a C point.

16.1.3.41 _braid_UComminitBasic()

braid_Int _braid_UCommInitBasic (
braid_Core core,
braid_Int level,
braid_Int recv_msg,
braid_Int send_msg,

braid_Int send now)

Basic communication (from the left, to the right). Arguments recv_msg and send_msg are booleans that indicate whether
or not to initiate a receive from the left and a send to the right respectively. Argument send_now indicates that the send
should be initiated immediately.

16.1.3.42 _braid_UComminitF()

braid_Int _braid_UCommInitF (
braid_Core core,

braid_Int level)

This routine initiates communication under the assumption that work will be done on only F-pt intervals on level. It only
posts a receive for the point to the left of ilower if ilower is an F point, and it posts a send of iupper if iupper is a C point.

16.1.3.43 _braid_UCommWait()

braid_Int _braid_UCommWait (
braid_Core core,
braid_Int level)

Finish up communication. On level, wait on both the recv and send handles at this level.

16.1.3.44 _braid_UGetindex()

braid_Int _braid_UGetIndex (
braid_Core core,
braid_Int lIevel,
braid_Int index,
braid_Int * uindex ptr,

braid_Int * store_flag _ptr)

Returns an index into the local u-vector for grid level at point index, and information on the storage status of the point. If
nothing is stored at that point, uindex = -1 and store_flag = -2. If only the shell is stored store_flag = -1, and if the whole
u-vector is stored, store_flag = 0.

Generated by Doxygen

16.1 _braid.h File Reference 171

16.1.3.45 _braid_UGetVector()

braid_Int _braid_UGetVector (
braid_Core core,
braid_Int level,
braid_Int index,

braid_BaseVector * u_ptr)

Returns a copy of the u-vector on grid /evel at point index. If index is my "receive index" (as set by UCommlnit(), for
example), the u-vector will be received from a neighbor processor. If the u-vector is not stored, NULL is returned.

16.1.3.46 _braid_UGetVectorRef()

braid_Int _braid_UGetVectorRef (
braid_Core core,
braid_Int level,
braid_Int index,

braid_BaseVector * u_ptr)

Returns a reference to the local u-vector on grid level at point index. If the u-vector is not stored, returns NULL.

16.1.3.47 _braid_USetVector()

braid_Int _braid_USetVector (
braid_Core core,
braid_Int level,
braid_Int index,
braid_BaseVector u,

braid_Int move)

Stores the u-vector on grid level at point index. If index is my "send index", a send is initiated to a neighbor processor. If
move is true, the u-vector is moved into core storage instead of copied. If the u-vector is not stored, nothing is done.

16.1.3.48 _braid_USetVectorRef()

braid_Int _braid_USetVectorRef (
braid_Core core,
braid_Int level,
braid_Int index,

braid_BaseVector u)

Stores a reference to the local u-vector on grid level at point index. If the u-vector is not stored, nothing is done.

16.1.4 Variable Documentation

Generated by Doxygen

172 CONTENTS

16.1.4.1 _braid_error_flag

braid_Int _braid _error_flag

This is the global XBraid error flag. If it is ever nonzero, an error has occurred.
16.1.4.2 _braid_printfile

FILE* _braid_printfile

This is the print file for redirecting stdout for all XBraid screen output

16.2 adjoint.h File Reference

Functions

* braid_Int _braid_VectorBarCopy (braid_VectorBar bar, braid_VectorBar xbar_ptr)

« braid_Int _braid_VectorBarDelete (braid_Core core, braid_VectorBar bar)

* braid_Int _braid_OptimDestroy (braid_Core core)

* braid_Int _braid_UpdateAdjoint (braid_Core core, braid_Real xrnorm_adj_ptr)

* braid_Int _braid_SetRNormAdjoint (braid_Core core, braid_Int iter, braid_Real rnorm_adj)

* braid_Int _braid_AddToObjective (braid_Core core, braid_BaseVector u, braid_ObjectiveStatus ostatus)
* braid_Int _braid_EvalObjective (braid_Core core)

* braid_Int _braid_EvalObjective_diff (braid_Core core)

* braid_Int _braid_InitAdjointVars (braid_Core core, _braid_Grid *fine_grid)

* braid_Int _braid_AdjointFeatureCheck (braid_Core core)

16.2.1 Detailed Description

Define internal XBraid headers for the adjoint feature.

This file contains the internal XBriad headers for the adjoint feature, e.g., the functions to wrap and call the users
objective function, and allocate adjoint (bar) variables.

16.2.2 Function Documentation

16.2.2.1 _braid_AddToObjective()

braid_Int _braid_AddToObjective (
braid_Core core,
braid_BaseVector u,

braid_ObjectiveStatus ostatus)

Evaluate the user's local objective function at time t and add it to the time-averaged objective function

Generated by Doxygen

16.2 adjoint.h File Reference 173

16.2.2.2 _braid_AdjointFeatureCheck()

braid_Int _braid_AdjointFeatureCheck (

braid_Core core)

Sanity check for non-supported adjoint features

16.2.2.3 _braid_EvalObjective()

braid_Int _braid_EvalObjective (

braid_Core core)

Evaluate the objective function: MPI_Allreduce the time average and postprocess the objective

16.2.2.4 _braid_EvalObjective_diff()

braid_Int _braid_EvalObjective_diff (

braid_Core core)

Differentiated objective function

16.2.2.5 _braid_InitAdjointVars()

braid_Int _braid_InitAdjointVars (
braid_Core core,

_braid_Grid x fine grid)

Allocate and initialize the adjoint variables

16.2.2.6 _braid_OptimDestroy()

braid_Int _braid_OptimDestroy (

braid_Core core)

Free memory of the optimization structure

16.2.2.7 _braid_SetRNormAdjoint()

braid_Int _braid_SetRNormAdjoint (
braid_Core core,
braid_Int iter,

braid_Real rnorm_adj)

Set adjoint residual norm

16.2.2.8 _braid_UpdateAdjoint()

braid_Int _braid_UpdateAdjoint (
braid_Core core,

braid_Real * rnorm adj_ptr)

Update the adjoint variables and compute adjoint residual norm Returns the tnorm of adjoint residual

Generated by Doxygen

174

CONTENTS

16.2.2.9 _braid_VectorBarCopy()

braid_Int _braid_VectorBarCopy (

braid_VectorBar bar,

braid_VectorBar * bar_ptr)

Shallow copy a braid_VectorBar shared pointer, bar_ptr is set to bar and the useCount is incremented by one.

16.2.2.10 _braid_VectorBarDelete()

braid_Int _braid_VectorBarDelete (

braid_Core core,

braid_VectorBar bar)

Reduce the useCount of a braid_VectorBar shared pointer Free the pointer memory if useCount is zero.

16.3

base.h File Reference

Functions

braid_Int _braid_BaseStep (braid_Core core, braid_App app, braid_BaseVector ustop, braid_BaseVector fstop,
braid_BaseVector u, braid_Int level, braid_StepStatus status)

braid_Int _braid_Baselnit (braid_Core core, braid_App app, braid_Real t, braid_BaseVector *xu_ptr)

braid_Int _braid_BaseClone (braid_Core core, braid_App app, braid_BaseVector u, braid_BaseVector xv_ptr)
braid_Int _braid_BaseFree (braid_Core core, braid_App app, braid_BaseVector u)

braid_Int _braid_BaseSum (braid_Core core, braid_App app, braid_Real alpha, braid_BaseVector x, braid_Real
beta, braid_BaseVector y)

braid_Int _braid_BaseSpatialNorm (braid_Core core, braid_App app, braid_BaseVector u, braid_Real xnorm_ptr)
braid_Int _braid_BaseAccess (braid_Core core, braid_App app, braid_BaseVector u, braid_AccessStatus status)
braid_Int _braid_BaseSync (braid_Core core, braid_App app, braid_SyncStatus status)

braid_Int _braid_BaseBufSize (braid_Core core, braid_App app, braid_Int xsize_ptr, braid_BufferStatus status)
braid_Int _braid_BaseBufPack (braid_Core core, braid_App app, braid_BaseVector u, void xbuffer, braid_Buffer«
Status status)

braid_Int _braid_BaseBufUnpack (braid_Core core, braid_App app, void xbuffer, braid_BaseVector *u_ptr,
braid_BufferStatus status)

braid_Int _braid_BaseObjectiveT (braid_Core core, braid_App app, braid_BaseVector u, braid_ObjectiveStatus
ostatus, braid_Real xobjT_ptr)

braid_Int _braid_BaseResidual (braid_Core core, braid_App app, braid_BaseVector ustop, braid_BaseVector r,
braid_StepStatus status)

braid_Int _braid_BaseFullResidual (braid_Core core, braid_App app, braid_BaseVector r, braid_BaseVector u,
braid_StepStatus status)

braid_Int _braid_BaseSCoarsen (braid_Core core, braid_App app, braid_BaseVector fu, braid_BaseVector xcu«
_ptr, braid_CoarsenRefStatus status)

braid_Int _braid _BaseSRefine (braid_Core core, braid_App app, braid_BaseVector cu, braid_BaseVector *fu_ptr,
braid_CoarsenRefStatus status)

braid_Int _braid_BaseSInit (braid_Core core, braid_App app, braid_Real t, braid_BaseVector xu_ptr)

braid_Int _braid_BaseSClone (braid_Core core, braid_App app, braid_BaseVector u, braid_BaseVector *v_pitr)
braid_Int _braid_BaseSFree (braid_Core core, braid_App app, braid_BaseVector u)

braid_Int _braid_BaseTimeGrid (braid_Core core, braid_App app, braid_Real xta, braid_Int xilower, braid_Int
xiupper)

Generated by Doxygen

16.3

base.h File Reference 175

16.3.1

braid_Int _braid_BaseStep_diff (_braid_Action xaction)
braid_Int _braid_BaseClone_diff (_braid_Action xaction)
braid_Int _braid_BaseSum_diff (_braid_Action xaction)
braid_Int _braid_BaseObjectiveT_diff (_braid_Action xaction)
braid_Int _braid_BaseBufPack_diff (_braid_Action xaction)
braid_Int _braid_BaseBufUnpack_diff (_braid_Action xaction)
braid_Int _braid_Baselnit_diff (_braid_Action xaction)

Detailed Description

Define XBraid internal headers for wrapper routines of user-defined functions.

The XBraid internal headers defined here wrap the user-defined routines. If this is a normal XBraid run (i.e., no adjoint),
then the wrappers serve no function, and just call the user's routines. If this is an XBraid_Adjoint run, then these routines
record themselves to the action tape and push state and bar vectors to the primal and the bar tape, respectively. These
vectors are then later popped from the tape and passed to the user diff routines in order to compute the differentiated
actions. This is a form of automatic differentiation to compute the adjoint cycle.

16.3.2 Function Documentation

16.3.2.1 _braid_BaseAccess()

braid_Int _braid_BaseAccess (

braid_Core core,
braid_App app,
braid_BaseVector u,

braid_AccessStatus status)

This calls the user's Access routine. If (adjoint): also record the action

Parameters
core braid_Core structure
app user-defined _braid_App structure
u vector to be accessed

status | can be querried for info like the current XBraid lteration

16.3.2.2 _braid_BaseBufPack()

braid_Int _braid_BaseBufPack (

braid_Core core,

braid_App app,

Generated by Doxygen

176 CONTENTS

braid_BaseVector u,
void *x buffer,

braid_BufferStatus status)

This calls the user's BufPack routine. If (adjoint): also record the action, and push to the bar tape.

Parameters

core braid_Core structure
app user-defined _braid_App structure

u vector to pack into buffer

buffer | output, MPI buffer containing u

status | can be querried for info about the message

16.3.2.3 _braid_BaseBufPack_diff()

braid_Int _braid_BaseBufPack_diff (

_braid_Action x action)

This pops the bar vector from the tape, and then performs the differentiated BufPack action using that vector as input:
MPI_Recv(utmp) ubar += utmp

Parameters

‘ action ‘ _braid_Action structure, holds information about the primal XBraid action

16.3.2.4 _braid_BaseBufSize()

braid_Int _braid_BaseBufSize (
braid_Core core,
braid_App app,
braid_Int * size_ptr,
braid_BufferStatus status)

This calls the user's BufSize routine. If (adjoint): nothing

Parameters
core braid_Core structure
app user-defined _braid_App structure

size_ptr | upper bound on vector size in bytes

status can be querried for info about the message type

Generated by Doxygen

16.3 base.h File Reference 177

16.3.2.5 _braid_BaseBufUnpack()

braid_Int _braid_BaseBufUnpack (
braid_Core core,
braid_App app,
void * buffer,
braid_BaseVector * u_ptr,
braid_BufferStatus status)

This calls the user's BufUnPack routine. If (adjoint): also record the action, initialize the bar vector with zero and push it
to the bar tape.

Parameters

core braid_Core structure
app user-defined _braid_App structure
buffer | MPI Buffer to unpack and place in u_ptr

u_ptr | output, braid_Vector containing buffer's data

status | can be querried for info about the message type

16.3.2.6 _braid_BaseBufUnpack_diff()

braid_Int _braid_BaseBufUnpack_diff (

_braid_Action x action)

This pops the bar vector from the tape, and then performs the differentiated BufUnPack action using that vector as
input: MPI_Send(ubar); ubar = 0.0

Parameters

‘ action ‘ _braid_Action structure, holds information about the primal XBraid action

16.3.2.7 _braid_BaseClone()

braid_Int _braid_BaseClone (
braid_Core core,
braid_App app,
braid_BaseVector u,

braid_BaseVector * v_ptr)

This initializes a braid_BaseVector and calls the user's clone routine. If (adjoint): also record the action, initialize a
barVector with zero and push to the bar tape

Generated by Doxygen

178 CONTENTS

Parameters

core | braid_Core structure

app user-defined _braid_App structure

u vector to clone

v_ptr | output, newly allocated and cloned vector

16.3.2.8 _braid_BaseClone_diff()

braid_Int _braid_BaseClone_diff (

_braid_Action % action)

This pops bar vectors from the tape, and then performs the differentiated clone action using those vectors as input: ubar
+= vbar vbar = 0.0

Parameters

‘ action ‘ _braid_Action structure, holds information about the primal XBraid action

16.3.2.9 _braid_BaseFree()

braid_Int _braid BaseFree (
braid_Core core,
braid_App app,

braid_BaseVector u)

This calls the user's free routine. If (adjoint): also record the action, and free the bar vector.

Parameters

core | braid_Core structure
app | user-defined _braid_App structure

u vector to free

16.3.2.10 _braid_BaseFullResidual()

braid_Int _braid_BaseFullResidual (
braid_Core core,
braid_App app,

braid_BaseVector r,

Generated by Doxygen

16.3 base.h File Reference

179

This calls the user's FullResidual routine (full_rnorm_res). If (adjoint): nothing

braid_BaseVector u,

braid_StepStatus status)

Parameters

core braid_Core structure

app user-defined _braid_App structure

r output, residual at fstop

u input, u vector at tstop

status | braid_Status structure (pointer to the core)
16.3.2.11 _braid_Baselnit()

braid_Int _braid_BaseInit (

braid_Core core,
braid_App app,
braid_Real ¢t,

braid_BaseVector * u_ptr)

This initializes a braid_BaseVector and calls the user's init routine. If (adjoint): also record the action, initialize barVector
with zero and push to the bar tape.

Parameters

core

braid_Core structure

app

user-defined _braid_App structure

t

current time value for u_ptr

u_ptr

output, newly allocated and initialized vector

16.3.2.12

_braid_Baselnit_diff()

braid_Int _braid_BaseInit_diff (

_braid_Action x action)

This pops the bar vector from the tape, and then call's the user's differentiated init routine (init_diff) using that vector as
input. Note: init_diff is optional for the user.

Parameters

‘ action ‘ _braid_Action structure, holds information about the primal XBraid action ‘

Generated by Doxygen

180 CONTENTS

16.3.2.13 _braid_BaseObjectiveT()

braid_Int _braid_BaseObjectiveT (
braid_Core core,
braid_App app,
braid_BaseVector u,
braid_ObjectiveStatus ostatus,

braid_Real * objI_ptr)

If (adjoint): This calls the user's ObjectiveT routine, records the action, and pushes to the state and bar tapes.

Parameters
core braid_Core structure
app user-defined _braid_App structure
u input, state vector at current time

ostatus | status structure for querying time, index, etc.

objT_ptr | output, objective function value at current time

16.3.2.14 _braid_BaseObjectiveT_diff()

braid_Int _braid_BaseObjectiveT_diff (

_braid_Action x action)

This pops state and bar vectors from the tape, and then calls the user's differentiated ObjectiveT routine (objT_diff)
using those vectors as input: ubar = (d(objectiveT)/d(u))T * f_bar

Parameters

‘ action ‘ _braid_Action structure, holds information about the primal XBraid action

16.3.2.15 _braid_BaseResidual()

braid_Int _braid BaseResidual (
braid_Core core,
braid_App app,
braid_BaseVector ustop,
braid_BaseVector r,

braid_StepStatus status)

This calls the user's Residual routine. If (adjoint): nothing

Generated by Doxygen

16.3 base.h File Reference

181

Parameters
core braid_Core structure
app user-defined _braid_App structure
ustop | input, u vector at tstop
r output, residual at tstop (at input, equals u at tstart)
status | braid_Status structure (pointer to the core)
16.3.2.16 _braid_BaseSClone()

braid_Int _braid_BaseSClone (

This clones a shell baseVector and call's the user's SClone routine. If (adjoint): nothing

braid_Core core,
braid_App app,
braid_BaseVector u,

braid_BaseVector * v_ptr)

Parameters

core | braid Core structure

app user-defined _braid_App structure

u vector to clone

v_ptr | output, newly allocated and cloned vector shell
16.3.2.17 _braid_BaseSCoarsen()

braid_Int _braid_BaseSCoarsen (

This initializes a baseVector and calls the user's SCoarsen routine. If (adjoint): nothing

braid_Core core,
braid_App app,
braid_BaseVector fu,
braid_BaseVector * cu_ptr,

braid_CoarsenRefStatus status)

Parameters
core braid_Core structure
app user-defined _braid_App structure
fu braid_BaseVector to refine
cu_ptr | output, refined vector
status | braid_Status structure (pointer to the core)

Generated by Doxygen

182 CONTENTS

16.3.2.18 _braid_BaseSFree()

braid_Int _braid_BaseSFree (
braid_Core core,
braid_App app,

braid_BaseVector u)

Call the user's shell free (SFree) routine. If (adjoint): nothing

Parameters

core | braid_Core structure
app | user-defined _braid_App structure

u vector to free (keeping the shell)

16.3.2.19 _braid_BaseSInit()

braid_Int _braid BaseSInit (
braid_Core core,
braid_App app,
braid_Real ¢,

braid_BaseVector * u_ptr)
This initializes a shell baseVector and call's the user's Sinit routine. If (adjoint): nothing

Parameters

core | braid_Core structure

app user-defined _braid_App structure

t time value for u_ptr

u_ptr | output, newly allocated and initialized vector shell

16.3.2.20 _braid_BaseSpatialNorm()

braid_Int _braid_BaseSpatialNorm (
braid_Core core,
braid_App app,
braid_BaseVector u,

braid_Real * norm ptr)

This calls the user's SpatialNorm routine. If (adjoint): nothing

Generated by Doxygen

16.3 base.h File Reference 183

Parameters
core braid_Core structure
app user-defined _braid_App structure
u vector to norm
norm_ptr | output, norm of braid_Vector (this is a spatial norm)

16.3.2.21 _braid_BaseSRefine()

braid_Int _braid BaseSRefine (
braid_Core core,
braid_App app,
braid_BaseVector cu,
braid_BaseVector * fu ptr,

braid_CoarsenRefStatus status)

This initializes a baseVector and calls the user's SRefine routine. If (adjoint): nothing

Parameters

core braid_Core structure
app user-defined _braid_App structure

cu braid_BaseVector to refine
fu_ptr | output, refined vector

status | braid_Status structure (pointer to the core)

16.3.2.22 _braid_BaseStep()

braid_Int _braid_BaseStep (
braid_Core core,
braid_App app,
braid_BaseVector ustop,
braid_BaseVector fstop,
braid_BaseVector u,
braid_Int level,
braid_StepStatus status)

This calls the user's step routine. If (adjoint): also record the action, and push state and bar vector to primal and bar
tapes. braid_Status structure (pointer to the core)

Parameters

core braid_Core structure
app user-defined _braid_App structure

Generated by Doxygen

184

CONTENTS

Parameters

ustop | input, u vector at tstop

fstop | input, right-hand-side at tstop

u input/output, initially u vector at tstart, upon exit, u vector at tstop
level | current time grid level

16.3.2.23 _braid_BaseStep_diff()

braid_Int _braid_BaseStep_diff (

_braid_Action % action)

This pops state and bar vectors from the tape, and then calls the user's differentiated step routine (step_diff) using those

vectors as input. ubar = (d(step)/d(u))T = ubar

Parameters

‘ action ‘ _braid_Action structure, holds information about the primal XBraid action

16.3.2.24 _braid_BaseSum()

braid_Int _braid BaseSum (
braid_Core core,
braid_App app,
braid_Real alpha,
braid_BaseVector x,
braid_Real beta,

braid_BaseVector y)

This calls the user's sum routine. If (adjoint): also record the action, and push to the bar tape.

Parameters

core braid_Core structure
app user-defined _braid_App structure
alpha | scalar for AXPY

X vector for AXPY
beta scalar for AXPY
y output and vector for AXPY

Generated by Doxygen

16.3 base.h File Reference 185

16.3.2.25 _braid_BaseSum_diff()

braid_Int _braid_BaseSum_diff (

_braid_Action x action)

This pops bar vectors from the tape, and then performs the differentiated sum action using those vectors as input: xbar
+= alpha * ybar ybar = beta * ybar

Parameters

‘ action ‘ _braid_Action structure, holds information about the primal XBraid action

16.3.2.26 _braid_BaseSync()

braid_Int _braid_BaseSync (
braid_Core core,
braid_App app,
braid_SyncStatus status)

This calls the user's Sync routine. If (adjoint): nothing

Parameters

core braid_Core structure
app user-defined _braid_App structure

status | can be querried for info like the current XBraid Iteration

16.3.2.27 _braid_BaseTimeGrid()

braid_Int _braid_BaseTimeGrid (
braid_Core core,
braid_App app,
braid_Real * ta,
braid_Int *x ilower,

braid_Int * iupper)

This calls the user's TimeGrid routine, which allows the user to explicitly define the initial time grid. If (adjoint): nothing

Parameters

core braid_Core structure
app user-defined _braid_App structure

ta temporal grid on level 0O (slice per processor)

ilower | lower time index value for this processor

iupper | upper time index value for this processor

Generated by Doxygen

186 CONTENTS

16.4 braid.h File Reference

Macros

« #define braid_ FMANGLE 1

« #define braid_Fortran_SpatialCoarsen 0

« #define braid_Fortran_Residual 1

« #define braid_Fortran_TimeGrid 1

* #define braid_Fortran_Sync 1

« #define braid_INVALID_RNORM -1

« #define braid_ ERROR_GENERIC 1 /x generic error */

« #define braid_ ERROR_MEMORY 2 /x unable to allocate memory x/
« #define braid_ ERROR_ARG 4 /x argument error */

« #define braid RAND_MAX 32768

Typedefs

* typedef struct _braid_App_struct * braid_App

* typedef struct _braid_Vector_struct * braid_Vector

* typedef braid_Int(x braid_PtFcnStep) (braid_App app, braid_Vector ustop, braid_Vector fstop, braid_Vector u,
braid_StepStatus status)

+ typedef braid_Int(x braid_PtFcnlnit) (braid_App app, braid_Real t, braid_Vector xu_ptr)

+ typedef braid_Int(x braid_PtFcnClone) (braid_App app, braid_Vector u, braid_Vector xv_ptr)

« typedef braid_Int(x braid_PtFcnFree) (braid_App app, braid_Vector u)

« typedef braid_Int(x braid_PtFcnSum) (braid_App app, braid_Real alpha, braid_Vector x, braid_Real beta, braid«
_Vectory)

+ typedef braid_Int(x braid_PtFcnSpatialNorm) (braid_App app, braid_Vector u, braid_Real xnorm_ptr)

+ typedef braid_Int(x braid_PtFcnAccess) (braid_App app, braid_Vector u, braid_AccessStatus status)

« typedef braid_Int(x braid_PtFcnSync) (braid_App app, braid_SyncStatus status)

* typedef braid_Int(x braid_PtFcnBufSize) (braid_App app, braid_Int xsize_ptr, braid_BufferStatus status)

« typedef braid_Int(x braid_PtFcnBufPack) (braid_App app, braid_Vector u, void *buffer, braid_BufferStatus status)

« typedef braid_Int(x braid_PtFcnBufUnpack) (braid_App app, void *buffer, braid_Vector xu_ptr, braid_BufferStatus
status)

« typedef braid_Int(x braid_PtFcnResidual) (braid_App app, braid_Vector ustop, braid_Vector r, braid_StepStatus
status)

+ typedef braid_Int(x braid_PtFcnSCoarsen) (braid_App app, braid_Vector fu, braid_Vector xcu_ptr, braid_«
CoarsenRefStatus status)

« typedef braid_Int(x braid_PtFcnSRefine) (braid_App app, braid_Vector cu, braid_Vector xfu_ptr, braid_Coarsen«
RefStatus status)

* typedef braid_Int(x braid_PtFcnSInit) (braid_App app, braid_Real t, braid_Vector xu_ptr)

« typedef braid_Int(x braid_PtFcnSClone) (braid_App app, braid_Vector u, braid_Vector *v_ptr)

« typedef braid_Int(x braid_PtFcnSFree) (braid_App app, braid_Vector u)

« typedef braid_Int(x braid_PtFcnTimeGrid) (braid_App app, braid_Real xta, braid_Int xilower, braid_Int xiupper)

+ typedef braid_Int(x braid_PtFcnObjectiveT) (braid_App app, braid_Vector u, braid_ObjectiveStatus ostatus,
braid_Real xobjectiveT_ptr)

« typedef braid_Int(x braid_PtFcnObjective TDiff) (braid_App app, braid_Vector u, braid_Vector u_bar, braid_Real
F_bar, braid_ObjectiveStatus ostatus)

* typedef braid_Int(x braid_PtFcnPostprocessObjective) (braid_App app, braid_Real sum_obj, braid_Real
xpostprocess_ptr)

* typedef braid_Int(x braid_PtFcnPostprocessObjective_diff) (braid_App app, braid_Real sum_obj, braid_Real xF«
_bar_ptr)

« typedef braid_Int(x braid_PtFcnStepDiff) (braid_App app, braid_Vector ustop, braid Vector u, braid_Vector
ustop_bar, braid_Vector u_bar, braid_StepStatus status)

« typedef braid_Int(x braid_PtFcnResetGradient) (braid_App app)

« typedef struct _braid_Core_struct * braid_Core

Generated by Doxygen

16.4 braid.h File Reference 187

Functions

* braid_Int braid_Init (MPI_Comm comm_world, MPI_Comm comm, braid_Real tstart, braid_Real tstop, braid_«
Int ntime, braid_App app, braid_PtFcnStep step, braid_PtFcnlnit init, braid_PtFcnClone clone, braid_PtFcnFree
free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnAccess access, braid_PtFcnBuf«—
Size bufsize, braid_PtFcnBufPack bufpack, braid _PtFcnBufUnpack bufunpack, braid_Core xcore_ptr)

* braid_Int braid_Drive (braid_Core core)

* braid_Int braid_Destroy (braid_Core core)

* braid_Int braid_PrintStats (braid_Core core)

* braid_Int braid_WriteConvHistory (braid_Core core, const char xfilename)

* braid_Int braid_SetMaxLevels (braid_Core core, braid_Int max_levels)

* braid_Int braid_SetincrMaxLevels (braid_Core core)

* braid_Int braid_SetSkip (braid_Core core, braid_Int skip)

* braid_Int braid_SetRefine (braid_Core core, braid_Int refine)

* braid_Int braid_SetMaxRefinements (braid_Core core, braid_Int max_refinements)

* braid_Int braid_SetTPointsCutoff (braid_Core core, braid_Int tpoints_cutoff)

* braid_Int braid_SetMinCoarse (braid_Core core, braid_Int min_coarse)

* braid_Int braid_SetAbsTol (braid_Core core, braid_Real atol)

* braid_Int braid_SetRelTol (braid_Core core, braid_Real rtol)

« braid_Int braid_SetNRelax (braid_Core core, braid_Int level, braid_Int nrelax)

* braid_Int braid_SetCRelaxWt (braid_Core core, braid_Int level, braid_Real Cwt)

* braid_Int braid_SetCFactor (braid_Core core, braid_Int level, braid_Int cfactor)

* braid_Int braid_SetMaxlter (braid_Core core, braid_Int max_iter)

* braid_Int braid_SetFMG (braid_Core core)

* braid_Int braid_SetNFMG (braid_Core core, braid_Int k)

* braid_Int braid_SetNFMGVcyc (braid_Core core, braid_Int nfmg_Vcyc)

* braid_Int braid_SetStorage (braid_Core core, braid_Int storage)

* braid_Int braid_SetTemporalNorm (braid_Core core, braid_Int tnorm)

* braid_Int braid_SetResidual (braid_Core core, braid_PtFcnResidual residual)

* braid_Int braid_SetFullRNormRes (braid_Core core, braid_PtFcnResidual residual)

* braid_Int braid_SetTimeGrid (braid_Core core, braid_PtFcnTimeGrid tgrid)

* braid_Int braid_SetPeriodic (braid_Core core, braid_Int periodic)

* braid_Int braid_SetSpatialCoarsen (braid_Core core, braid_PtFcnSCoarsen scoarsen)

* braid_Int braid_SetSpatialRefine (braid_Core core, braid_PtFcnSRefine srefine)

* braid_Int braid_SetSync (braid_Core core, braid_PtFcnSync sync)

* braid_Int braid_SetPrintLevel (braid_Core core, braid_Int print_level)

* braid_Int braid_SetFilelOLevel (braid_Core core, braid_Int io_level)

* braid_Int braid_SetPrintFile (braid_Core core, const char xprintfile_name)

« braid_Int braid_SetDefaultPrintFile (braid_Core core)

« braid_Int braid_SetAccessLevel (braid_Core core, braid_Int access_level)

* braid_Int braid_SplitCommworld (const MPI_Comm xcomm_world, braid_Int px, MPI_Comm xcomm_x, MP|_«
Comm xcomm_t)

* braid_Int braid_SetShell (braid_Core core, braid_PtFcnSinit sinit, braid_PtFcnSClone sclone, braid_PtFcnSFree
sfree)

* braid_Int braid_GetNumlter (braid_Core core, braid_Int xniter_ptr)

* braid_Int braid_GetRNorms (braid_Core core, braid_Int *«nrequest_ptr, braid_Real *rnorms)

* braid_Int braid_GetNLevels (braid_Core core, braid_Int xnlevels_ptr)

* braid_Int braid_GetSpatialAccuracy (braid_StepStatus status, braid_Real loose_tol, braid_Real tight_tol, braid«
_Real *tol_ptr)

* braid_Int braid_SetSeqgSoln (braid_Core core, braid_Int seq_soln)

* braid_Int braid_GetMyID (braid_Core core, braid_Int xmyid_ptr)

Generated by Doxygen

188

CONTENTS

16.4.1

braid_Int braid_Rand (void)
braid_Int braid_InitAdjoint (braid_PtFcnObjectiveT objectiveT, braid_PtFcnObjective TDiff objectiveT_diff, braid«

_ PtFenStepDiff step_diff, braid_PtFcnResetGradient reset_gradient, braid_Core xcore_ptr)

braid_Int braid_SetTStartObjective (braid_Core core, braid_Real tstart_obj)

braid_Int braid_SetTStopObjective (braid_Core core, braid_Real tstop_obj)

braid_Int braid_SetPostprocessObijective (braid_Core core, braid_PtFcnPostprocessObjective post_fcn)
braid_Int braid_SetPostprocessObjective_diff (braid_Core core, braid_PtFcnPostprocessObjective_diff post «
fen_diff)

braid_Int braid_SetAbsTolAdjoint (braid_Core core, braid_Real tol_adj)

braid_Int braid_SetRelTolAdjoint (braid_Core core, braid_Real rtol_adj)

braid_Int braid_SetObjectiveOnly (braid_Core core, braid_Int boolean)

braid_Int braid_GetObjective (braid_Core core, braid_Real *objective_ptr)

braid_Int braid_GetRNormAdjoint (braid_Core core, braid_Real xrnorm_adj)

braid_Int braid_SetRichardsonEstimation (braid_Core core, braid_Int est_error, braid_Int richardson, braid_Int
local_order)

Detailed Description

Define headers for user-interface routines.

This file contains user-routines used to allow the user to initialize, run and get and set options for a XBraid solver.

16.5

braid_defs.h File Reference

Macros

#define braid_Int_Max INT_MAX;
#define braid_Int_Min INT_MIN;

#define braid_MPI_REAL MPI_DOUBLE
#define braid_MPI_INT MPI_INT

Typedefs

16.5.1

typedef int braid_Int
typedef double braid_Real

Detailed Description

Definitions of braid types, error flags, etc...

16.5.2 Macro Definition Documentation

Generated by Doxygen

16.5 braid_defs.h File Reference 189

16.5.2.1 braid_Int_Max

#define braid_Int_Max INT_MAX;

16.5.2.2 braid_Int_Min

#define braid_Int_Min INT_MIN;

16.5.2.3 braid_MPI_INT

#define braid_MPI_INT MPI_INT

16.5.2.4 braid_MPI_REAL

#define braid MPI_REAL MPI_DOUBLE

16.5.3 Typedef Documentation

16.5.3.1 braid_Int

typedef int braid_Int

Defines integer type

16.5.3.2 braid_Real

typedef double braid_Real

Defines floating point type

Generated by Doxygen

190 CONTENTS

16.6 braid_status.h File Reference

Macros

« #define ACCESSOR_HEADER_GET1(stype, param, vtype1) braid_Int braid_##stype##StatusGet##param(braid«
#i#tstype##Status s, braid##vtypel *xv1);

» #define ACCESSOR_HEADER_GET1_IN3(stype, param, vtypel, vtype2, vtype3, vtype4) braid_Int braid_«
#i#stype##StatusGet##tparam(braid_##stype##Status s, braid_##vtypel *v1, braid_##vtype2 v2, braid_##vtype3
v3, braid_##vtype4 v4);

 #define ACCESSOR_HEADER_GET2(stype, param, vtypel, vtype2) braid_Int braid_##stype##Status«—
Get#itparam(braid_##tstype##Status s, braid_##vtype1 *v1, braid_##vtype2 xv2);

+ #define ACCESSOR_HEADER_GET2_IN1(stype, param, vtypel, vtype2, vtype3) braid Int braid «
#i#stype#i#tStatusGet##param(braid_##stype##Status s, braid_##vtypel xv1, braid_##viype2 *v2, braid_«~
#i#vtype3 v3);

« #define ACCESSOR_HEADER_GET3(stype, param, vtype1, vtype2, vtype3) braid_Int braid_##stype##Status«+
Get##tparam(braid_##stype##Status s, braid_##vtype1 xv1, braid_##vtype2 xv2, braid_##vtype3 *v3);

» #define ACCESSOR_HEADER_GET4(stype, param, vtypel, vtype2, vtype3, vitype4) braid_Int braid_«
#itstype##StatusGet#t#param(braid_##stype##Status s, braid_##vtypel xv1, braid_##viype2 *v2, braid_«
#i#vtype3 xv3, braid_##vtyped xv4);

+ #define ACCESSOR_HEADER_GET5(stype, param, vtypel, vtype2, vtype3, vtype4, vtypeb) braid_Int braid«
#i#tstype#itStatusGet#t#param(braid##stype##Status s, braid_##vtypel *v1, braid_##vtype2 *v2, braid <«
##vtype3 xv3, braid_##vtype4d *v4, braid_##vtype5 xv5);

« #define ACCESSOR_HEADER_SET1(stype, param, vtype1) braid_Int braid_##stype##StatusSet##param(braid«
#itstypei#itStatus s, braid##vtypel v1);

« #define braid_ASCaller_FInterp 0

« #tdefine braid_ASCaller_FRestrict 1

« #define braid_ASCaller_FRefine 2

 #define braid ASCaller FAccess 3

« #define braid_ASCaller_FRefine_AfterlnitHier 4

+ #define braid_ASCaller_Drive_TopCycle 5

Functions

* braid_Int braid_StatusGetT (braid_Status status, braid_Real *t_ptr)

* braid_Int braid_StatusGetTIndex (braid_Status status, braid_Int xidx_ptr)

« braid_Int braid_StatusGetlter (braid_Status status, braid_Int xiter_ptr)

* braid_Int braid_StatusGetLevel (braid_Status status, braid_Int xlevel_ptr)

« braid_Int braid_StatusGetNLevels (braid_Status status, braid_Int xnlevels_ptr)

* braid_Int braid_StatusGetNRefine (braid_Status status, braid_Int xnrefine_ptr)

* braid_Int braid_StatusGetNTPoints (braid_Status status, braid_Int xntpoints_ptr)

* braid_Int braid_StatusGetResidual (braid_Status status, braid_Real xrnorm_ptr)

* braid_Int braid_StatusGetDone (braid_Status status, braid_Int xdone_ptr)

* braid_Int braid_StatusGetTIUL (braid_Status status, braid_Int xiloc_upper, braid_Int xiloc_lower, braid_Int level)

* braid_Int braid_StatusGetTimeValues (braid_Status status, braid_Real xxtvalues_ptr, braid_Int i_upper, braid_Int
i_lower, braid_Int level)

* braid_Int braid_StatusGetTILD (braid_Status status, braid_Real *t_ptr, braid_Int xiter_ptr, braid_Int xlevel_ptr,
braid_Int xdone_ptr)

+ braid_Int braid_StatusGetWrapperTest (braid_Status status, braid_Int xwtest_ptr)

* braid_Int braid_StatusGetCallingFunction (braid_Status status, braid_Int xcfunction_ptr)

* braid_Int braid_StatusGetCTprior (braid_Status status, braid_Real *ctprior_ptr)

Generated by Doxygen

16.6 braid_status.h File Reference 191

* braid_Int braid_StatusGetCTstop (braid_Status status, braid_Real xctstop_ptr)

* braid_Int braid_StatusGetFTprior (braid_Status status, braid_Real «ftprior_ptr)

* braid_Int braid_StatusGetFTstop (braid_Status status, braid_Real *ftstop_ptr)

* braid_Int braid_StatusGetTpriorTstop (braid_Status status, braid_Real *t_ptr, braid_Real xftprior_ptr, braid_Real
«ftstop_ptr, braid_Real xctprior_ptr, braid_Real xctstop_ptr)

* braid_Int braid_StatusGetTstop (braid_Status status, braid_Real xtstop_ptr)

* braid_Int braid_StatusGetTstartTstop (braid_Status status, braid_Real xtstart_ptr, braid_Real *xtstop_ptr)

* braid_Int braid_StatusGetTol (braid_Status status, braid_Real *tol_ptr)

* braid_Int braid_StatusGetRNorms (braid_Status status, braid_Int xnrequest_ptr, braid_Real xrnorms_ptr)

* braid_Int braid_StatusGetOldFineTolx (braid_Status status, braid_Real *xold_fine_tolx_ptr)

* braid_Int braid_StatusSetOldFineTolx (braid_Status status, braid_Real old_fine_tolx)

* braid_Int braid_StatusSetTightFineTolx (braid_Status status, braid_Real tight_fine_tolx)

* braid_Int braid_StatusSetRFactor (braid_Status status, braid_Real rfactor)

* braid_Int braid_StatusSetRefinementDtValues (braid_Status status, braid_Real rfactor, braid_Real *dtarray)

* braid_Int braid_StatusSetRSpace (braid_Status status, braid_Real r_space)

+ braid_Int braid_StatusGetMessageType (braid_Status status, braid_Int xmessagetype_ptr)

* braid_Int braid_StatusSetSize (braid_Status status, braid_Real size)

* braid_Int braid_StatusGetSingleErrorEstStep (braid_Status status, braid_Real xestimate)

* braid_Int braid_StatusGetSingleErrorEstAccess (braid_Status status, braid_Real xestimate)

* braid_Int braid_StatusGetNumErrorEst (braid_Status status, braid_Int xnpoints)

« braid_Int braid_StatusGetAllErrorEst (braid_Status status, braid_Real xerror_est)

* braid_Int braid_AccessStatusGetT (braid_AccessStatus s, braid_Real xv1)

* braid_Int braid_AccessStatusGetTIndex (braid_AccessStatus s, braid_Int xv1)

* braid_Int braid_AccessStatusGetlter (braid_AccessStatus s, braid_Int xv1)

* braid_Int braid_AccessStatusGetLevel (braid_AccessStatus s, braid_Int xv1)

* braid_Int braid_AccessStatusGetNLevels (braid_AccessStatus s, braid_Int xv1)

* braid_Int braid_AccessStatusGetNRefine (braid_AccessStatus s, braid_Int xv1)

* braid_Int braid_AccessStatusGetNTPoints (braid_AccessStatus s, braid_Int xv1)

* braid_Int braid_AccessStatusGetResidual (braid_AccessStatus s, braid_Real xv1)

* braid_Int braid_AccessStatusGetDone (braid_AccessStatus s, braid_Int xv1)

* braid_Int braid_AccessStatusGetTILD (braid_AccessStatus s, braid_Real *xv1, braid_Int xv2, braid_Int *v3,
braid_Int xv4)

* braid_Int braid_AccessStatusGetWrapperTest (braid_AccessStatus s, braid_Int xv1)

* braid_Int braid_AccessStatusGetCallingFunction (braid_AccessStatus s, braid_Int xv1)

* braid_Int braid_AccessStatusGetSingleErrorEstAccess (braid_AccessStatus s, braid_Real *v1)

* braid_Int braid_SyncStatusGetTIUL (braid_SyncStatus s, braid_Int xv1, braid_Int xv2, braid_Int v3)

* braid_Int braid_SyncStatusGetTimeValues (braid_SyncStatus s, braid_Real *xv1, braid_Int v2, braid_Int v3,
braid_Int v4)

* braid_Int braid_SyncStatusGetlter (braid_SyncStatus s, braid_Int xv1)

* braid_Int braid_SyncStatusGetLevel (braid_SyncStatus s, braid_Int xv1)

* braid_Int braid_SyncStatusGetNLevels (braid_SyncStatus s, braid_Int xv1)

* braid_Int braid_SyncStatusGetNRefine (braid_SyncStatus s, braid_Int xv1)

* braid_Int braid_SyncStatusGetNTPoints (braid_SyncStatus s, braid_Int xv1)

* braid_Int braid_SyncStatusGetDone (braid_SyncStatus s, braid_Int *v1)

* braid_Int braid_SyncStatusGetCallingFunction (braid_SyncStatus s, braid_Int xv1)

* braid_Int braid_SyncStatusGetNumErrorEst (braid_SyncStatus s, braid_Int xv1)

* braid_Int braid_SyncStatusGetAllErrorEst (braid_SyncStatus s, braid_Real *v1)

* braid_Int braid_CoarsenRefStatusGetT (braid_CoarsenRefStatus s, braid_Real *v1)

* braid_Int braid_CoarsenRefStatusGetTIndex (braid_CoarsenRefStatus s, braid_Int xv1)

* braid_Int braid_CoarsenRefStatusGetlter (braid_CoarsenRefStatus s, braid_Int xv1)

« braid_Int braid_CoarsenRefStatusGetLevel (braid_CoarsenRefStatus s, braid_Int xv1)

Generated by Doxygen

192 CONTENTS

* braid_Int braid_CoarsenRefStatusGetNLevels (braid_CoarsenRefStatus s, braid_Int xv1)

* braid_Int braid_CoarsenRefStatusGetNRefine (braid_CoarsenRefStatus s, braid_Int xv1)

* braid_Int braid_CoarsenRefStatusGetNTPoints (braid_CoarsenRefStatus s, braid_Int xv1)

* braid_Int braid_CoarsenRefStatusGetCTprior (braid_CoarsenRefStatus s, braid_Real *v1)

* braid_Int braid_CoarsenRefStatusGetCTstop (braid_CoarsenRefStatus s, braid_Real *v1)

+ braid_Int braid_CoarsenRefStatusGetFTprior (braid_CoarsenRefStatus s, braid_Real xv1)

* braid_Int braid_CoarsenRefStatusGetFTstop (braid_CoarsenRefStatus s, braid_Real *xv1)

* braid_Int braid_CoarsenRefStatusGetTpriorTstop (braid_CoarsenRefStatus s, braid_Real *v1, braid_Real *v2,
braid_Real xv3, braid_Real *v4, braid_Real *v5)

* braid_Int braid_StepStatusGetT (braid_StepStatus s, braid_Real *v1)

* braid_Int braid_StepStatusGetTIndex (braid_StepStatus s, braid_Int xv1)

* braid_Int braid_StepStatusGetlter (braid_StepStatus s, braid_Int xv1)

* braid_Int braid_StepStatusGetLevel (braid_StepStatus s, braid_Int xv1)

* braid_Int braid_StepStatusGetNLevels (braid_StepStatus s, braid_Int xv1)

* braid_Int braid_StepStatusGetNRefine (braid_StepStatus s, braid_Int xv1)

* braid_Int braid_StepStatusGetNTPoints (braid_StepStatus s, braid_Int xv1)

* braid_Int braid_StepStatusGetTstop (braid_StepStatus s, braid_Real xv1)

* braid_Int braid_StepStatusGetTstartTstop (braid_StepStatus s, braid_Real *v1, braid_Real xv2)

* braid_Int braid_StepStatusGetTol (braid_StepStatus s, braid_Real *v1)

* braid_Int braid_StepStatusGetRNorms (braid_StepStatus s, braid_Int xv1, braid_Real xv2)

* braid_Int braid_StepStatusGetOldFineTolx (braid_StepStatus s, braid_Real xv1)

* braid_Int braid_StepStatusSetOldFineTolx (braid_StepStatus s, braid_Real v1)

* braid_Int braid_StepStatusSetTightFineTolx (braid_StepStatus s, braid_Real v1)

* braid_Int braid_StepStatusSetRFactor (braid_StepStatus s, braid_Real v1)

* braid_Int braid_StepStatusSetRSpace (braid_StepStatus s, braid_Real v1)

* braid_Int braid_StepStatusGetSingleErrorEstStep (braid_StepStatus s, braid_Real xv1)

« braid_Int braid_BufferStatusGetMessageType (braid_BufferStatus s, braid_Int xv1)

* braid_Int braid_BufferStatusSetSize (braid_BufferStatus s, braid_Real v1)

+ braid_Int braid_ObjectiveStatusGetT (braid_ObjectiveStatus s, braid_Real xv1)

* braid_Int braid_ObjectiveStatusGetTIndex (braid_ObjectiveStatus s, braid_Int xv1)

* braid_Int braid_ObjectiveStatusGetlter (braid_ObjectiveStatus s, braid_Int xv1)

+ braid_Int braid_ObjectiveStatusGetLevel (braid_ObjectiveStatus s, braid_Int xv1)

« braid_Int braid_ObjectiveStatusGetNLevels (braid_ObjectiveStatus s, braid_Int xv1)

« braid_Int braid_ObjectiveStatusGetNRefine (braid_ObjectiveStatus s, braid_Int xv1)

+ braid_Int braid_ObjectiveStatusGetNTPoints (braid_ObjectiveStatus s, braid_Int xv1)

* braid_Int braid_ObjectiveStatusGetTol (braid_ObjectiveStatus s, braid_Real xv1)

16.6.1 Detailed Description

Define headers for the user-interface with the XBraid status structures, allowing the user to get/set status structure
values.

16.6.2 Macro Definition Documentation

Generated by Doxygen

16.6 braid_status.h File Reference 193

16.6.2.1 ACCESSOR_HEADER_GET1

#define ACCESSOR_HEADER_GETI (
stype,
param,

vtypel) braid_Int braid ##stype##StatusGet##param(braid_##stype##Status s, braid <«
##vtypel *vl);

Macros allowing for auto-generation of ‘inherited' StatusGet functions

16.6.2.2 ACCESSOR_HEADER_GET1_IN3

#define ACCESSOR_HEADER_GET1_IN3 (

stype,

param,

vtypel,

vtypeZ2,

vtype3,

vtyped4) braid_Int braid ##stype##StatusGet##param(braid_##stype##Status s, braid <+
##vtypel *vl, braid_##vtype2 v2, braid_##vtype3 v3, braid_##vtyped vi4);

16.6.2.3 ACCESSOR_HEADER_GET2

#define ACCESSOR_HEADER_GET?2 (
stype,
param,
vtypel,

vtype2) braid_Int braid_##stype##StatusGet##param(braid_##stype##Status s, braid_«
##vtypel xvl, braid_##vtype2 *xv2);

16.6.2.4 ACCESSOR_HEADER_GET2_IN1

#define ACCESSOR_HEADER_GET2_INI (

stype,

param,

vtypel,

vtypeZ2,

vtype3) braid_Int braid_##stype##StatusGet##param(braid_##stype##Status s, braid_«
##vtypel xvl, braid_##vtype2 *v2, braid_##vtype3 v3);

16.6.2.5 ACCESSOR_HEADER_GET3

#define ACCESSOR_HEADER_GET3 (

stype,

param,

vtypel,

vtypeZ2,

vtype3) braid_Int braid_##stype##StatusGet##param(braid_##stype##Status s, braid_«
##vtypel xvl, braid_##vtype2 *v2, braid_##vtype3 *v3);

Generated by Doxygen

194 CONTENTS

16.6.2.6 ACCESSOR_HEADER_GET4

#define ACCESSOR_HEADER_GET4 (

stype,

param,

vtypel,

vtypeZ2,

vtype3,

vtyped4) braid_Int braid ##stype##StatusGet##param(braid_##stype##Status s, braid <+
##vtypel *xvl, braid_##vtype2 *xv2, braid_##vtype3 *xv3, braid_##vtyped xvi);

16.6.2.7 ACCESSOR_HEADER_GET5

#define ACCESSOR_HEADER_GET5 (

stype,

param,

vtypel,

vtypeZ2,

vtype3,

vtype4,

vtypeb5) braid_Int braid_##stype##StatusGet##param(braid_##stype##Status s, braid_«
##vtypel xvl, braid_##vtype2 *v2, braid_##vtype3 *v3, braid_##vtyped xv4, braid_##vtype5 *v5);

16.6.2.8 ACCESSOR_HEADER_SET1

#define ACCESSOR_HEADER_SETI (

stype,

param,

vtypel) braid_Int braid_##stype##StatusSet##param(braid_##stype##Status s, braid_<+
##vtypel vl);

16.7 braid_test.h File Reference

Functions

* braid_Int braid_TestInitAccess (braid_App app, MPI_Comm comm_x, FILE *fp, braid_Real t, braid_PtFcnlnit init,
braid_PtFcnAccess access, braid_PtFcnFree free)

* braid_Int braid_TestClone (braid_App app, MPI_Comm comm_x, FILE xfp, braid_Real t, braid_PtFcnlinit init,
braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone)

* braid_Int braid_TestSum (braid_App app, MPI_Comm comm_x, FILE xfp, braid Real t, braid_PtFcnlnit init,
braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum)

* braid_Int braid_TestSpatialNorm (braid_App app, MPI_Comm comm_x, FILE xfp, braid_Real t, braid_PtFcnlnit
init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm)

* braid_Int braid_TestBuf (braid_App app, MPI_Comm comm_x, FILE xfp, braid_Real t, braid_PtFcnlinit init,
braid_PtFcnFree free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize,
braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack)

Generated by Doxygen

16.8 mpistubs.h File Reference 195

* braid_Int braid_TestCoarsenRefine (braid_App app, MPI_Comm comm_x, FILE «fp, braid_Real t, braid_Real
fdt, braid_Real cdt, braid_PtFcnlinit init, braid_PtFcnAccess access, braid PtFcnFree free, braid_PtFcnClone
clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnSCoarsen coarsen, braid_Pt«
FcnSRefine refine)

* braid_Int braid_TestResidual (braid_App app, MPI_Comm comm_x, FILE xfp, braid_Real t, braid_Real dt, braid«
_PtFenlinit myinit, braid_PtFcnAccess myaccess, braid_PtFcnFree myfree, braid_PtFcnClone clone, braid Pt«
FcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnResidual residual, braid_PtFcnStep step)

* braid_Int braid_TestAll (braid_App app, MPI_Comm comm_x, FILE xfp, braid_Real t, braid_Real fdt, braid_+«
Real cdt, braid_PtFcnlnit init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum, braid Pt
FcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack
bufunpack, braid_PtFcnSCoarsen coarsen, braid_PtFcnSRefine refine, braid_PtFcnResidual residual, braid_«
PtFcnStep step)

16.7.1 Detailed Description

Define headers for XBraid user-test routines.

This file contains headers for the user to test their XBraid wrapper routines one-by-one.

16.8 mpistubs.h File Reference

16.8.1 Detailed Description

XBraid internal headers to define fake MPI stubs. This ultimately allows the user to generate purely serial codes without
MPI.

16.9 status.h File Reference

Data Structures

 struct _braid_Status

« struct braid_AccessStatus

« struct braid_SyncStatus

« struct braid_StepStatus

« struct braid_CoarsenRefStatus
« struct braid_BufferStatus

« struct braid_ObjectiveStatus

Macros

« #define _braid_StatusElt(status, elt) (((braid_Core)status) -> elt)

Generated by Doxygen

196 CONTENTS
Functions

* braid_Int _braid_StatusDestroy (braid_Status status)

* braid_Int _braid_AccessStatusInit (braid_Real t, braid_Int idx, braid_Real rnorm, braid_Int iter, braid_Int level,
braid_Int nrefine, braid_Int gupper, braid_Int done, braid_Int wrapper_test, braid_Int calling_function, braid_«
AccessStatus status)

* braid_Int _braid_SyncStatusInit (braid_Int iter, braid_Int level, braid_Int nrefine, braid_Int gupper, braid_Int done,
braid_Int calling_function, braid_SyncStatus status)

* braid_Int _braid_CoarsenRefStatusInit (braid_Real tstart, braid_Real f_tprior, braid_Real f_tstop, braid_Real c_«+
tprior, braid_Real ¢_tstop, braid_Int level, braid_Int nrefine, braid_Int gupper, braid_Int ¢_index, braid_Coarsen«
RefStatus status)

* braid_Int _braid_StepStatusInit (braid_Real tstart, braid_Real tstop, braid_Int idx, braid_Real tol, braid_Int iter,
braid_Int level, braid_Int nrefine, braid_Int gupper, braid_StepStatus status)

« braid_Int _braid_BufferStatusinit (braid_Int messagetype, braid_Int size, braid_BufferStatus status)

* braid_Int _braid_ObjectiveStatusinit (braid_Real tstart, braid_Int idx, braid_|Int iter, braid_Int level, braid_Int nre-
fine, braid_Int gupper, braid_ObjectiveStatus status)

16.9.1 Detailed Description

Define the XBraid internal headers for the XBraid status structure routines, and define the status structures themselves.

16.9.2 Macro Definition Documentation

16.9.2.1 _braid_StatusElt

#define _braid_StatusElt (

status,
elt) (((braid_Core)status) -> elt)

16.9.3 Function Documentation

16.9.3.1 _braid_AccessStatusinit()

braid_Int _braid_AccessStatusInit (

braid_Real ¢t,

braid_Int idx,

braid_Real rnorm,

braid_Int iter,

braid_Int level,

braid_Int nrefine,
braid_Int gupper,

braid_Int done,

braid_Int wrapper_test,
braid_Int calling function,

braid_AccessStatus status)

Initialize a braid_AccessStatus structure

Generated by Doxygen

16.9 status.h File Reference

197

Parameters
t current time
idx time point index value corresponding to t on the global time grid
rnorm current residual norm in XBraid
iter current iteration in XBraid
level current level in XBraid
nrefine number of refinements done
gupper global size of the fine grid
done boolean describing whether XBraid has finished
wrapper_test boolean describing whether this call is only a wrapper test
calling_function | from which function are we accessing the vector
status structure to initialize

16.9.3.2 _braid_BufferStatuslnit()

braid_Int _braid_BufferStatusInit (

braid_Int
braid_Int

messagetype,

size,

braid_BufferStatus status)

Initialize a braid_BufferStatus structure

Parameters
messagetype | message type, 0: for Step(), 1: for load balancing
size if set by user, size of send buffer is "size" bytes
status structure to initialize

16.9.3.3 _braid_CoarsenRefStatuslnit()

braid_Int _braid_CoarsenRefStatusInit

Initialize a braid_CoarsenRefStatus structure

braid_Real
braid_Real
braid_Real
braid_Real
braid_Real
braid_Int
braid_Int
braid_Int
braid_Int

tstart,

f _tprior,
f_tstop,
c_tprior,
c_tstop,
level,
nrefine,
gupper,

c_index,

(

braid_CoarsenRefStatus status)

Generated by Doxygen

198 CONTENTS

Parameters

istart time value for current vector
f_tprior | time value to the left of tstart on fine grid

f tstop | time value to the right of tstart on fine grid

c¢_tprior | time value to the left of tstart on coarse grid

c_tstop | time value to the right of tstart on coarse grid

level current fine level in XBraid
nrefine | number of refinements done
gupper | global size of the fine grid

c_index | coarse time index refining from

status structure to initialize

16.9.3.4 _braid_ObjectiveStatuslnit()

braid_Int _braid_ObjectiveStatusInit (
braid_Real tstart,
braid_Int idx,
braid_Int iter,
braid_Int level,
braid_Int nrefine,
braid_Int gupper,

braid_ObjectiveStatus status)

Initialize a braid_ObjectiveStatus structure

16.9.3.5 _braid_StatusDestroy()

braid_Int _braid_StatusDestroy (

braid_Status status)

16.9.3.6 _braid_StepStatuslnit()

braid_Int _braid_StepStatusInit (
braid_Real tstart,
braid_Real tstop,
braid_Int idx,
braid_Real tol,
braid_Int iter,
braid_Int level,
braid_Int nrefine,
braid_Int gupper,
braid_StepStatus status)

Initialize a braid_StepStatus structure

Generated by Doxygen

16.10 tape.h File Reference 199

Parameters

tstart current time value
istop time value to evolve towards, time value to the right of tstart

idx time point index value corresponding to tstart on the global time grid
tol Current XBraid stopping tolerance

iter Current XBraid iteration (also equal to length of rnorms)

level current level in XBraid

nrefine | number of refinements done
gupper | global size of the fine grid

status structure to initialize

16.9.3.7 _braid_SyncStatusinit()

braid_Int _braid_SyncStatusInit (
braid_Int iter,
braid_Int level,
braid_Int nrefine,
braid_Int gupper,
braid_Int done,
braid_Int calling function,

braid_SyncStatus status)

Initialize a braid_SyncStatus structure

Parameters
iter current iteration in XBraid
level current level in XBraid
nrefine number of refinements done
gupper global size of the fine grid
done boolean describing whether XBraid has finished
calling_function | from which function are we accessing braid
status structure to initialize

16.10 tape.h File Reference

Data Structures

+ struct _braid_Tape
« struct _braid_Action

Generated by Doxygen

200 CONTENTS

Enumerations

* enum _braid_Call {
STEP =1, INIT = 2, CLONE = 3, FREE = 4,
SUM = 5, BUFPACK = 6, BUFUNPACK = 7, ACCESS = 8,
OBJECTIVET =9}

Functions

* braid_Int _braid_Tapelnit (_braid_Tape xhead)

» _braid_Tape * _braid_TapePush (_braid_Tape xhead, void *ptr)

« _braid_Tape * _braid_TapePop (_braid_Tape xhead)

« braid_Int _braid_TapelsEmpty (_braid_Tape xhead)

* braid_Int _braid_TapeGetSize (_braid_Tape xhead)

* braid_Int _braid_TapeDisplayBackwards (braid_Core core, _braid_Tape xhead, void(xfctptr)(braid_Core core,
void xdata_ptr))

* braid_Int _braid_TapeEvaluate (braid_Core core)

* braid_Int _braid_DiffCall (_braid_Action xaction)

* braid_Int _braid_TapeSetSeed (braid_Core core)

* braid_Int _braid_TapeResetInput (braid_Core core)

+ const char x _braid_CallGetName (_braid_Call call)

16.10.1 Detailed Description

Define the XBraid internal headers for the action-tape routines (linked list for AD)

16.10.2 Enumeration Type Documentation

16.10.2.1 _braid_Call

enum _braid_Call

Enumerator for identifying performed action

Enumerator

STEP

INIT

CLONE
FREE

SUM
BUFPACK
BUFUNPACK
ACCESS
OBJECTIVET

Generated by Doxygen

16.10 tape.h File Reference 201

16.10.3 Function Documentation

16.10.3.1 _braid_CallGetName()

const charx _braid_CallGetName (
_braid_Call call)

Return the name of a _braid_Call (action name)

16.10.3.2 _braid_DiffCall()

braid_Int _braid_DiffCall (

_braid_Action % action)

Call differentiated action

16.10.3.3 _braid_TapeDisplayBackwards()

braid_Int _braid_TapeDisplayBackwards (
braid_Core core,
_braid_Tape * head,

void (x) (braid_Core core, void xdata_ptr) fctptr)

Display the tape in reverse order, calls the display function at each element Input: - pointer to the braid core

* pointer to the display function

16.10.3.4 _braid_TapeEvaluate()

braid_Int _braid_TapeEvaluate (

braid_Core core)

Evaluate the action tape in reverse order. This will clear the action tape! Input: - pointer to the braid core

* pointer to the head of the action tape

16.10.3.5 _braid_TapeGetSize()

braid_Int _braid_TapeGetSize (
_braid_Tape * head)

Returns the number of elements in the tape

Generated by Doxygen

202

CONTENTS

16.10.3.6 _braid_Tapelnit()

braid_Int _braid_TapeInit (
_braid_Tape * head)

Initialize the tape Set head to NULL

16.10.3.7 _braid_TapelsEmpty()

braid_Int _braid_TapeIsEmpty (
_braid_Tape * head)

Test if tape is empty return 1 if tape is empty, otherwise returns 0

16.10.3.8 _braid_TapePop()

_braid_Tapex _braid_TapePop (
_braid_Tape * head)

Pop an element from the tape Return pointer to head

16.10.3.9 _braid_TapePush()

_braid_Tape* _braid_TapePush (
_braid_Tape * head,
void * ptr)

Push data on the tape Return pointer to head

16.10.3.10 _braid_TapeResetinput()

braid_Int _braid_TapeResetInput (

braid_Core core)

Set the pointers in tapeinput to the input of an xbraid iteration (ua).

16.10.3.11 _braid_TapeSetSeed()

braid_Int _braid_TapeSetSeed (

braid_Core core)

Set the adjoint seed for tape evaluation, i.e., set u->bar at stored points on level 0 to the values contained in core-

>optim->adjoints

Generated by Doxygen

16.11 util.h File Reference 203

16.11 util.h File Reference

Functions

* braid_Int _braid_Projectinterval (braid_Int ilower, braid_Int iupper, braid_Int index, braid_Int stride, braid_Int
xpilower, braid_Int xpiupper)

* braid_Int _braid_GetInterval (braid_Core core, braid_Int level, braid_Int interval_index, braid_Int «flo_ptr, braid_Int
«fhi_ptr, braid_Int xci_ptr)

* braid_Int _braid_SetVerbosity (braid_Core core, braid_Int verbose_adj)

* braid_Int _braid_printf (const char xformat,...)

+ braid_Int _braid_ParFprintfFlush (FILE x*file, braid_Int myid, const char xmessage,...)

* braid_Int _braid_Max (braid_Real *array, braid_Int size, braid_Real xmax_val)

* braid_Int _braid_GetNEntries (braid_Real *x_array, braid_Int array_len, braid_Int xk_ptr, braid_Real *array)

16.11.1 Detailed Description

Define XBraid internal headers for utility routines.

This file contains the headers for utility routines. Essentially, if a routine does not take braid_Core (or other XBraid
specific structs) as an argument, then it's a utility routine.

16.11.2 Function Documentation

16.11.2.1 _braid_Getinterval()

braid_Int _braid_GetInterval (
braid_Core core,
braid_Int level,
braid_Int interval_index,
braid_Int * flo_ptr,
braid_Int % fhi_ptr,
braid_Int * ci_ptr)

Retrieve the time step indices at this level corresponding to a local FC interval given by interval index. Argument ci_ptr
is the time step index for the C-pt and flo_ptr and fhi_ptr are the smallest and largest F-pt indices in this interval. The
C-pt is always to the right of the F-interval, but neither a C-pt or an F-interval are guaranteed. If the ¢i_ptrreturns a -1,
there is no C-pt. If the flo_ptris greater than the fhi_ptr, there is no F-interval.

16.11.2.2 _braid_GetNEntries()

braid_Int _braid_GetNEntries (
braid_Real * _array,
braid_Int array_len,
braid_Int * k_ptr,

braid_Real * array)

Copy k entries from x_array* into array. If k is negative, return the last k entries. If positive, return the first k entries.
Upon exit, k holds the number of residuals actually returned (in the case that |k| > array_len.)

If no entries are copied, k=0, array[0] = -1.0

Generated by Doxygen

204 CONTENTS

16.11.2.3 _braid_Max()

braid_Int _braid_Max (
braid_Real x array,
braid_Int size,

braid_Real * max_ val)

This function finds the maximum value in a braid_Real array

16.11.2.4 _braid_ParFprintfFlush()

braid_Int _braid_ParFprintfFlush (
FILE % file,
braid_Int myid,
const char * message,

)

This is a function that allows for "sane" printing of information in parallel. Currently, only myid = 0 prints, but this can be
updated as needs change.

The string message is printed and can be multiple parameters in the standard * C-format, like
message = '%1.2e is a format string', 1.24

16.11.2.5 _braid_printf()

braid_Int _braid_printf (
const char *x format,

)

If set, print to _braid_printfile and then flush. Else print to standard out.
The string format can be multiple parameters in the standard * C-format, like
format = '%1.2e is a format string', 1.24

16.11.2.6 _braid_Projectinterval()

braid_Int _braid ProjectInterval (
braid_Int ilower,
braid_Int iupper,
braid_Int index,
braid_Int stride,
braid_Int * pilower,

braid_Int * piupper)

Project an interval onto a strided index space that contains the index 'index' and has stride 'stride’. An empty projection
is represented by ilower > iupper.

16.11.2.7 _braid_SetVerbosity()

braid_Int _braid_SetVerbosity (
braid_Core core,

braid_Int verbose_adj)

Switch for displaying the XBraid actions. Used for debugging only.

Generated by Doxygen

Index

_braid_IsFPoint, 159
_braid_MapCoarseToFine, 159
_braid_MapFineToCoarse, 159
_braid_MapPeriodic, 159
_braid_NextCPoint, 160
_braid_PrintSpatialNorms, 168
_braid_PriorCPoint, 160
_braid_RecvindexNull, 160
_braid_Refine, 168
_braid_RefineBasic, 168
_braid_Residual, 168

_braid.h, 155 _braid_SendIndexNull, 160
_braid_AccessVector, 161 _braid_SetFullRNorm, 169
_braid_CTAlloc, 158 _braid_SetRNorm, 169
_braid_Coarsen, 161 _braid_Step, 169
_braid_CommHandleElt, 158 _braid_Sync, 169
_braid_CommRecvinit, 162 _braid_TAlloc, 161
__braid_CommSendInit, 162 _braid_TFree, 161
_braid_CommWait, 162 _braid_TReAlloc, 161
_braid_ComputeFullRNorm, 162 _braid_UCommlinit, 169
_braid_CopyFineToCoarse, 162 _braid_UComminitF, 170
_braid_CoreElt, 158 _braid_UCommiInitBasic, 170
_braid_CoreFcn, 158 _braid_ UCommWait, 170
_braid_Drive, 163 _braid_UGetIndex, 170
_braid_Error, 158 _braid_UGetVector, 170
_braid_ErrorHandler, 163 _braid_UGetVectorRef, 171
_braid_ErrorinArg, 158 _braid_USetVector, 171
_braid_FASResidual, 163 _braid_USetVectorRef, 171
_braid_FAccess, 163 _braid_error_flag, 171
_braid_FCRelax, 163 _braid_isnan, 159
_braid_FInterp, 164 _braid_max, 160
_braid_FRefine, 164 _braid_min, 160
_braid_FRefineSpace, 164 _braid_printfile, 172
_braid_FRestrict, 165 _braid_AccessStatuslnit
_braid_FinalizeErrorEstimates, 164 status.h, 196
_braid_GetBlockDistInterval, 165 _braid_AccessStatus_struct
_braid_GetBlockDistProc, 165 status, 148
_braid_GetCFactor, 165 _braid_AccessVector
_braid_GetDistribution, 166 _braid.h, 161
_braid_GetDtk, 166 _braid_Action, 123
_braid_GetFullRNorm, 166 braid_iter, 123
_braid_GetProc, 166 braidCall, 123
_braid_GetRNorm, 166 core, 123
_braid_GetUInit, 167 gupper, 124
_braid_GridClean, 167 inTime, 124
_braid_GridDestroy, 167 inTimeldx, 124
_braid_GridElt, 158 level, 124
_braid_GridInit, 167 messagetype, 124
_braid_InitGuess, 167 myid, 124
_braid_InitHierarchy, 168 nrefine, 124
_braid_IsCPoint, 159 outTime, 124

send_recv_rank, 125
size_buffer, 125
sum_alpha, 125
sum_beta, 125

tol, 125

_braid_AddToObjective

adjoint.h, 172

_braid_AdjointFeatureCheck

adjoint.h, 172

_braid_BaseAccess

base.h, 175

206

INDEX

_braid_BaseBufPack
base.h, 175
_braid_BaseBufPack_diff
base.h, 176
_braid_BaseBufSize
base.h, 176
_braid_BaseBufUnpack
base.h, 177
_braid_BaseBufUnpack_diff
base.h, 177
_braid_BaseClone
base.h, 177
_braid_BaseClone_diff
base.h, 178
_braid_BaseFree
base.h, 178
_braid_BaseFullResidual
base.h, 178
_braid_Baselnit
base.h, 179
_braid_Baselnit_diff
base.h, 179
_braid_BaseObjectiveT
base.h, 180
_braid_BaseObjectiveT_diff
base.h, 180
_braid_BaseResidual
base.h, 180
_braid_BaseSClone
base.h, 181
_braid_BaseSCoarsen
base.h, 181
_braid_BaseSFree
base.h, 182
_braid_BaseSiInit
base.h, 182
_braid_BaseSRefine
base.h, 183
_braid_BaseSpatialNorm
base.h, 182
_braid_BaseStep
base.h, 183
_braid_BaseStep_diff
base.h, 184
_braid_BaseSum
base.h, 184
_braid_BaseSum_diff
base.h, 184
_braid_BaseSync
base.h, 185
_braid_BaseTimeGrid
base.h, 185
_braid_BaseVector_struct
bar, 149

user\Vector, 149
_braid_BufferStatusinit
status.h, 197
_braid_BufferStatus_struct
status, 149
_braid_CTAlloc
_braid.h, 158
_braid_Call
tape.h, 200
_braid_CallGetName
tape.h, 201
_braid_Coarsen
_braid.h, 161
_braid_CoarsenRefStatuslnit
status.h, 197
_braid_CoarsenRefStatus_struct
status, 150
_braid_CommHandle, 125
buffer, 126
num_requests, 126
request_type, 126
requests, 126
status, 126
vector_ptr, 126
_braid_CommHandleElt
_braid.h, 158
_braid_CommRecvInit
_braid.h, 162
_braid_CommSendInit
_braid.h, 162
_braid_CommWait
_braid.h, 162
_braid_ComputeFullRNorm
_braid.h, 162
_braid_CopyFineToCoarse
_braid.h, 162
_braid_Core, 127
access, 129
access_level, 129
actionTape, 129
adjoint, 129
app, 129
barTape, 130
bufpack, 130
bufsize, 130
bufunpack, 130
c_tprior, 130
c_tstop, 130
CWt_default, 131
CWis, 131
calling_function, 130
cfactors, 130
cfdefault, 131
clone, 131

Generated by Doxygen

INDEX

207

comm, 131
comm_world, 131
done, 131

dtk, 131

est_error, 132
estimate, 132
f_tprior, 132
f_tstop, 132

fmg, 132

free, 132
full_rnorm0, 132
full_rnorm_res, 132
full_rnorms, 133
globaltime, 133
grids, 133

gupper, 133

idx, 133
incr_max_levels, 133
init, 133

initiali, 133
io_level, 134

level, 134
localtime, 134
max_iter, 134
max_levels, 134
max_refinements, 134
messagetype, 134
min_coarse, 134
myid, 135
myid_world, 135
nfmg, 135
nfmg_Vcyc, 135
niter, 135

nlevels, 135
nrdefault, 135
nrefine, 135

nrels, 136

ntime, 136
obj_only, 136
objT_diff, 136
objectiveT, 136
old_fine_tolx, 136
optim, 136

order, 136
periodic, 137
postprocess_obj, 137

postprocess_obj_diff, 137

print_level, 137
r_space, 137
rdtvalues, 137
record, 137

refine, 137
reset_gradient, 138
residual, 138

rfactor, 138
rfactors, 138
richardson, 138
rnorm, 138
rnorm0, 138
rnorms, 138
rstopped, 139

rtol, 139

sclone, 139
scoarsen, 139
send _recv_rank, 139
seq_soln, 139
sfree, 139

sinit, 139
size_buffer, 140
skip, 140
spatialnorm, 140
srefine, 140

step, 140
step_diff, 140
storage, 140

sum, 140

sync, 141

t, 141

tgrid, 141
tight_fine_tolx, 141
tnext, 141

tnorm, 141
tnorm_a, 141

tol, 141
tpoints_cutoff, 142
tstart, 142

tstop, 142
userVectorTape, 142
useshell, 142
verbose_adj, 142
warm_restart, 142
wrapper_test, 142

_braid_CoreElt

_braid.h, 158

_braid_CoreFcn

_braid.h, 158

_braid_DiffCall

tape.h, 201

_braid_Drive

_braid.h, 163

_braid_Error

_braid.h, 158

_braid_ErrorHandler

_braid.h, 163

_braid_ErrorinArg

_braid.h, 158

_braid_EvalObjective

adjoint.h, 173

Generated by Doxygen

208

INDEX

_braid_EvalObjective_diff
adjoint.h, 173
_braid_FASResidual
_braid.h, 163
_braid_FAccess
_braid.h, 163
_braid_FCRelax
_braid.h, 163
_braid_FInterp
_braid.h, 164
_braid_FRefine
_braid.h, 164
_braid_FRefineSpace
_braid.h, 164
_braid_FRestrict
_braid.h, 165
_braid_FinalizeErrorEstimates
_braid.h, 164
_braid_GetBlockDistInterval
_braid.h, 165
_braid_GetBlockDistProc
_braid.h, 165
_braid_GetCFactor
_braid.h, 165
_braid_GetDistribution
_braid.h, 166
_braid_GetDtk
_braid.h, 166
_braid_GetFullRNorm
_braid.h, 166
_braid_GetInterval
util.h, 203
_braid_GetNEntries
util.h, 203
_braid_GetProc
_braid.h, 166
_braid_GetRNorm
_braid.h, 166
_braid_GetUInit
_braid.h, 167
_braid_Grid, 143
cfactor, 143
clower, 144
cupper, 144
fa, 144
fa_alloc, 144
gupper, 144
ilower, 144
iupper, 144
level, 144
ncpoints, 145
nupoints, 145
recv_handle, 145
recv_index, 145

send_handle, 145

send_index, 145

ta, 145

ta_alloc, 145

ua, 146

ua_alloc, 146

va, 146

va_alloc, 146
_braid_GridClean

_braid.h, 167
_braid_GridDestroy

_braid.h, 167
_braid_GridElt

_braid.h, 158
_braid_GridInit

_braid.h, 167
_braid_InitAdjointVars

adjoint.h, 173
_braid_InitGuess

_braid.h, 167
_braid_InitHierarchy

_braid.h, 168
_braid _IsCPoint

_braid.h, 159
_braid_IsFPoint

_braid.h, 159
_braid_MapCoarseToFine

_braid.h, 159
_braid_MapFineToCoarse

_braid.h, 159

_braid_MapPeriodic

_braid.h, 159

_braid_Max

util.h, 203

_braid_NextCPoint

_braid.h, 160

_braid_ObjectiveStatusInit

status.h, 198

_braid_ObjectiveStatus_struct

status, 150

_braid_OptimDestroy

adjoint.h, 173

_braid_Optimization_struct

adjoints, 151
f_bar, 151
objective, 151
request, 152
rnorm, 152
rnorm0, 152
rnorm0_adj, 152
rnorm_adj, 152
rtol_adj, 152
sendbuffer, 152
sum_user_obj, 152

Generated by Doxygen

INDEX

tapeinput, 153

_braid.h, 161

tol_adj, 153 _braid_Tape, 147
tstart_obj, 153 data_ptr, 147
tstop_obj, 153 next, 147
_braid_ParFprintfFlush size, 147
util.h, 204 _braid_TapeDisplayBackwards
_braid_PrintSpatialNorms tape.h, 201
_braid.h, 168 _braid_TapeEvaluate
_braid_PriorCPoint tape.h, 201
_braid.h, 160 _braid_TapeGetSize
_braid_Projectinterval tape.h, 201
util.h, 204 _braid_Tapelnit
_braid_RecvindexNull tape.h, 201
_braid.h, 160 _braid_TapelsEmpty
_braid_Refine tape.h, 202
_braid.h, 168 _braid_TapePop
_braid_RefineBasic tape.h, 202
_braid.h, 168 _braid_TapePush
_braid_Residual tape.h, 202
_braid.h, 168 _braid_TapeResetInput
_braid_SendIndexNull tape.h, 202
_braid.h, 160 _braid_TapeSetSeed
_braid_SetFullRNorm tape.h, 202
_braid.h, 169 _braid_UCommlinit
_braid_SetRNorm _braid.h, 169
_braid.h, 169 _braid_UCommlinitF
_braid_SetRNormAdjoint _braid.h, 170
adjoint.h, 173 _braid_UCommInitBasic
_braid_SetVerbosity _braid.h, 170
util.h, 204 _braid_UCommWait
_braid_Status, 146 _braid.h, 170
_braid_StatusDestroy _braid_UGetIndex
status.h, 198 _braid.h, 170
_braid_StatusElt _braid_UGetVector
status.h, 196 _braid.h, 170
_braid_Status_struct _braid_UGetVectorRef
core, 147 _braid.h, 171
_braid_Step _braid_USetVector
_braid.h, 169 _braid.h, 171
_braid_StepStatusinit _braid_USetVectorRef
status.h, 198 _braid.h, 171
_braid_StepStatus_struct _braid_UpdateAdjoint
status, 154 adjoint.h, 173
_braid_Sync _braid_VectorBarCopy
_braid.h, 169 adjoint.h, 173
_braid_SyncStatusinit _braid_VectorBarDelete
status.h, 199 adjoint.h, 174
_braid_SyncStatus_struct _braid_VectorBar_struct
status, 154 useCount, 155
_braid_TAlloc userVector, 155
_braid.h, 161 _braid_error_flag
_braid_TFree _braid.h, 171
_braid.h, 161 _braid_isnan
_braid_TReAlloc _braid.h, 159

Generated by Doxygen

210

INDEX

_braid_max
_braid.h, 160
_braid_min
_braid.h, 160
_braid_printf
util.h, 204
_braid_printfile
_braid.h, 172

ACCESSOR_HEADER_GETH1
braid_status.h, 192
ACCESSOR_HEADER_GET1_IN3
braid_status.h, 193
ACCESSOR_HEADER_GET2
braid_status.h, 193
ACCESSOR_HEADER_GET2_IN1
braid_status.h, 193
ACCESSOR_HEADER_GET3
braid_status.h, 193
ACCESSOR_HEADER_GET4
braid_status.h, 193
ACCESSOR_HEADER_GET5
braid_status.h, 194
ACCESSOR_HEADER_SETH1
braid_status.h, 194
access
_braid_Core, 129
access_level
_braid_Core, 129
actionTape
_braid_Core, 129
adjoint
_braid_Core, 129
adjoint.h, 172
_braid_AddToObijective, 172
_braid_AdjointFeatureCheck, 172
_braid_EvalObjective, 173
_braid_EvalObjective_diff, 173
_braid_InitAdjointVars, 173
_braid_OptimDestroy, 173
_braid_SetRNormAdijoint, 173
_braid_UpdateAdjoint, 173
_braid_VectorBarCopy, 173
_braid_VectorBarDelete, 174
adjoints
_braid_Optimization_struct, 151
app
_braid_Core, 129

bar

_braid_BaseVector_struct, 149
barTape

_braid_Core, 130
base.h, 174

_braid_BaseAccess, 175

_braid_BaseBufPack, 175

_braid_BaseBufPack_diff, 176

_braid_BaseBufSize, 176

_braid_BaseBufUnpack, 177

_braid_BaseBufUnpack_diff, 177

_braid_BaseClone, 177

_braid_BaseClone_diff, 178

_braid BaseFree, 178

_braid_BaseFullResidual, 178

_braid_Baselnit, 179

_braid_Baselnit_diff, 179

_braid_BaseObjectiveT, 180

_braid_BaseObjectiveT_diff, 180

_braid_BaseResidual, 180

_braid_BaseSClone, 181

_braid_BaseSCoarsen, 181

_braid_BaseSFree, 182

_braid_BaseSiInit, 182

_braid_BaseSRefine, 183

_braid_BaseSpatialNorm, 182

_braid_BaseStep, 183

_braid_BaseStep_diff, 184

_braid BaseSum, 184

_braid_BaseSum_diff, 184

_braid_BaseSync, 185

_braid BaseTimeGrid, 185
braid.h, 186
braid_ASCaller_Drive_TopCycle

XBraid status macros, 114
braid_ASCaller_FAccess

XBraid status macros, 114
braid_ASCaller_Finterp

XBraid status macros, 114
braid_ASCaller_FRefine

XBraid status macros, 114
braid_ASCaller_FRefine_AfterlnitHier

XBraid status macros, 114
braid_ASCaller_FRestrict

XBraid status macros, 114
braid_AccessStatus, 148
braid_AccessStatusGetCallingFunction

Inherited XBraid status routines, 103
braid_AccessStatusGetDone

Inherited XBraid status routines, 103
braid_AccessStatusGetlter

Inherited XBraid status routines, 103
braid_AccessStatusGetLevel

Inherited XBraid status routines, 104
braid_AccessStatusGetNLevels

Inherited XBraid status routines, 104
braid_AccessStatusGetNRefine

Inherited XBraid status routines, 104
braid_AccessStatusGetNTPoints

Inherited XBraid status routines, 104

Generated by Doxygen

INDEX

braid_AccessStatusGetResidual
Inherited XBraid status routines, 104

braid_AccessStatusGetSingleErrorEstAccess

Inherited XBraid status routines, 104
braid_AccessStatusGetTILD

Inherited XBraid status routines, 105
braid_AccessStatusGetTIndex

Inherited XBraid status routines, 105
braid_AccessStatusGetWrapperTest

Inherited XBraid status routines, 105
braid_AccessStatusGetT

Inherited XBraid status routines, 105
braid_App

User-written routines, 55
braid_BaseVector, 148
braid_BufferStatus, 149
braid_BufferStatusGetMessageType

Inherited XBraid status routines, 105
braid_BufferStatusSetSize

Inherited XBraid status routines, 105
braid_CoarsenRefStatus, 150
braid_CoarsenRefStatusGetCTprior

Inherited XBraid status routines, 106
braid_CoarsenRefStatusGetCTstop

Inherited XBraid status routines, 106
braid_CoarsenRefStatusGetF Tprior

Inherited XBraid status routines, 106
braid_CoarsenRefStatusGetF Tstop

Inherited XBraid status routines, 106
braid_CoarsenRefStatusGetlter

Inherited XBraid status routines, 106
braid_CoarsenRefStatusGetLevel

Inherited XBraid status routines, 106
braid_CoarsenRefStatusGetNLevels

Inherited XBraid status routines, 107
braid_CoarsenRefStatusGetNRefine

Inherited XBraid status routines, 107
braid_CoarsenRefStatusGetNTPoints

Inherited XBraid status routines, 107
braid_CoarsenRefStatusGetTIndex

Inherited XBraid status routines, 107
braid_CoarsenRefStatusGetTpriorTstop

Inherited XBraid status routines, 107
braid_CoarsenRefStatusGetT

Inherited XBraid status routines, 107
braid_Core

General Interface routines, 64
braid_Destroy

General Interface routines, 64
braid_Drive

General Interface routines, 65
braid_ERROR_ARG

Error Codes, 54
braid_ ERROR_GENERIC

Error Codes, 54
braid ERROR_MEMORY

Error Codes, 54
braid_FMANGLE

Fortran 90 interface options, 53
braid_Fortran_Residual

Fortran 90 interface options, 53
braid_Fortran_SpatialCoarsen

Fortran 90 interface options, 53
braid_Fortran_Sync

Fortran 90 interface options, 53
braid_Fortran_TimeGrid

Fortran 90 interface options, 53
braid_GetMyID

General Interface routines, 65
braid_GetNLevels

General Interface routines, 65
braid_GetNumlter

General Interface routines, 66
braid_GetObjective

Interface routines for XBraid_Adjoint, 82

braid_GetRNormAdjoint

Interface routines for XBraid_Adjoint, 82

braid_GetRNorms

General Interface routines, 66
braid_GetSpatialAccuracy

General Interface routines, 66
braid_INVALID_RNORM

Error Codes, 54
braid_Init

General Interface routines, 67
braid_InitAdjoint

Interface routines for XBraid_Adjoint, 83

braid_Int
braid_defs.h, 189
braid_Int_Max
braid_defs.h, 188
braid_Int_Min
braid_defs.h, 189
braid_MPI_INT
braid_defs.h, 189
braid_MPI_REAL
braid_defs.h, 189
braid_ObjectiveStatus, 150
braid_ObjectiveStatusGetlter
Inherited XBraid status routines, 108
braid_ObjectiveStatusGetLevel
Inherited XBraid status routines, 108
braid_ObjectiveStatusGetNLevels
Inherited XBraid status routines, 108
braid_ObjectiveStatusGetNRefine
Inherited XBraid status routines, 108
braid_ObjectiveStatusGetNTPoints
Inherited XBraid status routines, 108

Generated by Doxygen

212

INDEX

braid_ObjectiveStatusGetTIndex

Inherited XBraid status routines, 109
braid_ObjectiveStatusGetTol

Inherited XBraid status routines, 109
braid_ObjectiveStatusGetT

Inherited XBraid status routines, 108
braid_Optim, 151
braid_PrintStats

General Interface routines, 68
braid_PtFcnAccess

User-written routines, 56
braid_PtFcnBufPack

User-written routines, 56
braid_PtFcnBufSize

User-written routines, 56
braid_PtFcnBufUnpack

User-written routines, 56
braid_PtFcnClone

User-written routines, 56
braid_PtFcnFree

User-written routines, 57
braid_PtFcninit

User-written routines, 57
braid_PtFcnObjective TDiff

User-written routines for XBraid_Adjoint, 60
braid_PtFcnObjectiveT

User-written routines for XBraid_Adjoint, 60
braid_PtFcnPostprocessObijective

User-written routines for XBraid_Adjoint, 60
braid_PtFcnPostprocessObijective_diff

User-written routines for XBraid_Adjoint, 61
braid_PtFcnResetGradient

User-written routines for XBraid_Adjoint, 61
braid_PtFcnResidual

User-written routines, 57
braid_PtFcnSClone

User-written routines, 57
braid_PtFcnSCoarsen

User-written routines, 57
braid_PtFcnSFree

User-written routines, 57
braid_PtFcnSinit

User-written routines, 58
braid_PtFcnSRefine

User-written routines, 58
braid_PtFcnSpatialNorm

User-written routines, 58
braid_PtFcnStep

User-written routines, 58
braid_PtFcnStepDiff

User-written routines for XBraid_Adjoint, 61
braid_PtFcnSum

User-written routines, 58
braid_PtFcnSync

User-written routines, 59
braid_PtFcnTimeGrid

User-written routines, 59
braid_ RAND_MAX

General Interface routines, 64
braid_Rand

General Interface routines, 68
braid_Real

braid_defs.h, 189
braid_SetAbsTol

General Interface routines, 68
braid_SetAbsTolAdjoint

Interface routines for XBraid_Adjoint, 83
braid_SetAccessLevel

General Interface routines, 70
braid_SetCFactor

General Interface routines, 70
braid_SetCRelaxWt

General Interface routines, 71
braid_SetDefaultPrintFile

General Interface routines, 71
braid_SetFMG

General Interface routines, 72
braid_SetFilelOLevel

General Interface routines, 71
braid_SetFullRNormRes

General Interface routines, 72
braid_SetIncrMaxLevels

General Interface routines, 72
braid_SetMaxIter

General Interface routines, 72
braid_SetMaxLevels

General Interface routines, 73
braid_SetMaxRefinements

General Interface routines, 73
braid_SetMinCoarse

General Interface routines, 73
braid_SetNFMGVcyc

General Interface routines, 74
braid_SetNFMG

General Interface routines, 74
braid_SetNRelax

General Interface routines, 74
braid_SetObjectiveOnly

Interface routines for XBraid_Adjoint, 84
braid_SetPeriodic

General Interface routines, 75
braid_SetPostprocessObjective

Interface routines for XBraid_Adjoint, 84
braid_SetPostprocessObjective_diff

Interface routines for XBraid_Adjoint, 84
braid_SetPrintFile

General Interface routines, 75
braid_SetPrintLevel

Generated by Doxygen

INDEX

213

General Interface routines, 75
braid_SetRefine

General Interface routines, 76
braid_SetRelTol

General Interface routines, 76
braid_SetRelTolAdjoint

Interface routines for XBraid_Adjoint, 85
braid_SetResidual

General Interface routines, 76
braid_SetRichardsonEstimation

Interface routines for XBraid_Adjoint, 85
braid_SetSeqgSoln

General Interface routines, 77
braid_SetShell

General Interface routines, 77
braid_SetSkip

General Interface routines, 78
braid_SetSpatialCoarsen

General Interface routines, 78
braid_SetSpatialRefine

General Interface routines, 78
braid_SetStorage

General Interface routines, 79
braid_SetSync

General Interface routines, 79
braid_SetTPointsCutoff

General Interface routines, 80
braid_SetTStartObjective

Interface routines for XBraid_Adjoint, 85
braid_SetTStopObjective

Interface routines for XBraid_Adjoint, 86
braid_SetTemporalNorm

General Interface routines, 79
braid_SetTimeGrid

General Interface routines, 80
braid_SplitCommworld

General Interface routines, 81
braid_StatusGetAllErrorEst

XBraid status routines, 89
braid_StatusGetCTprior

XBraid status routines, 89
braid_StatusGetCTstop

XBraid status routines, 90
braid_StatusGetCallingFunction

XBraid status routines, 89
braid_StatusGetDone

XBraid status routines, 90
braid_StatusGetFTprior

XBraid status routines, 90
braid_StatusGetFTstop

XBraid status routines, 91
braid_StatusGetlter

XBraid status routines, 91
braid_StatusGetLevel

XBraid status routines, 91
braid_StatusGetMessageType

XBraid status routines, 92
braid_StatusGetNLevels

XBraid status routines, 92
braid_StatusGetNRefine

XBraid status routines, 92
braid_StatusGetNTPoints

XBraid status routines, 93
braid_StatusGetNumErrorEst

XBraid status routines, 93
braid_StatusGetOldFineTolx

XBraid status routines, 93
braid_StatusGetRNorms

XBraid status routines, 94
braid_StatusGetResidual

XBraid status routines, 94
braid_StatusGetSingleErrorEstAccess

XBraid status routines, 94
braid_StatusGetSingleErrorEstStep

XBraid status routines, 95
braid_StatusGetTILD

XBraid status routines, 95
braid_StatusGetTIUL

XBraid status routines, 97
braid_StatusGetTIndex

XBraid status routines, 96
braid_StatusGetTimeValues

XBraid status routines, 96
braid_StatusGetTol

XBraid status routines, 97
braid_StatusGetTpriorTstop

XBraid status routines, 98
braid_StatusGetTstartTstop

XBraid status routines, 98
braid_StatusGetTstop

XBraid status routines, 98
braid_StatusGetWrapperTest

XBraid status routines, 99
braid_StatusGetT

XBraid status routines, 95
braid_StatusSetOldFineTolx

XBraid status routines, 99
braid_StatusSetRFactor

XBraid status routines, 100
braid_StatusSetRSpace

XBraid status routines, 100
braid_StatusSetRefinementDtValues

XBraid status routines, 99
braid_StatusSetSize

XBraid status routines, 101
braid_StatusSetTightFineTolx

XBraid status routines, 101
braid_StepStatus, 153

Generated by Doxygen

214

INDEX

braid_StepStatusGetlter

Inherited XBraid status routines, 109
braid_StepStatusGetLevel

Inherited XBraid status routines, 109
braid_StepStatusGetNLevels

Inherited XBraid status routines, 109
braid_StepStatusGetNRefine

Inherited XBraid status routines, 109
braid_StepStatusGetNTPoints

Inherited XBraid status routines, 110
braid_StepStatusGetOldFineTolx

Inherited XBraid status routines, 110
braid_StepStatusGetRNorms

Inherited XBraid status routines, 110
braid_StepStatusGetSingleErrorEstStep

Inherited XBraid status routines, 110
braid_StepStatusGetTIndex

Inherited XBraid status routines, 110
braid_StepStatusGetTol

Inherited XBraid status routines, 111
braid_StepStatusGetTstartTstop

Inherited XBraid status routines, 111
braid_StepStatusGetTstop

Inherited XBraid status routines, 111
braid_StepStatusGetT

Inherited XBraid status routines, 110
braid_StepStatusSetOldFineTolx

Inherited XBraid status routines, 111
braid_StepStatusSetRFactor

Inherited XBraid status routines, 111
braid_StepStatusSetRSpace

Inherited XBraid status routines, 111
braid_StepStatusSetTightFineTolx

Inherited XBraid status routines, 112
braid_SyncStatus, 154
braid_SyncStatusGetAllErrorEst

Inherited XBraid status routines, 112
braid_SyncStatusGetCallingFunction

Inherited XBraid status routines, 112
braid_SyncStatusGetDone

Inherited XBraid status routines, 112
braid_SyncStatusGetlter

Inherited XBraid status routines, 112
braid_SyncStatusGetLevel

Inherited XBraid status routines, 112
braid_SyncStatusGetNLevels

Inherited XBraid status routines, 113
braid_SyncStatusGetNRefine

Inherited XBraid status routines, 113
braid_SyncStatusGetNTPoints

Inherited XBraid status routines, 113
braid_SyncStatusGetNumErrorEst

Inherited XBraid status routines, 113
braid_SyncStatusGetTIUL

Inherited XBraid status routines, 113
braid_SyncStatusGetTimeValues

Inherited XBraid status routines, 113
braid_TestAll

XBraid test routines, 115
braid_TestBuf

XBraid test routines, 116
braid_TestClone

XBraid test routines, 117
braid_TestCoarsenRefine

XBraid test routines, 118
braid_TestlInitAccess

XBraid test routines, 119
braid_TestResidual

XBraid test routines, 119
braid_TestSpatialNorm

XBraid test routines, 120
braid_TestSum

XBraid test routines, 121
braid_Vector

User-written routines, 59
braid_VectorBar, 154
braid_WriteConvHistory

General Interface routines, 81
braid_defs.h, 188

braid_Int, 189

braid_Int_Max, 188

braid_Int_Min, 189

braid_MPI_INT, 189

braid_MPI_REAL, 189

braid_Real, 189
braid_iter

_braid_Action, 123
braid_status.h, 190

ACCESSOR_HEADER_GET1, 192

ACCESSOR_HEADER_GET1_IN3, 193

ACCESSOR_HEADER_GET2, 193

ACCESSOR_HEADER_GET2_IN1, 193

ACCESSOR_HEADER_GET3, 193

ACCESSOR_HEADER_GET4, 193

ACCESSOR_HEADER_GETS5, 194

ACCESSOR_HEADER_SET1, 194
braid_test.h, 194
braidCall

_braid_Action, 123
buffer

_braid_CommHandle, 126
bufpack

_braid_Core, 130
bufsize

_braid_Core, 130
bufunpack

_braid_Core, 130

Generated by Doxygen

INDEX 215
C_tprior fa_alloc
_braid_Core, 130 _braid_Grid, 144
c_tstop fmg
_braid_Core, 130 _braid_Core, 132
CWit_default Fortran 90 interface options, 52
_braid_Core, 131 braid FMANGLE, 53
CWis braid_Fortran_Residual, 53

_braid_Core, 131
calling_function

_braid_Core, 130
cfactor

_braid_Grid, 143
cfactors

_braid_Core, 130
cfdefault

_braid_Core, 131
clone

_braid_Core, 131
clower

_braid_Grid, 144
comm

_braid_Core, 131
comm_world

_braid_Core, 131
core

_braid_Action, 123

_braid_Status_struct, 147
cupper

_braid_Girid, 144

data_ptr

_braid_Tape, 147
done

_braid_Core, 131
dtk

_braid_Core, 131

Error Codes, 54
braid ERROR_ARG, 54
braid ERROR_GENERIC, 54
braid ERROR_MEMORY, 54
braid_INVALID _RNORM, 54
est_error
_braid_Core, 132
estimate
_braid_Core, 132

f bar
_braid_Optimization_struct, 151
f_tprior
_braid_Core, 132
f_tstop
_braid_Core, 132
fa
_braid_Grid, 144

braid_Fortran_SpatialCoarsen, 53

braid_Fortran_Sync, 53

braid_Fortran_TimeGrid, 53
free

_braid_Core, 132
full_rnorm0

_braid_Core, 132
full_rnorm_res

_braid_Core, 132
full_rnorms

_braid_Core, 133

General Interface routines, 63
braid_Core, 64
braid_Destroy, 64
braid_Drive, 65
braid_GetMyID, 65
braid_GetNLevels, 65
braid_GetNumlter, 66
braid_GetRNorms, 66
braid_GetSpatialAccuracy, 66
braid_Init, 67
braid_PrintStats, 68
braid RAND_MAX, 64
braid_Rand, 68
braid_SetAbsTol, 68
braid_SetAccessLevel, 70
braid_SetCFactor, 70
braid_SetCRelaxWt, 71
braid_SetDefaultPrintFile, 71
braid_SetFMG, 72
braid_SetFilelOLevel, 71
braid_SetFullRNormRes, 72
braid_SetincrMaxLevels, 72
braid_SetMaxlter, 72
braid_SetMaxLevels, 73
braid_SetMaxRefinements, 73
braid_SetMinCoarse, 73
braid_SetNFMGVcyc, 74
braid_SetNFMG, 74
braid_SetNRelax, 74
braid_SetPeriodic, 75
braid_SetPrintFile, 75
braid_SetPrintLevel, 75
braid_SetRefine, 76
braid_SetRelTol, 76
braid_SetResidual, 76

Generated by Doxygen

216

INDEX

braid_SetSeqSoln, 77
braid_SetShell, 77
braid_SetSkip, 78
braid_SetSpatialCoarsen, 78
braid_SetSpatialRefine, 78
braid_SetStorage, 79
braid_SetSync, 79
braid_SetTPointsCutoff, 80
braid_SetTemporalNorm, 79
braid_SetTimeGrid, 80
braid_SplitCommworld, 81
braid_WriteConvHistory, 81

globaltime

grids

_braid_Core, 133

_braid_Core, 133

gupper

idx

_braid_Action, 124
_braid_Core, 133
_braid_Grid, 144

_braid_Core, 133

ilower

_braid_Grid, 144

inTime

_braid_Action, 124

inTimeldx

_braid_Action, 124

incr_max_levels

_braid_Core, 133

Inherited XBraid status routines, 102

braid_AccessStatusGetCallingFunction, 103
braid_AccessStatusGetDone, 103
braid_AccessStatusGetlter, 103
braid_AccessStatusGetLevel, 104
braid_AccessStatusGetNLevels, 104
braid_AccessStatusGetNRefine, 104
braid_AccessStatusGetNTPoints, 104
braid_AccessStatusGetResidual, 104
braid_AccessStatusGetSingleErrorEstAccess, 104
braid_AccessStatusGetTILD, 105
braid_AccessStatusGetTIndex, 105
braid_AccessStatusGetWrapperTest, 105
braid_AccessStatusGetT, 105
braid_BufferStatusGetMessageType, 105
braid_BufferStatusSetSize, 105
braid_CoarsenRefStatusGetCTprior, 106
braid_CoarsenRefStatusGetCTstop, 106
braid_CoarsenRefStatusGetFTprior, 106
braid_CoarsenRefStatusGetFTstop, 106
braid_CoarsenRefStatusGetlter, 106
braid_CoarsenRefStatusGetLevel, 106
braid_CoarsenRefStatusGetNLevels, 107

init

braid_CoarsenRefStatusGetNRefine, 107
braid_CoarsenRefStatusGetNTPoints, 107
braid_CoarsenRefStatusGetTIndex, 107
braid_CoarsenRefStatusGetTpriorTstop, 107
braid_CoarsenRefStatusGetT, 107
braid_ObjectiveStatusGetlter, 108
braid_ObjectiveStatusGetLevel, 108
braid_ObjectiveStatusGetNLevels, 108
braid_ObjectiveStatusGetNRefine, 108
braid_ObjectiveStatusGetNTPoints, 108
braid_ObjectiveStatusGetTIndex, 109
braid_ObjectiveStatusGetTol, 109
braid_ObjectiveStatusGetT, 108
braid_StepStatusGetlter, 109
braid_StepStatusGetLevel, 109
braid_StepStatusGetNLevels, 109
braid_StepStatusGetNRefine, 109
braid_StepStatusGetNTPoints, 110
braid_StepStatusGetOldFineTolx, 110
braid_StepStatusGetRNorms, 110
braid_StepStatusGetSingleErrorEstStep, 110
braid_StepStatusGetTIndex, 110
braid_StepStatusGetTol, 111
braid_StepStatusGetTstartTstop, 111
braid_StepStatusGetTstop, 111
braid_StepStatusGetT, 110
braid_StepStatusSetOldFineTolx, 111
braid_StepStatusSetRFactor, 111
braid_StepStatusSetRSpace, 111
braid_StepStatusSetTightFineTolx, 112
braid_SyncStatusGetAllErrorEst, 112
braid_SyncStatusGetCallingFunction, 112
braid_SyncStatusGetDone, 112
braid_SyncStatusGetlter, 112
braid_SyncStatusGetlLevel, 112
braid_SyncStatusGetNLevels, 113
braid_SyncStatusGetNRefine, 113
braid_SyncStatusGetNTPoints, 113
braid_SyncStatusGetNumErrorEst, 113
braid_SyncStatusGetTIUL, 113
braid_SyncStatusGetTimeValues, 113

_braid_Core, 133

initiali

_braid_Core, 133

Interface routines for XBraid_Adjoint, 82

braid_GetObjective, 82
braid_GetRNormAdjoint, 82
braid_InitAdjoint, 83
braid_SetAbsTolAdjoint, 83
braid_SetObjectiveOnly, 84
braid_SetPostprocessObjective, 84
braid_SetPostprocessObjective_diff, 84
braid_SetRelTolAdjoint, 85

Generated by Doxygen

INDEX 217

braid_SetRichardsonEstimation, 85 _braid_CommHandle, 126
braid_SetTStartObjective, 85 nupoints
braid_SetTStopObjective, 86 _braid_Grid, 145
io_level
_braid_Core, 134 obj_only
iupper _braid_Core, 136
_braid_Grid, 144 objT_diff
_braid_Core, 136
level objective
_braid_Action, 124 _braid_Optimization_struct, 151
_braid_Core, 134 objectiveT
_braid_Grid, 144 _braid_Core, 136
localtime old_fine_tolx
_braid_Core, 134 _braid_Core, 136
optim
max_iter _braid_Core, 136
_braid_Core, 134 order
max_levels _braid_Core, 136
_braid_Core, 134 outTime

max_refinements
_braid_Core, 134

messagetype
_braid_Action, 124
_braid_Core, 134

min_coarse
_braid_Core, 134

mpistubs.h, 195

myid
_braid_Action, 124
_braid_Core, 135

myid_world
_braid_Core, 135

ncpoints

_braid_Grid, 145
next

_braid_Tape, 147
nfmg

_braid_Core, 135
nfmg_Vcyc

_braid_Core, 135
niter

_braid_Core, 135
nlevels

_braid_Core, 135
nrdefault

_braid_Core, 135
nrefine

_braid_Action, 124

_braid_Core, 135
nrels

_braid_Core, 136
ntime

_braid_Core, 136
num_requests

_braid_Action, 124

periodic
_braid_Core, 137
postprocess_obj
_braid_Core, 137
postprocess_obj_diff
_braid_Core, 137
print_level
_braid_Core, 137

r_space
_braid_Core, 137
rdtvalues
_braid_Core, 137
record
_braid_Core, 137
recv_handle
_braid_Grid, 145
recv_index
_braid_Grid, 145
refine

_braid_Core, 137
request

_braid_Optimization_struct, 152

request_type

_braid_CommHandle, 126

requests

_braid_CommHandle, 126

reset_gradient

_braid_Core, 138
residual

_braid_Core, 138
rfactor

_braid_Core, 138
rfactors

Generated by Doxygen

218

INDEX

_braid_Core, 138
richardson
_braid_Core, 138
rnorm
_braid_Core, 138
_braid_Optimization_struct, 152
rnorm0
_braid_Core, 138
_braid_Optimization_struct, 152
rnormQO_ad;j
_braid_Optimization_struct, 152
rnorm_adj
_braid_Optimization_struct, 152
rnorms
_braid_Core, 138
rstopped
_braid_Core, 139
rtol
_braid_Core, 139
rtol_adj
_braid_Optimization_struct, 152

sclone

_braid_Core, 139
scoarsen

_braid_Core, 139
send_handle

_braid_Grid, 145
send_index

_braid_Grid, 145
send_recv_rank

_braid_Action, 125

_braid_Core, 139
sendbuffer

_braid_Optimization_struct, 152
seq_soln

_braid_Core, 139
sfree

_braid_Core, 139
sinit

_braid_Core, 139
size

_braid_Tape, 147
size_buffer

_braid_Action, 125

_braid_Core, 140
skip

_braid_Core, 140
spatialnorm

_braid_Core, 140
srefine

_braid_Core, 140
status

_braid_AccessStatus_struct, 148

_braid_BufferStatus_struct, 149
_braid_CoarsenRefStatus_struct, 150
_braid_CommHandle, 126
_braid_ObjectiveStatus_struct, 150
_braid_StepStatus_struct, 154
_braid_SyncStatus_struct, 154
status.h, 195
_braid_AccessStatusinit, 196
_braid_BufferStatuslnit, 197
_braid_CoarsenRefStatuslnit, 197
_braid_ObijectiveStatuslnit, 198
_braid_StatusDestroy, 198
_braid_StatusElt, 196
_braid_StepStatusinit, 198
_braid_SyncStatuslInit, 199
step
_braid_Core, 140
step_diff
_braid_Core, 140
storage
_braid_Core, 140
sum
_braid_Core, 140
sum_alpha
_braid_Action, 125
sum_beta
_braid_Action, 125
sum_user_obj
_braid_Optimization_struct, 152
sync
_braid_Core, 141

_braid_Core, 141

ta
_braid_Grid, 145

ta_alloc
_braid_Grid, 145

tape.h, 199
_braid_Call, 200
_braid_CallGetName, 201
_braid_DiffCall, 201
_braid_TapeDisplayBackwards, 201
_braid_TapeEvaluate, 201
_braid_TapeGetSize, 201
_braid_Tapelnit, 201
_braid_TapelsEmpty, 202
_braid_TapePop, 202
_braid_TapePush, 202
_braid_TapeResetInput, 202
_braid_TapeSetSeed, 202

tapeinput
_braid_Optimization_struct, 153

tgrid

Generated by Doxygen

INDEX

219

_braid_Core, 141
tight_fine_tolx
_braid_Core, 141
tnext
_braid_Core, 141
tnorm
_braid_Core, 141
tnorm_a
_braid_Core, 141
tol
_braid_Action, 125
_braid_Core, 141
tol_adj
_braid_Optimization_struct, 153
tpoints_cutoff
_braid_Core, 142
tstart
_braid_Core, 142
tstart_obj
_braid_Optimization_struct, 153
tstop
_braid_Core, 142
tstop_obj
_braid_Optimization_struct, 153

ua
_braid_Grid, 146

ua_alloc
_braid_Grid, 146

useCount
_braid_VectorBar_struct, 155

User interface routines, 62

User-written routines, 55
braid_App, 55
braid_PtFcnAccess, 56
braid_PtFcnBufPack, 56
braid_PtFcnBufSize, 56
braid_PtFcnBufUnpack, 56
braid_PtFcnClone, 56
braid_PtFcnFree, 57
braid_PtFcnlnit, 57
braid_PtFcnResidual, 57
braid_PtFcnSClone, 57
braid_PtFcnSCoarsen, 57
braid_PtFcnSFree, 57
braid_PtFcnSinit, 58
braid_PtFcnSRefine, 58
braid_PtFcnSpatialNorm, 58
braid_PtFcnStep, 58
braid_PtFcnSum, 58
braid_PtFcnSync, 59
braid_PtFcnTimeGrid, 59
braid_Vector, 59

User-written routines for XBraid_Adjoint, 60

braid_PtFcnObjective TDiff, 60
braid_PtFcnObjectiveT, 60

braid_PtFcnPostprocessObjective, 60
braid_PtFcnPostprocessObijective_diff, 61

braid_PtFcnResetGradient, 61
braid_PtFcnStepDiff, 61

userVector

_braid_BaseVector_struct, 149
_braid_VectorBar_struct, 155

user\VectorTape

_braid_Core, 142

useshell

_braid_Core, 142

util.h, 203

va

_braid_Getlnterval, 203
_braid_GetNEntries, 203
_braid _Max, 203
_braid_ParFprintfFlush, 204
_braid_Projectinterval, 204
_braid_SetVerbosity, 204
_braid_printf, 204

_braid_Grid, 146

va_alloc

_braid_Grid, 146

vector_ptr

_braid_CommHandle, 126

verbose_adj

_braid_Core, 142

warm_restart

_braid_Core, 142

wrapper_test

_braid_Core, 142

XBraid status macros, 114

braid_ASCaller_Drive_TopCycle, 114

braid_ASCaller_FAccess, 114
braid_ASCaller_Finterp, 114
braid_ASCaller_FRefine, 114

braid_ASCaller_FRefine_AfterInitHier, 114

braid_ASCaller_FRestrict, 114

XBraid status routines, 88

braid_StatusGetAllErrorEst, 89
braid_StatusGetCTprior, 89
braid_StatusGetCTstop, 90

braid_StatusGetCallingFunction, 89

braid_StatusGetDone, 90
braid_StatusGetFTprior, 90
braid_StatusGetFTstop, 91
braid_StatusGetlter, 91
braid_StatusGetLevel, 91
braid_StatusGetMessageType, 92
braid_StatusGetNLevels, 92

Generated by Doxygen

220 INDEX

braid_StatusGetNRefine, 92
braid_StatusGetNTPoints, 93
braid_StatusGetNumErrorEst, 93
braid_StatusGetOldFineTolx, 93
braid_StatusGetRNorms, 94
braid_StatusGetResidual, 94
braid_StatusGetSingleErrorEstAccess, 94
braid_StatusGetSingleErrorEstStep, 95
braid_StatusGetTILD, 95
braid_StatusGetTIUL, 97
braid_StatusGetTIndex, 96
braid_StatusGetTimeValues, 96
braid_StatusGetTol, 97
braid_StatusGetTpriorTstop, 98
braid_StatusGetTstartTstop, 98
braid_StatusGetTstop, 98
braid_StatusGetWrapperTest, 99
braid_StatusGetT, 95
braid_StatusSetOldFineTolx, 99
braid_StatusSetRFactor, 100
braid_StatusSetRSpace, 100
braid_StatusSetRefinementDtValues, 99
braid_StatusSetSize, 101
braid_StatusSetTightFineTolx, 101

XBraid status structures, 87

XBraid test routines, 115
braid_TestAll, 115
braid_TestBuf, 116
braid_TestClone, 117
braid_TestCoarsenRefine, 118
braid_TestInitAccess, 119
braid_TestResidual, 119
braid_TestSpatialNorm, 120
braid_TestSum, 121

Generated by Doxygen

	1 Abstract
	2 XBraid Quickstart, User Advice, and License
	3 Introduction
	3.1 Overview of the XBraid Algorithm
	3.1.1 Two-Grid Algorithm
	3.1.2 Summary

	3.2 Overview of the XBraid Code
	3.2.1 Parallel decomposition and memory
	3.2.2 Cycling and relaxation strategies
	3.2.3 Overlapping communication and computation
	3.2.4 Configuring the XBraid Hierarchy
	3.2.5 Halting tolerance
	3.2.6 Debugging XBraid

	3.3 Computing Derivatives with XBraid_Adjoint
	3.3.1 Short Introduction to Adjoint-based Sensitivity Computation
	3.3.2 Overview of the XBraid_Adjoint Algorithm
	3.3.3 Overview of the XBraid_Adjoint Code

	3.4 Citing XBraid
	3.5 Summary

	4 Examples
	4.1 The Simplest Example
	4.1.1 Running XBraid for the Simplest Example

	4.2 Some Advanced Features
	4.3 Simplest example expanded
	4.4 One-Dimensional Heat Equation
	4.5 Two-Dimensional Heat Equation
	4.5.1 Scaling Study with this Example

	4.6 Simplest XBraid_Adjoint example
	4.7 Optimization with the Simplest Example
	4.8 A Simple Optimal Control Problem
	4.9 Running and Testing XBraid
	4.10 Fortan90 Interface, C++ Interface, Python Interface, and More Complicated Examples

	5 Examples: compiling and running
	6 Drivers: compiling and running
	7 Coding Style
	8 File naming conventions
	9 Using Doxygen
	10 Regression Testing
	11 Module Index
	11.1 Modules

	12 Data Structure Index
	12.1 Data Structures

	13 File Index
	13.1 File List

	14 Module Documentation
	14.1 Fortran 90 interface options
	14.1.1 Detailed Description
	14.1.2 Macro Definition Documentation

	14.2 Error Codes
	14.2.1 Detailed Description
	14.2.2 Macro Definition Documentation

	14.3 User-written routines
	14.3.1 Detailed Description
	14.3.2 Typedef Documentation

	14.4 User-written routines for XBraid_Adjoint
	14.4.1 Detailed Description
	14.4.2 Typedef Documentation

	14.5 User interface routines
	14.5.1 Detailed Description

	14.6 General Interface routines
	14.6.1 Detailed Description
	14.6.2 Macro Definition Documentation
	14.6.3 Typedef Documentation
	14.6.4 Function Documentation

	14.7 Interface routines for XBraid_Adjoint
	14.7.1 Detailed Description
	14.7.2 Function Documentation

	14.8 XBraid status structures
	14.9 XBraid status routines
	14.9.1 Detailed Description
	14.9.2 Function Documentation

	14.10 Inherited XBraid status routines
	14.10.1 Detailed Description
	14.10.2 Function Documentation

	14.11 XBraid status macros
	14.11.1 Detailed Description
	14.11.2 Macro Definition Documentation

	14.12 XBraid test routines
	14.12.1 Detailed Description
	14.12.2 Function Documentation

	15 Data Structure Documentation
	15.1 _braid_Action Struct Reference
	15.1.1 Detailed Description
	15.1.2 Field Documentation

	15.2 _braid_CommHandle Struct Reference
	15.2.1 Detailed Description
	15.2.2 Field Documentation

	15.3 _braid_Core Struct Reference
	15.3.1 Detailed Description
	15.3.2 Field Documentation

	15.4 _braid_Grid Struct Reference
	15.4.1 Detailed Description
	15.4.2 Field Documentation

	15.5 _braid_Status Struct Reference
	15.5.1 Detailed Description
	15.5.2 Field Documentation

	15.6 _braid_Tape Struct Reference
	15.6.1 Detailed Description
	15.6.2 Field Documentation

	15.7 braid_AccessStatus Struct Reference
	15.7.1 Detailed Description
	15.7.2 Field Documentation

	15.8 braid_BaseVector Struct Reference
	15.8.1 Detailed Description
	15.8.2 Field Documentation

	15.9 braid_BufferStatus Struct Reference
	15.9.1 Detailed Description
	15.9.2 Field Documentation

	15.10 braid_CoarsenRefStatus Struct Reference
	15.10.1 Detailed Description
	15.10.2 Field Documentation

	15.11 braid_ObjectiveStatus Struct Reference
	15.11.1 Detailed Description
	15.11.2 Field Documentation

	15.12 braid_Optim Struct Reference
	15.12.1 Detailed Description
	15.12.2 Field Documentation

	15.13 braid_StepStatus Struct Reference
	15.13.1 Detailed Description
	15.13.2 Field Documentation

	15.14 braid_SyncStatus Struct Reference
	15.14.1 Detailed Description
	15.14.2 Field Documentation

	15.15 braid_VectorBar Struct Reference
	15.15.1 Detailed Description
	15.15.2 Field Documentation

	16 File Documentation
	16.1 _braid.h File Reference
	16.1.1 Detailed Description
	16.1.2 Macro Definition Documentation
	16.1.3 Function Documentation
	16.1.4 Variable Documentation

	16.2 adjoint.h File Reference
	16.2.1 Detailed Description
	16.2.2 Function Documentation

	16.3 base.h File Reference
	16.3.1 Detailed Description
	16.3.2 Function Documentation

	16.4 braid.h File Reference
	16.4.1 Detailed Description

	16.5 braid_defs.h File Reference
	16.5.1 Detailed Description
	16.5.2 Macro Definition Documentation
	16.5.3 Typedef Documentation

	16.6 braid_status.h File Reference
	16.6.1 Detailed Description
	16.6.2 Macro Definition Documentation

	16.7 braid_test.h File Reference
	16.7.1 Detailed Description

	16.8 mpistubs.h File Reference
	16.8.1 Detailed Description

	16.9 status.h File Reference
	16.9.1 Detailed Description
	16.9.2 Macro Definition Documentation
	16.9.3 Function Documentation

	16.10 tape.h File Reference
	16.10.1 Detailed Description
	16.10.2 Enumeration Type Documentation
	16.10.3 Function Documentation

	16.11 util.h File Reference
	16.11.1 Detailed Description
	16.11.2 Function Documentation

	Index

