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Outline

1. Introduction
—> Tutorial software requirements and XBraid overview
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To interact with the tutorial, you need

This tutorial needs a working installation of XBraid 2.1 or higher
http://11lnl.gov/casc/xbraid/

- See the User’s manual for instructions on how to install XBraid
- See the "Publications" page for a copy of this tutorial

= XBraid v2.1 (or higher) required
= GCC compiler required
= MPI recommended

= Python 2.7 (or higher) with NumPy, Matplotlib ~ recommended

= hypre installation for running ex-03 optional
http://11lnl.gov/casc/hypre

Lawrence Livermore National Laboratory LLNL-PRES-710379 (2



To interact with the tutorial, you need

= Make sure you can run

$ cd xbraid

S make

S cd examples

$ make ex-01 ex-02
S ./ex-01

Braid: || r 1 || = 2.845538e-02,
Braid: || r 2 || = 8.621939%e-04,
Braid: || r 3 || = 0.000000e+00,
S ./ex-02

Braid: || r O || = 4.041694e+00,
Braid: || r 1 || = 1.037471e-01,
Braid: || r 2 || = 2.926906e-03,
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Traditional time integration will
become a sequential bottleneck

From Kathy Yelick’s talk titled “Ten Ways to Waste a Parallel Computer.”
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= Clock rates are no longer increasing — faster speed is now achieved
through more concurrency

= Parallel time integration methods are needed (think exascale)!
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Multigrid is well suited for exascale

= For many applications, the fastest and most scalable solvers
are already multigrid methods

Elasticity / Plasticity Quantum Chromodynamics

= Exascale solver algorithms will need to:

« Exhibit extreme levels of parallelism (exascale - 1 billion cores)
Spatial multigrid has already scaled to over 1 million cores
« Minimize data movement
Multigrid is O(N) optimal
- Exploit machine heterogeneity
If the user’s problem can exploit heterogenity, then so can multigrid
- Be resilient to faults
Multigrid has already shown good resilience (being iterative and multilevel helps)

= Apply multigrid to the temporal dimension!
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Our approach for parallel-in-time

= Apply the wealth of research The Multigrid V-cycle
on parallel spatial multigrid

to multigrid in time
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Technical approach

= Consider the general one-step method
uw; =®;(u;—1)+g;, 1=1,2,...N
= |n the linear setting (for simplicity), time marching = forward solve
- This is an O(N) direct method, but sequential

(L \/Zf\ /g?\
\ T 1) \UEN) \QEN)

= We propose solving this system iteratively with a multigrid method
- Extend multigrid reduction (MGR, 1979) to the time dimension

Au g

« Coarsens only in time (non-intrusive)
* O(N), highly parallel
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Technical approach

TO Tl AT=m5l‘
-+

— F-point (fine grid only)

== (C-point (coarse & fine grid
= Relaxation is highly parallel F-relaxation
 Alternates between F-points and C-points 1111 |
- [F-point relaxation = integration over each coarse time interval \WAVAVLV

= Coarse system is a time rediscretization
Approximate impractical &' with ® 5 a rediscretization with AT’

1 I
—p™ ] \ /—CIDA 1 \
AA = . ) = AA =

\ | _gm 1) \ —.C.I>.A 1)

Apply recursively for multilevel hierarchy
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Parallel decomposition

= Qur code XBraid is agnostic to spatial decomposition and only parallelizes in time

Serial time stepping Multigrid in time

Q-Q+Q-Q+.-.
1 1
-.+.-.+.-Q
1 1

X (space) X (space)

t (time) —
t (time) —>

Negative: Parallelize in space only Positive: Parallelize in space and time
Positive: Store only one time step Negative: Store several time steps
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Properties of the approach

= EXxpose concurrency in the time dimension with multigrid 1
= Non-intrusive, with unchanged time discretization
= Converges to same solution as sequential time stepping

= Only store C-points to minimize storage 1

= Optimal for variety of parabolic problems lo h L I3 St In
- Converges in ~10 iterations for any coarsening factor
- Larger factors require larger (sequential) F-relaxation intervals

= Extends to nonlinear problems with FAS formulation

= |n simple two-level setting, our method is equivalent to parareal
- This is a popular method, typically not viewed as multigrid

= Many active research topics
« Adaptivity in time, moving meshes and multistep methods all possible
- Space-time coarsening possible (stability on coarse time-grids for explicit schemes)
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Huge parallel speedups available, but
in a new way

Time stepping is already O(N) ° |
Useful only beyond a crossover i

Need 10-100x more parallelism
just to break even

]
time [seconds]

—%—time stepping

4+-0O-V-cycle, FCF

-@-V-cycle, F-FCF
F-cycle, F 1

1 8 64 128 256 512 1024 2048 4096
# processors

3D Heat Equation: 333 x 4097,
8 procs in space, 6x speedup

= The more time steps, the more speedup potential
 Applications that require lots of time steps will benefit first
« Speedups (so far) up to 52x on 100K total cores
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XBraid: open source, xm,{},

non-intrusive and flexible

= Qverlap communication and computation
- Consider relaxation over a processor’s portion of the time interval
 Start computation with right-most interval to overlap comm/comp

) Post receive 2) Compute and send
:>—|—|—|—@—|—|—|—|—@—|—|—|—|—@—E]:>

3) Compute other pomts mnoving rlr'nt to left

= Code stores only C-points to minimize storage

- Ability to coarsen by large factors means fewer parallel resources

« Memory multiplier per processor
~0(log N) with time coarsening, O(1) with space-time coarsening
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XBraid: open source, xm@»
non-intrusive and flexible 7'~ ~

= User defines two objects:
« App and Vector

= User also writes several wrapper routines:

e Step, Init, Clone, Sum, SpatialNorm, Access,
BufPack, BufUnpack, BufSize

« For optional spatial coarsening: Coarsen, Refine

= Example: Step (app, u, status)
« Advances vector u from time tstart to tstop
« Returns a target refinement factor
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Outline

1. Introduction
—> Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
- Defining the App and vector structures, writing wrapper functions, running XBraid
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Simplest Example: Scalar ODE

= File: examples/ex-01.c Solves: u; = A\u

= First, you must define your app and vector structures

This is your simulation application structure. Place any time-independent
data here, which is needed to take a time step.

Here, we only need the MPI rank in the App structure (for later file output).

typedef struct braid App struct({
- int rank;

} my App;

typedef struct braid Vector struct/{
double value;
} my Vector;
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Simplest Example: Scalar ODE

= File: examples/ex-01.c Solves: u; = A\u

= First, you must define your app and vector structures

This is your state vector structure. It holds any time-dependent information
that should stay with a vector, e.g. mesh information and unknowns.

For this problem, the vector is one double.

typedef struct braid App struct({
int rank;

} my App;

typedef struct braid Vector struct/{
1 double value;
} my Vector;
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Define the Step () function

= File: examples/ex-01.c Solves: u; = \u

Step () evolves u from tstart to tstop

int my Step(braid App app,
braid Vector ustop,
braid Vector fstop,
braid Vector u,

braid StepStatus status)
double tstart;
double tstop;
braid StepStatusGetTstartTstop (status, &tstart, &tstop);

(u->value) = 1./(1l. + tstop-tstart)* (u->value);

return 0O;
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Define the Step () function

= File: examples/ex-01.c Solves: u; = \u

The app structure is passed into every user-written function.

e my_S%ep{?raid_App app,
braid Vector ustop,
braid Vector fstop,
braid Vector u,

braid StepStatus status)
double tstart;
double tstop;
braid StepStatusGetTstartTstop (status, &tstart, &tstop);

(u->value) = 1./(1l. + tstop-tstart)* (u->value);

return 0O;
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Define the Step () function

= File: examples/ex-01.c Solves: u; = \u

Vector at tstop from previous XBraid iteration (initial guess for implicit solvers)

int my Step (braid App app,
braid Vector ustop,
braid Vector fstop,
braid Vector u,

braid StepStatus status)
double tstart;

double tstop;
braid StepStatusGetTstartTstop (status,

return 0O;

&tstart, &tstop);

(u->value) = 1./(1l. + tstop-tstart)* (u->value);
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Define the Step () function

= File: examples/ex-01.c Solves: u; = \u
Vector at tstart
int my Step(braid App app,
braid Vector ustop,
braid Vector fstop,
{braid_Vector u,

braid StepStatus status)
double tstart;
double tstop;
braid StepStatusGetTstartTstop (status, &tstart, &tstop);

(u->value) = 1./(1l. + tstop-tstart)* (u->value);

return 0O;
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Define the Step () function

= File: examples/ex-01.c Solves: u; = \u

Ignore by default. (XBraid forcing term, only needed if residual option is used)

int my Step(braid App app,
braid Vector ustop,
{ﬁraid_Vector fstop,
braid Vector u,

braid StepStatus status)

double tstart;
double tstop;
braid StepStatusGetTstartTstop (status,

return 0O;

&tstart, &tstop);

(u->value) = 1./(1l. + tstop-tstart)* (u->value);
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Define the Step () function

= File: examples/ex-01.c Solves: u; = \u

Status structures can be queried for various information (level, iteration, etc...)

int my Step(braid App app,
braid Vector ustop,
braid Vector fstop,
braid Vector u,

{braid_StepStatus status)
double tstart;

double tstop;
braid StepStatusGetTstartTstop (status,

return 0O;

&tstart, &tstop);

(u->value) = 1./(1l. + tstop-tstart)* (u->value);
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Define the Step () function

= File: examples/ex-01.c Solves: u; = \u

For instance, to get tstart, tstop

int my Step(braid App app,
braid Vector ustop,
braid Vector fstop,
braid Vector u,

braid StepStatus status)

double tstart;
double tstop;
{ﬁraid_StepStatusGethtarthtop(status, &tstart, &tstop);

(u->value) = 1./(1l. + tstop-tstart)* (u->value);

return 0O;
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Define the Step () function

= File: examples/ex-01.c Solves: u; = \u

Take backward Euler step

int my Step(braid App app,
braid Vector ustop,
braid Vector fstop,
braid Vector u,

braid StepStatus status)

double tstart;
double tstop;
braid StepStatusGetTstartTstop (status, &tstart, &tstop);

{(u->value) = 1./(1. + tstop-tstart)* (u->value);

return 0O;
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Define other wrapper functions

= File: examples/ex-01.c

= Define functions: Init, Clone,
Access, BufPack, BufUnpack,BufSize

Solves: uy = A\u

Free,

SpatialNorm,

Again, we see the app structure being passed in

return 0O;

fﬁ%—myzﬁam{braid_App app,
double alpha,
braid Vector x,
double beta,
braid Vector y)
{
(y=>value) = alpha* (x->value)

+ beta* (y->value);
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Define other wrapper functions

= File: examples/ex-01.c Solves: u; = \u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack,BufSize

This function carries out a simple AXPY operation

int my Sum(braid App app,
double alpha,
braid Vector x,
double beta,

braid Vector y)
{

By—>value) = alpha* (x->value) + beta* (y->value);

return 0O;
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Define other wrapper functions

= File: examples/ex-01.c Solves: u; = \u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack,BufSize

This function is how the user accesses the solution
« By default, it is called at the end of the simulation for every time point
* Using braid AccessSetLevel () allows for more frequent access

int my Access (braid App app,
braid Vector u,
braid AccessStatus astatus)

int i1ndex; char filename[255]; FILE *file;

braid AccessStatusGetTIndex (astatus, &index);

sprintf (filename, "%s.%04d.%03d", "ex-0l.out", index, app->rank);
file = fopen(filename, "w");

fprintf (file, "%.14e\n", (u->value)):;

fflush (file) ; fclose(file); return O;
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Define other wrapper functions

= File: examples/ex-01.c Solves: u; = \u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,

Access, BufPack, BufUnpack,BufSize

Here, we just write a single solution value to individual files

int my Access (braid App app,
braid Vector u,
braid AccessStatus astatus)

int i1ndex; char filename[255]; FILE *file;

braid AccessStatusGetTIndex (astatus, &index);

file = fopen(filename, "w");
fprintf (file, "%.14e\n", (u->value)):;

fflush (file) ; fclose(file); return O;

-sprintf(filename, "%s.%04d.%03d", "ex-0l.out", index, app->rank);
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Define other wrapper functions

= File: examples/ex-01.c Solves: u; = \u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack,BufSize

The Buf* functions tell XBraid how to pack, unpack and size MPI Buffers
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Define other wrapper functions

= File: examples/ex-01.c Solves: u; = \u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack,BufSize

BufPack () flattens the vector u into buffer

int my BufPack (braid App app,
braid Vector u,
void *buffer,

braid BufferStatus bstatus)
double *dbuffer = buffer;

dbuffer[0] = (u->value);
braid BufferStatusSetSize( bstatus, sizeof (double) );

return 0O;

Lawrence Livermore National Laboratory LLNL-PRES-710379 (2




Define other wrapper functions

= File: examples/ex-01.c Solves: u; = \u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack,BufSize

Packing this buffer entails just setting a single double value

int my BufPack (braid App app,
braid Vector u,
void *buffer,

braid BufferStatus bstatus)

double *dbuffer = buffer;

{?buffer[O] = (u->value) ;
braid BufferStatusSetSize( bstatus, sizeof (double) );

return 0O;
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Define other wrapper functions

= File: examples/ex-01.c Solves: u; = \u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack,BufSize

This is an example of returning a value (the buffer size) with a status structure

int my BufPack (braid App app,
braid Vector u,
void *buffer,

braid BufferStatus bstatus)
double *dbuffer = buffer;

dbuffer[0] = (u->value);
{?raid_BufferStatusSetSize( bstatus, sizeof (double) );

return 0O;
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Initialize App and XBraid

= File: examples/ex-01.c Solves: u; = \u

= The next step is to setup XBraid in main ()

int main ()

braid_Core core;

ntime = 10;

tstart = 0.0; tstop = 5.0;

app = (my App *) malloc(sizeof (my App)):
app->rank) = rank;

braid Init (MPI COMM WORLD, MPI COMM WORLD, tstart, tstop,
ntime, app, my Step, my Init, my Clone,
my Free, my Sum, my SpatialNorm,
my Access, my BufSize, my BufPack,
my BufUnpack, &core);
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Initialize App and XBraid

= File: examples/ex-01.c Solves: u; = \u

= The next step is to setup XBraid in main ()

braid Core is the core data structure, holding all of XBraid’s internals

int main ()

{braid_Core core;
ntime = 10;
tstart = 0.0; tstop = 5.0;
app = (my App *) malloc(sizeof (my App)):
(app->rank) = rank;

braid Init (MPI COMM WORLD, MPI COMM WORLD, tstart, tstop,
ntime, app, my Step, my Init, my Clone,
my Free, my Sum, my SpatialNorm,
my Access, my BufSize, my BufPack,
my BufUnpack, &core);
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Initialize App and XBraid

= File: examples/ex-01.c Solves: u; = \u

= The next step is to setup XBraid in main ()

Define your time domain

int main ()

braid_Core core;

rntime = 10;
ltstart = 0.0; tstop = 5.0;

app = (my App *) malloc(sizeof (my App)):
(app->rank) = rank;

braid Init (MPI COMM WORLD, MPI COMM WORLD, tstart, tstop,
ntime, app, my Step, my Init, my Clone,
my Free, my Sum, my SpatialNorm,
my Access, my BufSize, my BufPack,
my BufUnpack, &core);
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Initialize App and XBraid

= File: examples/ex-01.c Solves: u; = \u

= The next step is to setup XBraid in main ()

Initialize App structure

int main ()

braid_Core core;

ntime = 10;

tstart = 0.0; tstop = 5.0;

rapp = (my App *) malloc(sizeof (my App)):;
L(app—>rank) = rank;

braid Init (MPI COMM WORLD, MPI COMM WORLD, tstart, tstop,
ntime, app, my Step, my Init, my Clone,
my Free, my Sum, my SpatialNorm,
my Access, my BufSize, my BufPack,
my BufUnpack, &core);
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Initialize App and XBraid

= File: examples/ex-01.c Solves: u; = \u

= The next step is to setup XBraid in main ()

Initialize braid Core, passing in all user-written functions

int main ()

braid_Core core;

ntime = 10;

tstart = 0.0; tstop = 5.0;

app = (my App *) malloc(sizeof (my App)):
(app->rank) = rank;

-braid_Init(MPI_COMM_WORLD, MPI COMM WORLD, tstart, tstop,
ntime, app, my Step, my Init, my Clone,

my Free, my Sum, my SpatialNorm,

my Access, my BufSize, my BufPack,

my BufUnpack, &core);
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Set XBraid options and run

= File: examples/ex-01.c Solves: u; = \u

= The next step is to setup XBraid in main ()

Set all the XBraid options that you want

int main ()

'braid_SetPrintLevel( core, 1);
braid SetMaxLevels (core, 2);
braid SetAbsTol (core, 1.0e-006);
_braid_SetCFactor(core, -1, 2);

braid Drive (core) ;

braid Destroy(core);
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Set XBraid options and run

= File: examples/ex-01.c Solves: u; = \u

= The next step is to setup XBraid in main ()

Run the simulation

int main ()

braid SetPrintLevel ( core, 1);
braid SetMaxLevels (core, 2);
braid SetAbsTol (core, 1.0e-006);
braid SetCFactor (core, -1, 2);

{braid_Drive(core);

braid Destroy(core);
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Set XBraid options and run

= File: examples/ex-01.c Solves: u; = \u

= The next step is to setup XBraid in main ()

Clean up

int main ()

braid SetPrintLevel ( core, 1);
braid SetMaxLevels (core, 2);
braid SetAbsTol (core, 1.0e-006);
braid SetCFactor (core, -1, 2);

braid Drive (core) ;

{braid_Destroy(core);
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Output

= File: examples/ex-01.c

= Finally! We can run the example.

cd examples

make ex-01

./ex-01

cat ex-01.out.00%*
.00000000000000e+00
.606066060066666667e-01
.44444444444444e-01
.96296296296296e-01
.97530864197531e-01
.31687242798354e-01
.77914951989026e-02
.85276634659351e-02
.90184423106234e-02
.60122948737489e-02
.73415299158326e-02

U Ur U\ Ux

R N W o oo PN D> oY -

Solves: uy = A\u

1.0

0.6

u(z,t)

0.2

0.0
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Outline

1. Introduction
—> Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
- Defining the App and vector structures, writing wrapper functions, running XBraid

3. Explore more XBraid settings in examples/ex-01-expanded.c
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Moving to ex-0l1l-expanded.c

= File: examples/ex-01-expanded.c Solves: u; = A\u

= Adds more XBraid features and a command line interface to ex-01.c

Let’s experiment with these options!
S cd examples
S make ex-0l-expanded
S ./ex-0l-expanded -help
[—ntime <ntime> : set num time points
-ml <max levels> : set max levels
-nu  <nrelax> : set num F-C relaxations
-nul0 <nrelax> : set num F-C relaxations on level O
-tol <tol> : set stopping tolerance
-cf <cfactor> : set coarsening factor
-mi <max iter> : set max iterations
—-fmg : use FMG cycling
-res : use my residual
 -tg <mydt> : use user-specified time grid
1 - uniform time grid
2 - nonuniform time grid
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Examine the standard XBraid output

= File: examples/ex-01-expanded.c Solves: u; = A\u

Residual history is printed out, along with convergence factors and wall times

S ./ex-01l-expanded

time steps = 10

not available,
1 || = 2.845538e-02,
2 || = 8.621939%e-04,
3 |] = 0.000000e+00,

Braid: Begin simulation,
Braid: || r 0 ||

41Braid: || r

Braid: || r_

Braid: || r

use seq soln? =
storage =

stopping tolerance =
use relative tol? =
max iterations =
iterations =
residual norm =

10 time steps

wall time = 1.81e-04
conv factor = 1.00e+00,
conv factor = 3.03e-02,
conv factor = 0.00e+00,

start time = 0.000000e+00
stop time = 5.000000e+00

0
-1

1.000000e-06

0

100

4

0.000000e+00

--> 2-norm TemporalNorm

wall time =
wall time =

wall time
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Examine the standard XBraid output

= File: examples/ex-01-expanded.c Solves: u; = A\u

Basic time domain information

S ./ex-01l-expanded

start time =

stop time =
time steps = 10

use seq soln? =
storage =

stopping tolerance =
use relative tol? =
max iterations =
iterations =
residual norm =

Braid: Begin simulation, 10 time steps

Braid: || r O || not available, wall time = 1.8le-04
Braid: || r 1 || = 2.845538e-02, conv factor = 1.00e+00,
Braid: || r 2 || = 8.62193%-04, conv factor = 3.03e-02,
Braid: || r 3 || = 0.000000e+00, conv factor = 0.00e+00,

0.000000e+00
5.000000e+00

0
-1

1.000000e-06

0

100

4

0.000000e+00

--> 2-norm TemporalNorm

wall time
wall time
wall time
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Examine the standard XBraid output

= File: examples/ex-01-expanded.c Solves: u; = A\u

Advanced options

S ./ex-01l-expanded

start time =
stop time =
time steps = 10

ruse seqg soln?

Lstorage =

stopping tolerance =
use relative tol? =
max iterations =
iterations =
residual norm =

Braid: Begin simulation, 10 time steps

Braid: || r O || not available, wall time = 1.8le-04
Braid: || r 1 || = 2.845538e-02, conv factor = 1.00e+00,
Braid: || r 2 || = 8.62193%-04, conv factor = 3.03e-02,
Braid: || r 3 || = 0.000000e+00, conv factor = 0.00e+00,

0.000000e+00
5.000000e+00

0
-1

1.000000e-06

0

100

4

0.000000e+00

--> 2-norm TemporalNorm

wall time
wall time
wall time
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Examine the standard XBraid output

= File: examples/ex-01-expanded.c Solves: u; = A\u

Describe the XBraid options set for this run

S ./ex-01l-expanded
Braid: Begin simulation, 10 time steps

Braid: || r O || not available, wall time = .

Braid: || r 1 || = 2.845538e-02, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 8.621939%-04, conv factor = 3.03e-02, wall time =
Braid: || r 3 || = 0.000000e+00, conv factor = 0.00e+00, wall time =

start time = 0.000000e+00
stop time = 5.000000e+00
time steps = 10

use seq soln? = 0

storage = -1

-stopping tolerance = 1.000000e-06
use relative tol? = 0

max iterations = 100
iterations = 4

_residual norm = 0.000000e+00

--> 2-norm TemporalNorm
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Examine the standard XBraid output

= File: examples/ex-01-expanded.c Solves: u; = A\u

Describe the XBraid options set for this run

S ./ex-01l-expanded
Braid: Begin simulation, 10 time steps

use fmg-? = 0
access level =1
print level =1
max number of levels = 2
min coarse = 2
number of levels = 2
skip down cycle =1
number of refinements = 0
level time-pts cfactor nrelax
0 10 2 1

1 5

wall time =
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Examine the standard XBraid output

= File: examples/ex-01-expanded.c Solves: u; = A\u

Describes the levels in the XBraid hierarchy

S ./ex-01l-expanded
Braid: Begin simulation, 10 time steps

use fmg-? = 0
access level =1
print level =1
max number of levels = 2
min coarse = 2
number of levels = 2
skip down cycle =1
number of refinements = 0
level time-pts cfactor nrelax
0 10 2 1

1 5

wall time =
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Increase number of time points

Solves: u: = \u

= File: examples/ex-01l-expanded.c

Now, compare the effects of increasing the time domain size

$ ./ex-0l-expanded —-ntime 16
Braid: Begin simulation, 16 time steps

S ./ex-0l-expanded -ntime 128
Braid: Begin simulation, 128 time steps

Braid: || r O || not available, wall time = ..
Braid: || r 1 || = 2.851025e-02, conv factor =
Braid: || r 2 || = 1.040035e-03, conv factor =
Braid: || r 3 || = 3.530338e-05, conv factor =
Braid: || r 4 || = 3.716892e-07, conv factor =

Braid: || r O || not available, wall time =

Braid: || r 1 || = 2.851112e-02, conv factor =
Braid: || r 2 || = 1.049429%9e-03, conv factor =
Braid: || r 3 || = 4.437913e-05, conv factor =
Braid: || r 4 || = 1.990483e-06, conv factor =
Braid: || r 5 || = 9.174722e-08, conv factor =

o o W

R w W

.00e+00,
.65e-02,
.39%9e-02,
.05e-02,

.00e+00,
.68e-02,
.23e-02,
.4%9e-02,
.61le-02,

wall
wall
wall
wall

wall
wall
wall
wall
wall

time =
time =
time =
time =

time =
time =
time =
time =
time =
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FCF-relaxation

= File: examples/ex-01-expanded.c Solves: u; = A\u

Observe how changing the number of FCF-relaxations improves convergence

S ./ex-0l-expanded -ntime 128 -nu O
Braid: Begin simulation, 128 time steps

Braid: || r O || not available, wall time = .

Braid: || r 1 || = 6.415003e-02, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 5.312734e-03, conv factor = 8.28e-02, wall time =
Braid: || r 3 || = 5.055060e-04, conv factor = 9.51le-02, wall time =
Braid: || r 4 || = 5.101391e-05, conv factor = 1.0le-01, wall time =
Braid: || r 5 || = 5.290607e-06, conv factor = 1.04e-01, wall time =
Braid: || r 6 || = 5.570496e-07, conv factor = 1.05e-01, wall time =

S ./ex-0l-expanded -ntime 128 -nu 3

Braid: Begin simulation, 128 time steps

Braid: || r O || not available, wall time = ...

.631827e-03, conv factor = 1.00e+00, wall time =

Braid: || r 1 || =5
Braid: || r 2 || = 4.094709e-05, conv factor = 7.27e-03, wall time =
Braid: || r 3 || = 3.420453e-07, conv factor = 8.35e-03, wall time =
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Halting tolerance and max-iterations

= File: examples/ex-01-expanded.c Solves: u; = A\u

Observe how changing the tolerance and max-iter (-mi) parameters affect XBraid

S./ex-01l-expanded -ntime 128 -tol le-3

iterations = 4

$./ex-0l-expanded -ntime 128 -tol le-12

iterations = 10

$S./ex-01l-expanded -ntime 128 -tol le-12 -mi 3

iterations = 3
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Full multigrid cycles (FMG)

= File: examples/ex-01-expanded.c Solves: u; = A\u

Now, use the fmg parameter and plot braid.out.cycle (file generated at runtime)

$ ./ex-0l-expanded -ntime 32 -ml 15 -mi 4 -fmg
$ python ../user utils/cycleplot.py

1 | XBraid Cycling 10-1
1072
l I
-3 . . .
10 This functionality can
M 1104 be used to adaptively
- __ | refine in time
5 H10°£ | (nested iteration)
3 {107
—H1077
-4p
—H107®
'5 1 2 3
Iteration

Lawrence Livermore National Laboratory LLNL-PRES-710379 (2



Outline

1. Introduction
—> Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
- Defining the App and vector structures, writing wrapper functions, running XBraid

3. Explore more XBraid settings in examples/ex-01-expanded.c

4. Porting a user-code to XBraid with examples/ex-02
- Debugging the connection to XBraid
—> Intrusiveness versus efficiency
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How to convert a user-code

= File: examples/ex-02%* Solves: uy = —uyy

ex-02-serial.c ex-02-lib.c

/* Set up simulation */
t= 0.0; tstop= 2*PI; ...

/* Initialize u(t=0) */
get solution(values, ...);

ex-02.c

Lawrence Livermore National Laboratory LLNL-PRES-710379 (2



How to convert a user-code

Solves: uy = —uyy

= File: examples/ex-02%*

ex-02-serial.c

ex-02-lib.c

/* Set up simulation */
t= 0.0; tstop= 2*PI;

/* Initialize u(t=0) */
get solution(values, ...);

/* Loop over all time values */
for (step=1; step < ntime; step++) {
t =t + deltaT;
take step(values, t, ...);

/* Process result */
compute error norm(values, ...);
save solution (fname, values, ...);

$ex-02-serial -ntime 64 -nspace 17

ex-02.c
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How to convert a user-code

= File: examples/ex-02%*

Solves: uy

— —Ugx

ex-02-serial.c

ex-02-lib.c

/* Set up simulation */
t= 0.0; tstop= 2*PI;

/* Initialize u(t=0) */
get solution(values, ...);

/* Common functions with XBraid */

/* Initialization routine */

void get solution(...)

/* Helpers for take step */
void solve tridiag(...)

/* Loop over all time values */ void matvec tridiag(...) ex-02.c
for (step=1; step < ntime; step++) { void compute stencil(...)
t =t + deltaT;
take step(values, t, ...); /* Core time-stepping routine */
} void take step(...)
/* Output Functions */
/* Process result */ double compute error norm(...)
compute error norm(values, ...); void save solution(...)
save solution (fname, values, ...);
$ex-02-serial -ntime 64 -nspace 17
Lawrence Livermore National Laboratory LLNL-PRES-710379 L




How to convert a user-code

Solves: uy = —uyy

= File: examples/ex-02%*

ex-02-lib.c

ex-02.c

/* Common functions with XBraid */

/* Initialization routine */
void get solution(...)

/* Helpers for take step */
void solve_tridiag(f..)
voild matvec tridiag(...)
void compute stencil(...)

ex-serial.c

/* Core time-stepping routine */
void take step(...)

/* Output Functions */
double compute error norm(...)
void save solution(...)

App structure holds time-independent data for stepping

typedef struct braid App struct

MPI_Comm
double

comm;
matrix[3];
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How to convert a user-code

= File: examples/ex-02%*

Solves: uy = —uyy

ex-02-lib.c

ex-02.c

void get solution(...)

ex-serial.c void solve tridiag(...)

voild matvec tridiag(...)

void take step(...)
/* Output Functions */

void save solution(...)

/* Initialization routine */

/* Helpers for take step */

void compute stencil(...)

double compute error norm(..

/* Common functions with XBraid */

/* Core time-stepping routine */

-)

Vector holds time-dependent data for stepping

typedef struct braid App struct
MPI Comm comm;
double matrix[3];

typedef struct braid Vector struct
int size;
double *values;

Lawrence Livermore National Laboratory
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How to convert a user-code

= File: examples/ex-02%*

Solves: uy = —uyy

ex-02-lib.c

ex-02.c

ex-serial.c

/* Common functions with XBraid */

/* Initialization routine */
void get solution(...)

/* Helpers for take step */
void solve_tridiag(f..)
voild matvec tridiag(...)
void compute stencil(...)

/* Core time-stepping routine */
void take step(...)

/* Output Functions */
double compute error norm(...)
void save solution(...)

Various wrapper functions re-use library routines

typedef struct braid App struct
MPI Comm comm;
double matrix[3];

typedef struct braid Vector struct
int size;
double *values;

int my Step(u, ...)
take step(u->values, ...);

int my Access(u, ...)

compute error norm(u->values, ...);

oy

save solution (fname, u->values,

int my Init(u, ...)
get solution(u->values, ...);
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How to convert a user-code

= File: examples/ex-02%*

Solves: uy = —uyy

ex-02-lib.c

ex-02.c

ex-serial.c

/* Common functions with XBraid */

/* Initialization routine */
void get solution(...)

/* Helpers for take step */
void solve_tridiag(f..)
voild matvec tridiag(...)
void compute stencil(...)

/* Core time-stepping routine */
void take step(...)

/* Output Functions */
double compute error norm(...)
void save solution(...)

Actually running XBraid is easy!

typedef struct braid App struct
MPI Comm comm;
double matrix[3];

typedef struct braid Vector struct
int size;
double *values;

int my Step(u, ...)
take step(u->values, ...);

int my Access(u, ...)
compute error norm(u->values, ...);

save solution (fname, u->values,

int my Init(u, ...)

get solution(u->values, ...);
main ()

braid Core core; app = (my App *)

braid Init(..., core);

braid Drive (core);

oy
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How to convert a user-code

= File: examples/ex-02%*

ex-02-lib.c

Solves: uy = —uyy

ex-02.c

ex-serial.c

/* Common functions with XBraid */

/* Initialization routine */
void get solution(...)

/* Helpers for take step */
void solve_tridiag(f..)
voild matvec tridiag(...)
void compute stencil(...)

/* Core time-stepping routine */
void take step(...)

/* Output Functions */
double compute error norm(...)
void save solution(...)

/* XBraid specific spatial
interpolation/coarsening */
void interpolate 1D(...)
void coarsen 1D(...)

$ ex-02 -ntime 64 -nspace 17; python viz-ex-02.py

typedef struct braid App struct
MPI Comm comm;
double matrix[3];

typedef struct braid Vector struct
int size;
double *values;

int my Step(u, ...)
take step(u->values, ...);

int my Access(u, ...)
compute error norm(u->values, ...);

save solution (fname, u->values,

int my Init(u, ...)

get solution(u->values, ...);
main ()

braid Core core; app = (my App *)

braid Init(..., core);

braid Drive (core);

oy
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How to debug your new code

= File: examples/ex-02.c Solves: uy = — Uy,

There is a test function for each wrapper, e.g., braid TestInit()

$./ex-02 -wrapper tests

Finished braid TestAll: no fails detected

Set max-levels=1. The answer should exactly match sequential time stepping.

$ ./ex-02 -ntime 64 -nspace 17 -ml 1

S python viz-ex-02.py
(In reality, you‘'d want to check the agreement to 15 or 16 decimals)

Continue with max-levels=1, but switch to multiple processors in time. Check
that the answer again exactly matches sequential time stepping.

$ mpirun -np 2 ex-02 -ntime 64 -nspace 17 -ml 1

$ python viz-ex-02.py
(In reality, you'd want to check the agreement to 15 or 16 decimals)
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How to debug your new code

= File: examples/ex-02.c Solves: uy = — Uy,

Check that XBraid is a fixed point method
Set max-levels=2, tol=0.0, max-iter=3, and initialize XBraid with the

sequential solution

$ ./ex-02 -ntime 64 -nspace 17 -ml 2 -tol 0.0 -mi 3 -use seq

Braid: || r O || = 0.000000e+00, conv factor = 1.00e+00, wall time =
Braid: || r 1 || = 0.000000e+00, conv factor = nan, wall time =
Braid: || r 2 || = 0.000000e+00, conv factor = nan, wall time =
Braid: || r 3 || = 0.000000e+00, conv factor = nan, wall time =
Braid: || r 4 || = 0.000000e+00, conv factor = nan, wall time =
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How to debug your new code

= File: examples/ex-02.c

Solves: u;y = —uy,

Turn on debug-level printing and check that the exact solution is propagating

With FCF-relaxation, the exact solution propagates forward 2 C-points each iter

Braid:
Braid:
Braid:
Braid:
Braid:
Braid:
Braid:
Braid:
Braid:

time
time
time
time
time

|l r 0

time
time
time
time
time

step:
step:
step:
step:
step:

step:
step:
step:
step:
step:

~

4

0
2,
4
6

~

8,

rnorm:
rnorm:
rnorm:
rnorm:
rnorm:

1.292837e+00,

0,

4

o o BN
N

~

rnorm:
rnorm:
rnorm:
rnorm:
rnorm:

0
0

$./ex-02 -ntime 8 -nspace 17 -mi 3 -print level 2
Braid:
Braid:

.00e+00
.00e+00

6.86e-01

1
2

.10e+00
.04e-02

conv factor = 1.00e+00, wall time =

0

0
0
0
1

.00e+00
.00e+00
.00e+00
.00e+00
.62e-02

Then, run some larger, multilevel tests of XBraid, checking that the sequential
and time-parallel versions agree to within the halting tolerance
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Intrusiveness versus efficiency

= The more intrusive XBraid is allowed to be, the more efficient it is

- Residual option: computing the residual with a naive implementation of XBraid
is as expensive in FLOPs as sequential time stepping. Writing this extra function
allows you to avoid this for implicit schemes.

— This function also allows relaxation to be significantly less expensive

- Adaptivity: constructing the correct adaptive space-time grid is active research

— For instance a development branch is currently using threshhold refinement
across the temporal communicator to choose time intervals to refine

- Storage: requires a little extra coding, i.e., a new initial guess for implicit scheme

- Level-dependent time-stepper: how to change Step () on coarse-levels is
problem dependent, but almost always yields big benefits, e.g, vary the tolerance

- Spatial coarsening: this can affect convergence, but is required for an O(N)
method in both time and space

- Stephanie Friedhoff’s talk covers this in more detail, e.g., results from taking a
naive XBraid implementation and moving to an STMG (space-time MG) method
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Outline

1. Introduction
—> Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
- Defining the App and vector structures, writing wrapper functions, running XBraid

3. Explore more XBraid settings in examples/ex-01-expanded.c

4. Porting a user-code to XBraid with examples/ex-02
- Debugging the connection to XBraid
—> Intrusiveness versus efficiency

5. Afew application area highlights
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Experiments coupling our code XBraid
with various application research codes

Navier-Stokes (compressible and incompressible)
- Strand2D, CarT3D, LifeV (Trilinos-based)

Heat equation (including moving mesh example)
« MFEM, hypre

Nonlinear diffusion, the p-Laplacian
- MFEM

Power-grid simulations (project just starting)
« GridDyn

Explicit time-stepping coupled with space-time coarsening
« Heat equation

« Advection plus artificial dissipation

« MFEM, hypre

Lawrence Livermore National Laboratory LLNL-PRES-710379
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Compressible Navier-Stokes (nonlinear) —
speedups to 7.5x with typical MG scaling

= Coupled XBraid with existing
code Strand2D (DoD project)

« ~500 lines of XBraid wrapper code
plus minor changes to Strand2D

« ~3 weeks with minimal outside help

= Plots of velocity magnitude at time step 5120

Initial XBraid Iteration ‘ t Iterate x q Converge in 13

49.1
XBraid iterations t

[ 1.54e-10
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Compressible Navier-Stokes with Cart3D —
convergence is very fast, ~5 iterations

= Taylor-Green problem: turbulent decay of vortex, Re=1600
- Higher-order spatial discretization on 583 x 20,000 cartesian grid

= Plot velocity magnitude at x=0 cross-section

Serial Time Integration }\ XBraid lteration 1 }\
v Y ‘ Y
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Strong scaling for heat equation

= XBraid uses V-cycles and FCF-relaxation

= Excellent strong scaling, until parallelism is exhausted

102

2572 x 16384 space-time grid |
Max speedup is 52
‘Cross-over at & 32 cores

e—e Sequential Time-Stepping
" &~~—4 XBraid: Time only parallel
107" w=—a XBraid: Space-time parallel

10! | 107 107
Total Core Count
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The p-Laplacian: nonlinear diffusion

Solve u; =V - (|[VulP7*Vu)  «

2D linear finite elements 3
« 16K x 20K space-time problem
- Backward Euler (Newton’s method) |

Current results
- Crossover at ~40 processors in time
« Speedup of 18x at 130K cores

X=W Y=0

Surface Erosion

Important parameters for performance
« Full storage and space-time coarsening
« Adjusting the Newton tolerance for the early iterations

+++ Image courtesy of Birnir, Rowlett. “Mathematical Models for Erosion and the optimal Transportation of
Sediment. Int. J. Nonlinear Sci. Numer. Simul. 2013

Lawrence Livermore National Laboratory LLNL-PRES-710379 (4



Initial speedups for power-grid

= Simulate 4 generators (30 unknowns) for 30s with 30K time steps

Implicit RK4 227s 144s 113s 102s 105s
BDF-4 12.4s 13.6s 9.46s 7.73s 7.30s

= XBraid is designed for one-step methods, so we make BDF-k “one-
step” by grouping k time-steps together
- Creates non-uniform time-step sizes on coarse grids and stability issues for @

® stability on level 0 ¢ stability on level 3

s Solution: reduce
.;l ] the BDF order on
L L coarse levels
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Explicit methods with MFEM

= 2D advection u; = b(x) - Vu + vAu

« Stability determined by convection
(convection dominated)

- Diffusion term 0.001
= Sequential Time Stepping

11

0.7625

T

« Sharp profile is transported
over 1100 time steps

0.425

« 3" order explicit method

0.0875

L

-0.25
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Explicit methods with MFEM

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 0
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

11

0.7625

« Sharp profile is transported
over 1100 time steps

0.425

« 3" order explicit method

0.0875

« 3-level XBraid hierarchy

-0.25
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Explicit methods with MFEM

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 5
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

« Sharp profile is transported
over 1100 time steps

- 31 order explicit method
« 3-level XBraid hierarchy
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Explicit methods with MFEM

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 10
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

« Sharp profile is transported
over 1100 time steps

- 31 order explicit method
« 3-level XBraid hierarchy
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Explicit methods with MFEM

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 15
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

« Sharp profile is transported
over 1100 time steps

- 31 order explicit method
« 3-level XBraid hierarchy
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Explicit methods with MFEM

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 20
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

11

0.7625

”0.425

0.0875

« Sharp profile is transported
over 1100 time steps

- 31 order explicit method
« 3-level XBraid hierarchy

-0.25
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Explicit methods with MFEM

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 20
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

« Sharp profile is transported
over 1100 time steps

11

10.7625

lo.425

0.0875

- 31 order explicit method
« 3-level XBraid hierarchy

= Future Work: Improve convergence
(relaxation, coarse-grid equations)

-0.25
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Moving mesh

Iteration 1

1.5

= 1D space moving mesh
proof-of-concept

= Mesh points move
towards regions with a
rapidly changing solution

= Fast convergence and
scalable iteration counts

= More complicated moving
mesh problems coming...
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Temporal adaptivity proof-of-concept

= Classic ODE modeling satellite orbit around
earth and moon (2 variables in space, x and y)

Y

= One region of orbit requires very fine time steps

- Carry out 4 periods of orbit, refining step size as needed
10"

wmem XBraid === Seq. Time Stepping

R 102
w +
Q- N +
[ ;
d(TJ ‘T": #
) v
E 103 (O ]
| i \
104 ' ' — '
0 ~ 20 40 | |
Time 20

Lawrence Livermore National Laboratory LLNL-PRES-710379 (4



Nearly 50 years of research exists,
but has only scratched the surface

= Earliest work goes back to 1964 by Nievergelt
- Led to multiple shooting methods, Keller (1968)

=  Space-time multigrid methods for parabolic problems
« Hackbusch (1984); Horton (1992); Horton and Vandewalle (1995)
« The latter is one of the first optimal & fully parallelizable methods to date

= Parareal was introduced by Lions, Maday, and Turincini in 2001
« Probably the most widely studied method
« Gander and Vandewalle (2007) show that parareal is two-level FAS multigrid

= Discretization specific work includes
« Minion, Williams (2008, 2010) — PFASST, spectral deferred correction / parareal
- DeSterck, Manteuffel, McCormick, Olson (2004, 2006) — FOSLS

= Research on these methods is ramping up!
- Ruprecht, Krause, Speck, Emmett, Langer, ... this is not an exhaustive list
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Summary and conclusions

Sequential time integration bottleneck is real
- Parallel in time is needed for future architectures
« This is a major paradigm shift

XBraid applies multigrid reduction to the time dimension
- Multigrid is ideal for exascale (optimal, resilient, ...)
« Result is a flexible and non-intrusive approach

The more intrusive XBraid is allowed to be, the more efficient the
algorithm is.

There is much future work to be done!

- More problem types, more complicated discretizations, performance
improvements, adaptive meshing, ...
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Thank You! Any Questions?

A good read, Parallel Time Integration with Multigrid, SIAM J. Sci. Comp.

Open Source XBraid Code
= http://linl.gov/casc/xbraid
= Supports C, C++, F90

Our Team
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Lawrence Livermore National Laboratory LLNL-PRES-710379 (4



Outline

Appendix:  Advanced XBraid features

« Temporal adaptivity * Residual and storage options

» Shell-vectors and BDF-k  + Spatial coarsening
» Fortran90 Interface
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Advanced feature: FMG allows for
adaptivity in time and space
= User returns refinement factor in Step ()

= Example time grid hierarchy

= (C-point (coarse grid) — F-point
2 . 4 2 =

Level O }

Level 1

Level 2

= User requests refinement factors on the finest grid which Notice

generates a new grid and hierarchy new
C-pts

Level -1 : i —1 |

|

|
Level 0 i i :
:

Level 1

Level 2 I
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Advanced feature: adaptivity in time

Solves: u; = —Ugpp —

= File: examples/ex-03.c

Uyy

« This simple example carrries out naive pre-specified refinements

* braid StepStatusSetRFactor(status, k) refines an interval k times
Called from inside of Step ()

Braid:
Braid:
Braid:
Braid:

Braid:
Braid:

Braid:
Braid:

Braid:
Braid:
Braid:

S make ex-03
S ./ex-03 -nt 128
Begin simulation,
I
I
Temporal refinement occurred,

|l r
Temporal refinement occurred,

|l r
Temporal refinement occurred,

O |
1 1]

1 1]

1 1]

-nx 9 9 -mi 4

not available,

5.002967e-01,

2.810253e-02,

3.136143e-03,

1.197026e-03,
1.558192e-04,
1.623626e-05,

-refine
128 time steps

wall time =
conv factor

conv factor

conv factor

conv factor
conv factor
conv factor

1.00e+00, wall
242 time steps

1.00e+00, wall

390 time steps

1.00e+00, wall

583 time steps

1.00e+00, wall
1.30e-01, wall
1.04e-01, wall

time

time

time

time

time =

time
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Advanced feature: adaptivity in time

= File: examples/ex-03.c Solves: u; = —Uyp —

Uyy

* Now, visualize the cycling
 Observe how the new levels (and time-points) are added
 This causes an uneven reduction in the residual

4

3t

21

Level

$ python ../user utils/cycleplot.py
XBraid Cycling 100
o 107!
A 1072
—1073
1074 . . .
o Refinement here is with

a V-cycle. But can also
-107° be done with FMG cycles.

7]

1077
—1078
107
10710
1 2 3
[teration
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Advanced feature: residual function

= File: examples/ex-01-expanded.c Solves: u; = A\u

Observe how turning on the residual function changes convergence

S./ex-01l-expanded -ntime 128 -res
iterations =7
S./ex-01l-expanded -ntime 128

iterations = 0

= File: examples/ex-03.c SOIVeS: Uy = —Ugy — Uyy

S make ex-03
S ./ex-03 -res -nt 128 -nx 9 9 -mi 4
Braid: || r 1 || = 5.231464e-01, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 6.067546e-02, conv factor = 1.1l6e-01, wall time =
S ./ex-03 -nt 128 -nx 9 9 -mi 4
Braid: || r 1 || = 5.002967e-01, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 2.701758e-02, conv factor = 5.40e-02, wall time =
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Understanding the residual feature

= XBraid computes the FAS residual in a block-row fashion for the space-time system
Ai<uiaui—1) = Ji
= Consider, for example, the common additive form of a user residual:
User specifies this =———> A;(u;,u;_1) = —P(u;_1) + ¥(u;)
FAS residual computed internally —> 7; = f; + ®(w;—1) — ¥(u;)

= Default setting: Step ()= ®&(u;) and ¥ =1
- XBraid can compute the rest of the residual on its own

= Residual setting: user defines a new function Residual (u;, u;;) = A;(u;,u;_1)

- This function defines the equation to be solved, implying that Step () must be compatible.
. Step () must now compute u; = U (f; + ®(u;_q)
 Notice how Step () must now account for f; , thatis, fstop in Step () is no longer NULL!

= Computational savings: consider the heat equation and backward Euler
- Default: Step () implements &, a full implicit solve for an accurate residual

« Residual: Step () implements a very weak inexact solve (only used for relaxation)
Residual () uses ® = ] and W is just a sparse matrix (very cheap!)
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Advanced feature: shell-vectors & BDF-k

= File: examples/ex-01l-expanded-bdf2.c Solves: u; = Au

= XBraid is designed for one-step methods. This is the standard way to
partition the time-line.

F-point |
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Advanced feature: shell-vectors & BDF-k

File: examples/ex-0l-expanded-bdf2.c Solves: u; = Au

XBraid is designed for one-step methods. The new way to partition so that
BDF-k looks “one-step” is to group k time-steps together (here, k = 2).

(1 L
L J)]

(I (I I] (I I]
' L U - U -

Fpoint | ()
]

C-point |
 Creates non-uniform time-step sizes on coarse grids

The shell-vector feature allows for the storage of meta-data at every time point,
including F-points that are otherwise not stored.

- This meta-data allows for tracking the irregular time-grid spacing

Other BDF-k strategies, like reducing order on coarse-grids, are possible

To use the shell option, you must define new shell functions for allocating,
copying, and freeing vector shells
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Advanced feature: extra storage

= File: examples/ex-03.c SoIVes: Uy = —Uyy — Uy

« Set a storage value k (default is -1)
* Forlevel = k = 0, store all points; for level < k, store only C-points
« k=0 storage at all points on all levels
- k=-1 special value, storage only at C-points on all levels

T e e S T T T B e S S e e e

— F-point (fine grid only)
= (-point (coarse & fine grid)

* The extra storage critically gives improved initial guesses to implicit solvers
 The extra storage changes the problem being solved
« The operator & changes as the initial guess changes

 Look at the residual histories with

U

make ex-03

./ex-03 -nx 17 17 -nt 128 -storage -1 I ug 9o

S ./ex-03 -nx 17 17 -nt 128 -storage O ST : o

U

—o ]
$ ./ex-03 -nx 17 17 -nt 128 -storage 1 UN gN
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Advanced feature: skip option

= File: examples/ex-03.c Solves: Uy = —Ugy — Uyy

« Skip allows XBraid to skip (typically useless) relaxations on the 15t down cycle
« By default, skip is turned on
 Compare the residual histories for

$ ./ex-03 -nx 17 17 -nt 128 -skip 1
$ ./ex-03 -nx 17 17 -nt 128 -skip O

No Skip Skip
1 : : 10! 1 : 107!
— 100 | 1072
107! .
0 . 0 103
,1 -
-3 — 1074
! 1 4 ! 105
17t 1z
- q0TE = H1076=
’ 107 7
; —1077
110~
-3t io-¢ 3 <1078
11070 —107?
_ . ! _4 ! |
4 2 3 1 2
[teration [teration

Lawrence Livermore National Laboratory LLNL-PRES-710379 (2



Advanced feature: parallel-run

Run in parallel!

$./mpirun -np 8 ex-03 -pgrid 2 2 2 -nt 256 -nx 17 17

Braid: || r O || not available, wall time = .

Braid: || r 1 || = 6.166798e-01, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 2.319985e-02, conv factor = 3.76e-02, wall time =
Braid: || r 3 || = 6.972052e-04, conv factor = 3.0le-02, wall time =
Braid: || r 4 || = 1.135286e-05, conv factor = 1.63e-02, wall time =
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Advanced feature: spatial coarsening

= File: examples/ex-02.c

Solves: uy = —uyy,

Here, we use simple bilinear interpolation (and its transpose) for spatial coarsening

$S./ex-02 -ntime 64 -nspace 17 -ml 3 -sc

w N o

.00e+00, wall time =
.05e-02, wall time
.62e-02, wall time

.39%9e-02, wall time =

Spatial coarsening is active
research and can (sometimes)

Braid: || r 0 || = 2.935397e+00, conv factor
Braid: || r 1 || = 1.483600e-01, conv factor
Braid: || r 2 || = 3.884625e-03, conv factor
Braid: || r 3 || = 1.315185e-04, conv factor
level dx dt dt/dx"2
0 | 1.96e-01 9.82e-02 2.55e+00
1 | 3.93e-01 1.96e-01 1.27e+00
2 | 7.85e-01 3.93e-01 6.37e-01

$./ex-02 -ntime 64 -nspace 17 -ml 3

w o1 o1

negatively impace convergence.

.00e+00, wall time =
.68e-02, wall time =
.00e-02, wall time =
.42e-02, wall time =

Braid: || r O || = 2.935397e+00, conv factor
Braid: || r 1 || = 1.666814e-01, conv factor
Braid: || r 2 || = 8.328760e-03, conv factor
Braid: || r 3 || = 2.844685e-04, conv factor
level dx dt dt/dx"2
0 | 1.96e-01 9.82e-02 2.55e+00
1 | 1.96e-01 1.96e-01 5.09e+00
2 | 1.96e-01 3.93e-01 1.02e+01
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Advanced feature: coarsening factor

= File: examples/ex-02.c Solves: u; = —uy,

« Changing the coarsening factor does not change convergence (much)
» This powerful fact applies to parabolic problems in general

» Allows for a great deal of performance tuning

* Requires that FCF-relaxation or F-cycles be used

$./ex-02 -ntime 1024 -nspace 128 -cf 16 -ml 10
iterations =7
$./ex-02 -ntime 1024 -nspace 128 -cf 2 -ml 10

iterations = 8
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Fortran90 interface

= File: examples/ex-01-expanded-f.f90 Solves: u; = \u

Uses Fortran90 modules to define the App and Vector Types

module braid types

type my vector
double precision val
end type my vector

User-defined wrapper functions are the same, only written in Fortran90

subroutine braid Sum F90 (app, alpha, x, beta, y)
! Braid types
use braid types
implicit none
type (my vector) X, Y
type (my app) 1 oapp

double precision alpha, beta
ysval = alpha* (x%val) + beta* (y%sval)
end subroutine braid Sum F90

Lawrence Livermore National Laboratory LLNL-PRES-710379

(4




Lawrence Livermore National Laboratory LLNL-PRES-710379 (4




