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SUMMARY

This paper presents some recent advances for parallel-in-time methods applied to linear elasticity. With
recent computer architecture changes leading to stagnant clock speeds, but ever increasing numbers of
cores, future speedups will be available through increased concurrency. Thus, sequential algorithms, such
as time stepping, will suffer a bottleneck. This paper explores multigrid reduction in time (MGRIT) for an
important application area for many time stepping codes, linear elasticity. Previously, efforts at parallel-
in-time for elasticity have experienced difficulties, for example, the beating phenomenon, leading to the
current state of no practical parallel-in-time algorithm existing for this application area. This paper proposes
some solutions made possible by MGRIT (e.g., slow temporal coarsening and FCF-relaxation) and more
importantly, a different formulation of the problem that is more amenable to parallel-in-time methods. Using
a recently developed convergence theory for MGRIT and Parareal, we show that the changed formulation
of the problem avoids the instability issues and allows reduction of the error using two temporal grids. The
paper ends with supporting numerical results showing a practical algorithm. Copyright c© 2010 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Clock rates of recent computer architectures have become stagnant, while the available number of

parallel processors has increased and continues to increase rapidly. Thus, simulation algorithms need

to allow greater concurrency to exploit massively parallel hardware and further reduce wall clock

time. One severe sequential bottleneck in many parallel application codes is the use of sequential

time integration methods. This sequential bottleneck limits parallelism to the spatial component of

an investigated space-time problem.

One such research area where sequential time-stepping is almost omnipresent is fluid-structure

interaction (FSI) research. Here, the system under consideration studies the interaction between

fluids and (often deformable) solid structures or particles, for example, in biomedical or aerospace
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engineering applications [1, 2, 3]. Well-established parallelization techniques, such as spatial

domain decomposition methods, provide a straightforward and scalable approach for reducing

the wall clock time for many FSI algorithms. However, spatial parallelism saturates when

communication tasks become dominant over computation tasks. This often prohibits use of parallel

resources beyond an optimal processor count, leaving large numbers of processors unused. On

the other hand, parallel-in-time integration methods provide means of introducing an additional

layer of parallelism with the potential to greatly enhance efficient and more exhaustive use of

parallel resources. Despite its long history [4, 5], parallel-in-time has very little uptake in the large-

scale simulation community. Only few works exist that use parallel-in-time ideas in real-world

simulations, including reservoir simulation [6], fusion research [7] and numerical weather prediction

[8].

In the field of FSI research, limitations to using parallel-in-time methods usually exist because of

an instability arising in the parallel-in-time integration of one of its subproblems, that is, dynamic

structural mechanics. The instability is known as the beating phenomenon [9, 10]. Although this

instability can be overcome by filtering the natural modes of a given structural dynamics problem

[10, 11], only small scale parallelism was explored. This can mainly be related to a relatively

expensive projection step and the restriction of the method to two time grid levels. Thus, it is of

prime importance to obtain a stable and robust parallel-in-time technique that can explore greater

parallelism while avoiding the previously mentioned instability. Such a method can then be the

foundation of a fast and efficient parallel-in-time method applicable to FSI applications.

The focus of this work is the investigation of convergence of the multigrid reduction in time

(MGRIT) method for the second-order partial differential equation governing the dynamic linear-

elastic response of an incompressible solid structure. In a special case (two temporal grids with

F-relaxation), MGRIT is equivalent [12] with Parareal [13] but has several benefits. For example,

MGRIT allows use of FC-relaxation, slow temporal coarsening and is a non-intrusiveness algorithm.

Moreover, MGRIT is a true multilevel algorithm. In this paper, we will make use of the recent

work of the authors of [12] to use the presented two-grid convergence theory as a design tool for

convergent algorithms. The beating phenomenon was described qualitatively in [9, 10]. Here, we

will show that it is also founded in the two-grid theory. Furthermore, the same analysis provides

a powerful tool for estimating convergence a priori that leads to a convergent two-grid MGRIT

algorithm for the dynamic second-order elasticity equations and further, to a convergent multigrid

MGRIT algorithm.

In Section 2, two different backward Euler time discretization schemes are presented (referred

to as Scheme I and Scheme II) for a finite element implementation of the second-order hyperbolic

elasticity equations. The two schemes are embedded in the MGRIT algorithm, where we provide a

description of the parallel-in-time algorithm and discuss the application of the convergence theory

presented in [12]. We discuss the difference between both time discretization schemes in Section 3.2.

In Section 3, we relate the theoretical analysis of the two-grid convergence to observations in

numerical experiments. Further, we demonstrate how to derive a convergent MGRIT algorithm that

does not exhibit the instabilities reported in previous works [9, 10] by using [12] as an algorithm

design tool. We then extend the numerical experiments to a multilevel case with FMG-cycles in

Section 3.4. The section concludes with preliminary speedup results, emphasizing the potential for

parallel speedup when using MGRIT for linear elasticity problems.

2. METHODOLOGY

2.1. Notation

Consider the domain Ω = Ω(t) ⊂ Rd × [0, T ] with Dirichlet boundary ΓD in d spatial dimensions.

Then, X ∈ Ω(0) and x ∈ Ω denote the reference and current position of a material point and ∇X

and ∇x denote the respective Lagrangian and Eulerian gradient operators. Further, we define the

deformation gradient F = ∇Xx = ∇Xu+ I where u = u(x, t) = x−X is the displacement of
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CONVERGENCE OF THE MGRIT ALGORITHM FOR LINEAR ELASTICITY 3

a material point with respect to its position in the reference configuration. The partial derivative

operator is denoted as ∂t and ∂tt = ∂t∂t.

2.2. Governing equations

Consider the governing equations for the dynamic and linear elastic response of an incompressible

solid structure with given initial data and Dirichlet boundary condition data,

ρ∂ttu−∇x · σ = 0 in Ω, (1)

∇x · ∂tu = 0 in Ω, (2)

u(·, t) = 0 on ΓD, (3)

u(·, 0) = 0, v(·, 0) = v̂0 in Ω(0), (4)

with density ρ, Cauchy stress tensor σ(u, p) = µ(F − I)− pI , material stiffness parameter µ, the

hydrostatic pressure variable p and initial velocity v̂0.

Equation 1 can be transformed to a system of first-order equations,

∂tu = v in Ω, (5)

ρ∂tv = ∇x · σ in Ω, (6)

∇x · v = 0 in Ω, (7)

u(·, t) = 0 on ΓD, (8)

u(·, 0) = 0, v(·, 0) = v̂0 in Ω(0), (9)

with velocity v.

To reduce the complexity of the computational model, Equation 5 is eliminated from the system of

equations in the following by including it implicitly. That is, we solve for velocity v and hydrostatic

pressure p and update the displacement variable based on the solution for the velocity variable.

Further, we note that all quantities are computed on the reference domain Ω(0). That is, linear

elastic response is assumed and higher order effects of the deforming domain are neglected.

2.3. Time discretization

We decompose the temporal domain [0, T] by Nt + 1 equidistant time points, such that

ti = i · δNt
, with i = 0, . . . , Nt, (10)

with time step size δNt
= T/Nt, initial time t0 = 0 and final time tNt

= T .

Then, velocity, pressure and displacement at time point ti are denoted as [vi, pi,ui]
T =

[v(·, ti), p(·, ti),u(·, ti)]
T . We now introduce the two discretization schemes (Scheme I and Scheme

II) examined here.

2.3.1. Scheme I

Firstly, we approximate the partial derivative operator ∂t in Equation 5 using the midpoint rule,

ui = ui−1 + δNt

vi + vi−1

2
in Ω0. (11)

The partial derivative operator in Equation 6 is discretized using the backward Euler scheme where

we substitute Equation 11. Thus, we search (vi, pi) for all i = 1, . . . , Nt, such that,

ρvi −
µδ2Nt

2
∇2

Xvi + δNt
∇Xpi = ρvi−1 +

µδ2Nt

2
∇2

Xvi−1 + µδNt
∇2

Xui−1 in Ω0, (12)

∇X · vi = −∇X · vi−1 in Ω0, (13)

and compute the displacement ui according to Equation 11 after each solve.
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2.3.2. Scheme II

We can obtain a slightly modified scheme by approximating the partial derivative operator in

Equation 5 as,

ui = ui−1 + δNt
vi in Ω0. (14)

Thus, in Scheme II we search the time-discrete (vi, pi) for all i = 1, . . . , Nt, such that,

ρvi − µδ2Nt
∇2

Xvi + δNt
∇Xpi = ρvi−1 + µδNt

∇2
Xui−1 in Ω0, (15)

∇X · vi = 0 in Ω0, (16)

The modification in Equation 14 is motivated by the observation, that Scheme I does not yield

a convergent MGRIT algorithm and exhibits the same instability as described in previous works

[9, 10], see Section 3.3. Scheme II does not suffer from this instability, however, does not reproduce

amplitudes of oscillation as well as Scheme I (see Section 3.2).

2.4. Space discretization

The domain Ωi was discretized using quadrilateral elements, Ωh
i . Finite element discretizations were

constructed using inf-sup stable Q2 −Q1 Taylor-Hood elements for velocity and pressure, vh
i and

phi , and Q2 elements for displacement, uh
i . The superscript h denotes the space-discretized version

of the domain and state variables. As we do not consider spatial refinement or coarsening, we omit

the superscript h for the remainder of this work.

2.4.1. Scheme I

Spatially discretizing Equation 12 and Equation 13 leads to the problem of seeking for each

i = 1, . . . , Nt the space-time discrete solution vector [vi,pi]
T , such that,

(ρM −
µδ2Nt

2
K)vi + δNt

BTpi = (ρM +
µδ2Nt

2
K)vi−1 + µδNt

Kui−1 in Ω0, (17)

Bvi = −Bvi−1 in Ω0, (18)

where M is the mass matrix and K and B refer to the discretized weak form Laplacian and

divergence operators ∇2
X() and ∇X · (). Note, after solving for a given [vi,pi]

T , we can update

the displacement ui from Equation 11. Writing Equation 17 and Equation 18 in matrix form and

including the update given in Equation 11 yields the following linear system,







ρM −
µδ2

Nt

2
K δNt

BT
0

B 0 0

−
δNt

2
I 0 I











vi

pi

ui



 =





ρM +
µδ2

Nt

2
K 0 µδNt

K

−B 0 0
1

2
δNt

I 0 I









vi−1

pi−1

ui−1



 . (19)

Letting the linear operators on the left and right hand sides be denoted,

DI :=







ρM −
µδ2

Nt

2
K δNt

BT
0

B 0 0

−
δNt

2
I 0 I






, CI :=





ρM +
µδ2

Nt

2
K 0 µδNt

K

−B 0 0
1

2
δNt

I 0 I



 , (20)

then Φ
I := [DI ]−1CI and sI0 = ŝ0 := [v̂0,0,0]

T , the state variables sIi := [vi,pi,ui]
T can be

computed by the following equation,

sIi = Φ
IsIi−1 for i = 1, . . . , Nt. (21)

Note, that in the linear elastic incompressible case with constant spatial resolution, the operator ΦI

is only dependent on time step size δNt
.
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2.4.2. Scheme II

In a similar way, Scheme II can be written as: we seek for each i = 1, . . . , Nt the space-time discrete

[vi,pi]
T , such that,

(ρM − µδ2Nt
K)vi + δNt

BTpi = ρMvi−1 + µδNt
Kui−1 on Ω0, (22)

Bvi = 0 on Ω0, (23)

and update the displacement ui from Equation 14 after each solve. In matrix notation, we can write,





ρM − µδ2Nt
K δNt

BT
0

B 0 0

−δNt
I 0 I









vi

pi

ui



 =





ρM 0 µδNt
K

0 0 0

0 0 I









vi−1

pi−1

ui−1



 . (24)

With

DII :=





ρM − µδ2Nt
K δNt

BT
0

B 0 0

−δNt
I 0 I



 , and CII :=





ρM 0 µδNt
K

0 0 0

0 0 I



 , (25)

equation 24 can be written as,

sIIi = Φ
IIsIIi−1 for i = 1, . . . , Nt, (26)

where Φ
II := [DII ]−1CII and sIIi := [vi,pi,ui]

T with sII0 = ŝ0 := [v̂0, 0,0]
T . Again, the

operator ΦII only depends on time step size δNt
.

2.5. Multigrid reduction in time (MGRIT) algorithm

Based on Equation 21 and Equation 26, the global space-time problem can be written in the linear

form,

ASsS =















I

−Φ
S I

−Φ
S I

. . .
. . .

−Φ
S I





























sS0
sS1
sS2
...

sSNt















=













ŝ0
0

0

...

0













= ŝ, (27)

with S ∈ {I, II}. A traditional time stepping method would solve Equation 27 in a block-forward

fashion, whereas the MGRIT algorithm solves Equation 27 iteratively. Both algorithms are O(Nt),
however, the constant is bigger for MGRIT [15, 12]. On the other hand, MGRIT enables parallelism

in the temporal domain in contrast to the sequential nature of traditional time stepping. The

parallelism is achieved by introducing a time grid hierarchy and applying multigrid techniques

in the temporal domain. The coarser time grids provide error corrections to the finest time grid,

thus accelerating convergence to the solution; while a relaxation process on each time grid reduces

the error that cannot be adequately reduced on coarser grids. These two complementary processes,

relaxation and coarse-grid correction, form the core of multigrid methods.

Figure 1 illustrates an example of an ml-level time grid hierarchy with respective time points, time

step sizes and coarsening factors. Here, the maximum number of time grid levels is given as ml = 2
(with levels m = 0, . . . ,ml − 1). Each level with m < ml − 1 is composed of F- and C-points. F-

points only exist on level m and the C-points compose the coarser grid m+ 1. The coarsening factor

cmm−1 (for m = 1, . . . ,ml − 1) defines a coarsening of a given level m− 1, such that the time step

size on level m is δNm

t
= cmm−1 · δNm−1

t

(for m = 1, . . . ,ml − 1), with fine grid time step size δN0
t

and the coarsest grid’s time step size δ
N

m
l
−1

t

. Similarly, cml−1
0 denotes the total coarsening from

level 0 to level ml. Further, F-relaxation means an update of the F-points based on the previous

C-points and C-relaxation refers to an update of a C-point based on the previous F-point. For more

details, see [15].
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level m = 0

level m = 1

t0 t1 t2 t3 t4 tN0
t. . .

t0 t4 tN1
t. . .

δN0
t

δN1
t
= c10 · δN0

t

Figure 1. Example of an ml-level multigrid hierarchy with ml = 2 time grid levels, respective time points
ti, time step sizes δNm

t
and coarsening factors cmm−1.

For the remainder of this work, we distinguish between the numerical space-time solution

obtained with Scheme I with sequential time stepping with a subscript s (sequential) and those

quantities obtained from using MGRIT with a subscript p (parallel), e.g., the solution vector sI

obtained from sequential time stepping is denoted as sIs , whereas the solution vector obtained with

MGRIT is denoted as sIp. Similarly, we identify the numerical solution obtained with Scheme II by

using the notation sIIs and sIIp .

Further, we consider two-grid algorithms using V-cycles with various numbers of FC-relaxation

steps and multilevel algorithms using full multigrid (FMG) cycles (i.e., F-cycles) as described in the

following. Unless noted otherwise, we either use the one-step integrator ΦI
δ0
t

on the fine grid and

its coarse grid versions Φ
I
δm
t

on grid level m or similarly, ΦII
δ0
t

on the fine grid and its coarse grid

versions ΦII
δm
t

on grid level m. The subscript δmt denotes δNm

t
. In Section 3.3, we will also motivate

the design of a hybrid algorithm that employs ΦI
δ0
t

on the fine grid and Φ
II
δm
t

on the coarse grid in a

two-level time grid hierarchy.

2.5.1. Two-level algorithm using V-cycles

Firstly, a two-grid version of the MGRIT algorithm is considered. In this version, r FC-relaxations

(r = 0, 1, 2) are applied on the fine grid for Scheme I and Scheme II. For r = 0, MGRIT is equivalent

to Parareal [13]. To restrict the variables from the fine to the coarse grid, a restriction operator R(·) is

chosen that purely injects the respective fine grid quantities to the coarse grid. To transfer the coarse

grid quantities to the fine grid, an ideal interpolation is employed [15]. The pseudo-code of the linear

two-grid version of the MGRIT algorithm used here is described in Algorithm 1. † The coarse-grid

operator AS
∆ is equivalent to that defined in (27) except it uses the coarse-grid time-stepper ΦS

δm+1

t

and is defined over the smaller coarse time-grid depicted in Figure 1.

The two-grid algorithm with F- and FCF- relaxation will be the basis for predicting and analyzing

convergence of the proposed algorithm and for comparing the observed convergence factors with the

theoretical upper bounds derived from [12]. The presented analysis will then prove and emphasize

the relevance of [12] for the design of convergent parallel-in-time algorithms and motivate the

selection of Scheme II to be included in a multilevel hierarchy. In this setting, we also investigate

the benefits of switching from V-cycles to F-cycles.

2.5.2. Multilevel algorithm using FMG-cycles

In addition to the two-level algorithms, we consider ml-grid algorithms (ml > 2) with FMG-cycles.

A FMG-cycle is achieved by applying Step 4 of Algorithm 1 recursively and performing one V-cycle

as post-relaxation at each level [16].

†The nonlinear version of MGRIT is used in practice and is equivalent to the linear version for linear problems [14].
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Algorithm 1 Pseudo-code for MGRIT algorithm with V-cycles and S ∈ {I, II}, adapted from [12].

1: repeat

2: Relax on ASsS = ŝ (r times FC-relaxation, one F-relaxation) using Φ
S
δm
t

. ⊲ In parallel

3: Compute coarse-grid residual r∆ = R(ŝ−ASsS).
4: Solve the coarse grid correction problem AS

∆e
S
∆ = r∆ using Φ

S
δm+1

t

. ⊲ Apply recursively

5: Correct the solution at the fine-grid C-points with eS∆. ⊲ In parallel

6: until norm of residual is small enough

7: Update the solution at the F-points with Φ
S
δ0
t

. ⊲ In parallel

2.5.3. Theoretical two-grid reduction of the MGRIT residual norm per iteration in the two-grid case

The theoretical two-grid reduction rate estimates of the global space-time error per MGRIT iteration

are based on the two-grid cases discussed in [12]. Firstly, we note that ΦS
δ0
t

(and the coarse-grid

version Φ
S
δ1
t

) have the sparsity pattern,





[ΦS
δm
t

]11 [ΦS
δm
t

]12 [ΦS
δm
t

]13
[ΦS

δm
t

]21 [ΦS
δm
t

]22 [ΦS
δm
t

]23
[ΦS

δm
t

]31 [ΦS
δm
t

]32 [ΦS
δm
t

]33



 =





[ΦS
δm
t

]11 0 [ΦS
δm
t

]13
[ΦS

δm
t

]21 0 [ΦS
δm
t

]23
[ΦS

δm
t

]31 0 [ΦS
δm
t

]33



 , (28)

with S ∈ {I, II} and m = 0, 1. This highlights that the current state vector sSi is not dependent on

the previous pressure value (i.e., the pressure variable and its associated rows and columns in Φ

can be ignored without affecting u or v.) Thus, we eliminate the rows and columns related to the

pressure variable and proceed with the analysis by simultaneously diagonalizing the time stepping

matrix,

T−1

[

[ΦS
δ0
t

]11 [ΦS
δ0
t

]13

[ΦS
δ0
t

]31 [ΦS
δ0
t

]33

]

T = diag(λ1, λ2, . . .), (29)

T−1

[

[ΦS
δ1
t

]11 [ΦS
δ1
t

]13

[ΦS
δ1
t

]31 [ΦS
δ1
t

]33

]

T = diag(γ1, γ2, . . .). (30)

Then, the authors of [12] prove that the global space-time error vector at the C-points can be reduced

in the mass matrix norm for the two-grid case with F- and FCF-relaxation by a convergence factor

of at least,

cFf = max
ω

{

|λ
c10
ω − γω|

1− |γω|
N1

t

1− |γω|

}

, (31)

cFCF
f = max

ω

{

|λ
c10
ω − γω|

1− |γω|
N1

t
−1

1− |γω|
|λω|

c10

}

, (32)

(33)

respectively.

2.5.4. Computation of MGRIT residual norm in experiment

The standard Euclidean norm of the MGRIT residual in numerical experiments is computed using

the coarse-grid residual r∆ (see Step 3 of Algorithm 1),

‖r∆‖
2
2 =

(

w0‖r
v
∆‖

2
2 + w1‖r

p
∆
‖22 + w2‖r

u
∆‖

2
2

)1/2

=
(

w0(r
v
∆)

Trv
∆ + w1(r

p
∆
)T rp

∆
+ w2(r

u
∆)

Tru
∆

)1/2
(34)

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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where rv
∆, r

p
∆ and ru

∆ denote components in the residual vector corresponding to velocity, pressure

and displacement. Further, the weights w0, w1 and w3 are equal to 1 in the standard case.

However, the predicted decrease of the residual is measured in the mass matrix norm

‖r∆‖
2
M = ‖rv∆‖

2
Mv + ‖rp

∆
‖2Mp + ‖ru∆‖

2
Mu , (35)

where M
x is a block N1

t ×N1
t diagonal matrix with each block corresponding to a spatial mass

matrix for variable x (see Section 2.5.3 and [12]). Thus, a modification of measuring the observed

reduction of the residual norm per MGRIT iteration is advisable, and hence, proposed: instead of

computing the computationally more demanding mass matrix norm and the less accurate standard

Euclidean norm, the following weights to improve the measurement of experimental convergence

factors are chosen: w0 = 1, w1 = 0 and w2 = 1/c10 . This yields

(rv
∆)

T
M

vrv∆ ≈ (rv
∆)

T Irv∆, (36)

(ru
∆)

T
M

uru∆ ≈ (ru
∆)

T
( 1

c10
I

)

ru
∆, (37)

Thus, the approximate value of the mass matrix norm of the residual at the C-points is given by,

‖r∆‖M ≈

(

(rv
∆)

Trv
∆ +

1

c10
(ru

∆)
Tru

∆

)1/2

. (38)

It is important to note that this proposition only changes how the solution progress (i.e., reduction

of residual norm) is measured. But it does neither affect the coarse-grid update nor does it change

the numerical solution.

2.6. Implementation details

Scheme I and Scheme II were implemented in the finite element software tool CHeart [17]. Wrapper

routines were written to incorporate the MGRIT algorithm into CHeart using the open-source library

XBraid [18], a non-intrusive implementation of the MGRIT algorithm.

Here, we introduced separate MPI groups and communicators to maintain the capability of

CHeart to parallelize in the spatial domain by using domain decomposition methods while enabling

independent parallelization in the temporal domain. That is, one can parallelize in space, time or in

space-time.

Furthermore, a given relaxation step is performed even if the initial spatial residual satisfies the

convergence criteria for the spatial problem. Moreover, the XBraid option to skip work on the first

down-cycle is used. Note, due to the linearity of the problem, the matrix Φ
S
δm
t

is only computed

once for each time step size (i.e., time grid level). This significantly reduces computational work

compared to re-computing the matrix for each time step.

3. RESULTS

In the following, the methods described in Section 2 are used for a linear beam problem. For this

purpose, consider the domain Ω(0) = [0, 8]× [0, 1], final time T = 1024 and material parameters

µ = ρ = 1. The spatial discretization uses 16 x 2 quadrilateral elements and initial conditions are

given as v̂0 = [−x2/640, x2 · (8− x)/640]T , see Figure 2. The initial condition is also used as initial

guess at all time steps for MGRIT. Further, no displacement boundary conditions are prescribed at

ΓD = Ω|x=0.

We consider fine grid time step sizes δN0
t
∈ {1, 0.1, 0.01, 0.001} and coarsening factors c10 ∈

{2, 4, 8, 16, 32} and cmm−1 = 2 for 2 ≤ m ≤ ml. The stopping criterion on the residual norm is

selected as ‖r∆‖M ≤ 10−8/
√

δN0
t

(see Equation 38) with the maximum number of MGRIT

iterations set to 60 iterations. Unless noted otherwise, reported experimental convergence factors

are the global maximum values.
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(a) Initial velocity in x-direction. (b) Initial velocity in y-direction.

Figure 2. Discretization using 16 x 2 quadrilateral elements and initial velocity.

3.1. Numerical solution of beam oscillation

The initial velocity distribution over the cantilever beam length (see Figure 2) causes the free end to

first deflect in negative x- and positive y-direction, see Figure 3. The elastic stresses cause the beam

to decelerate and move downward, passing its initial position and deflecting in negative y-direction.

The beam deformation follows a repeatable deflection pattern.

3.2. Effect of time step size on amplitude of oscillation

Backward Euler time integration schemes introduce artificial numerical diffusion. Its effect on the

sum of kinematic and potential energy of the system over time depends on the time step size

where we expect energy conservation in the asymptotic limit δN0
t
→ 0. The artificial damping of

the system causes the amplitude of oscillation to become smaller over time. The backward Euler

time integration scheme exhibits quick damping for δN0
t
= 1 irrespectively of the chosen scheme

(Scheme I and Scheme II). The effect of numerical damping becomes smaller for smaller δN0
t
,

where we note that both schemes reproduce the amplitudes of the beam oscillation with comparable

quality for δN0
t
= 0.001, see Figure 4.

It is important to note, that the varying magnitude of numerical damping is also present with

respect to varying time step sizes in an MGRIT time grid hierarchy. Nevertheless, MGRIT converges

to the same solution (within the selected solver tolerance) as sequential time stepping on the fine

grid. Thus, the converged numerical solution obtained with the MGRIT algorithm suffers from the

same amount of numerical damping as the numerical solution from sequential time stepping on the

fine grid.

3.3. Convergence in the two-grid case

3.3.1. MGRIT with Scheme I

If Scheme I is employed as a one-step integrator on the fine and coarse grid (that is, ΦI
δ0
t

and Φ
I
δ1
t

)

in a two-level algorithm, we observe divergence in the numerical experiments for all considered test

cases.

To qualitatively investigate what leads to divergence of MGRIT in conjunction with Scheme I,

we track the current position of the tip of the cantilever beam (initial coordinate [8, 0.5]T at t = 0)

over time with smaller time horizon t ∈ [0, 64]. The time step size is δN0
t
= 1 with coarsening

factor c10 = 2. FCF-relaxation is employed. Figure 5 shows the current approximation of the tip’s

displacement with respect to the initial position over time for a number of algorithmic steps, for

example, after FCF-relaxation, after restriction, after the coarse-grid solve, etc. (where we extract

the values on return from applying Φ
I
δ0
t

and Φ
I
δ1
t

, respectively). The data in Figure 5 highlight how

the current approximation of the cantilever’s tip first improves. Though, already during the first

MGRIT iteration an instability is introduced by the coarse-grid update which is then amplified in

subsequent steps. The observed phenomena are neither physical nor part of the mathematical model,

however, are in line with observations in literature, see [9, 10]. Previously this has been a limiting

factor for parallel-in-time integration methods of the dynamic elasticity equation.

On the other hand, divergence of the numerical algorithm is reflected in very large theoretical

convergence bounds, i.e., cFf , c
FCF
f >> 1, confirming experimental observations.
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Figure 3. Displacement u of the tip of the cantilever beam (initial position [8, 0.5]T ) in x- and y-direction
for t ∈ [0, 128] and [896, 1024] for Scheme I and Scheme II and time step sizes δN0

t

∈ {1, 0.1, 0.01, 0.001}.

Note that numerical damping is reduced with δN0
t

→ 0.
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Figure 4. Mean absolute error of the displacement of the beam’s tip for t ∈ [0, 1024]. Here, Scheme I with
δN0

t

= 0.001 was used as reference.

3.3.2. MGRIT with Scheme II

Using Scheme II as fine- and coarse-grid integrators (that is, ΦII
δ0
t

and Φ
II
δ1
t

) in a two-level algorithm,

we observe good convergence for a range of different coarsening factors c10 and for all considered

time step sizes, see Figure 6.

We note that for δN0
t
= 1, both experimental and predicted convergence factors are in excellent

agreement and that the predicted values of cFf and cFCF
f are a sharp upper bound despite the

approximation of the computed residual norm, see Section 2.5.4. Here, the convergence factors
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Figure 5. Current approximation of the tip displacement for two-grid MGRIT using Scheme I with

coarsening factor c10 = 2, fine grid time step size δN0
t

= 1, t ∈ [0, 64] and FCF-relaxation compared with a

reference solution from sequential time stepping. Note, how the coarse grid update introduces an instability
which is amplified in subsequent steps.

first increase with increasing coarsening factor c10 before decreasing due to the small coarse-grid

size Nml−1
t .

On the other hand, for δN0
t
∈ {0.1, 0.01, 0.001} we observe an increase in predicted and

observed convergence factors with increasing coarsening factor c10. Again, predicted and observed

convergence factors are in excellent agreement for almost all considered cases. Only for δN0
t
= 0.01

the maximum observed convergence factor is smaller for the F-relaxation case and approximately

1% larger for (i) F-relaxation and c10 = 32 and (ii) FCF-relaxation and c10 ∈ {16, 32}. Again, this is

likely due to the approximate residual norm computation.

Further, we note that additional relaxation steps can be beneficial for small fine grid time step

sizes, whereas the effect is negligible for δN0
t
= 0.001, thus suggesting that relaxation can be omitted

for small fine grid time step sizes to reduce computational work without sacrificing convergence.

Finally, we note that in all considered cases we do not observe any instability as described in

Section 3.3.1 and previous works [9, 10]. For example, Figure 7 illustrates the position of the tip

of the cantilever after the first three MGRIT iteration with t ∈ [0, 64], δN0
t
= 0.1 and c10 = 2. Here,

no artificial amplification of the amplitude of oscillation is observed as is the case for MGRIT with

Scheme I, see Figure 5.
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Figure 6. Predicted and measured convergence factor for a two-grid algorithm with various fine grid time

step sizes δN0
t

∈ {1.0, 0.1, 0.01, 0.001} and coarsening factors c10 ∈ {2, 4, 8, 16, 32}.
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Figure 7. Current approximation of the tip displacement for two-grid MGRIT using Scheme II with

coarsening factor c10 = 2, fine grid time step size δN0
t

= 0.1, t ∈ [0, 64] and FCF-relaxation compared with

reference solution from sequential time stepping. No instability is observed with Scheme II in contrast to
using Scheme I, see Figure 5.

The results in this section highlight the benefit of using theoretical upper bounds as given in [12]

as tool to estimate experimental convergence a priori and to design convergent MGRIT algorithms

with guaranteed worst case convergence factors.
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Figure 8. Predicted worst-case convergence for MGRIT with the hybrid approach. The hybrid approach
avoids the instability observed for MGRIT with Scheme I, however, cannot yield guaranteed convergence in

the two-grid case.

3.3.3. MGRIT with hybrid scheme

Section 3.2 highlights that for large time step sizes, Scheme I can better reproduce the amplitude

of oscillation compared to Scheme II. Though, Scheme I with MGRIT does not yield a convergent

parallel-in-time algorithm. On the other hand, Scheme II with MGRIT does not exhibit the same

instability as Scheme I with MGRIT, see Section 3.3.2. Additionally, MGRIT yields the same

solution as sequential time stepping on the fine grid within the selected solver tolerance, as was

noted earlier. These aspects motivate the design of a hybrid algorithm with the aim to preserve

amplitudes as good as Scheme I but with the MGRIT convergence properties of Scheme II. Thus,

the hybrid scheme employs ΦI
δ0
t

and Φ
II
δ1
t

on the fine and coarse grid, respectively.

Although MGRIT with the hybrid scheme does not suffer from the same instability as MGRIT

with Scheme I, convergence deteriorates. The predicted upper bound for the convergence factor

either indicates divergence with cFf , c
FCF
f > 1, in the worst case, or a stalling solver with

cFf , c
FCF
f = 1. This is illustrated in Figure 8, where one can observe that convergence cannot be

guaranteed for all fine grid time step sizes. Thus, MGRIT with the hybrid scheme has no significance

for designing robust parallel-in-time solvers in the two-grid case.

3.4. Convergence in the multigrid case

Since a convergent algorithm could only be achieved for MGRIT with Scheme II in the two-grid

case, only this case is considered in the following to investigate convergence in the multigrid case.

3.4.1. MGRIT with Scheme II

To explore convergence in the multigrid case, we employ multilevel hierarchies with ml ∈ {3, 4, 5}
for δN0

t
∈ {1, 0.1, 0.01} and ml ∈ {3, 4, 5, 6} for δN0

t
= 0.001. Further, we consider combined

coarsening factors of cml−1
0 ∈ {4, 8, 16, 32, 64}, where we only vary c10 but select cmm−1 = 2 for

m = 2, . . . ,ml − 1. The MGRIT algorithm is started with a forward solve on the coarsest time grid

(i.e. use of the XBraid skip-first-down option), performs an initial V-cycle and full multigrid (FMG)
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Figure 9. Measured mean convergence factor for ml-grid MGRIT algorithm with F-cycles and Scheme II
for fine grid time step sizes δN0

t

∈ {1, 0.1, 0.01, 0.001}. Note, that the x-axis corresponds to the combined

coarsening factor cml−1
0 .

cycles for all following MGRIT iterations. Scheme II is employed as one-step integrator on all

grid levels and one V-cycle is performed as post-relaxation at each FMG level. To provide a better

indicator for overall performance of the MGRIT algorithm, we report the mean of the experimental

convergence factor over all MGRIT iterations.

Figure 9 reports mean experimental convergence factors over the combined coarsening factor

cml−1
0 =

∏m=ml−2

m=0
cm+1
m . As illustrated, the best convergence factor available for a particular

combined coarsening factor is available through the use of FMG cycles with more levels and slower

coarsening, between levels, as opposed to FMG cycles with more aggressive coarsening between

levels. Observed convergence factors are generally significantly smaller than in the two-grid case.

Thus, the use of FMG-cycles allows more aggressive coarsening and yields more potential for

parallelism in the temporal domain.

If δN0
t

and cml−1
0 are kept fixed, the mean convergence factor improves with increasing ml. For

example, for δN0
t
= 0.1 and cml−1

0 = 64 the mean convergence factor is approximately 0.92 for

ml = 5 but 1.07 for ml = 4 and 1.22 for ml = 3. Thus, one can obtain a moderately convergent

instead of a slowly divergent algorithm simply by introducing an additional intermediate time grid

level but with the same fine and coarsest grid size.

3.4.2. Timing results

In this section, we present preliminary speedup results for an MGRIT algorithm that employs

Scheme II and ml = 5 time grid levels with a coarsening of two between all time grid levels. Similar

to Section 3.4.1, an initial V-cycle is performed before switching to FMG-cycles with one V-cycle

as post-relaxation at each FMG-level. The time step size is selected as δN0
t
= 0.001. The standard

Euclidean norm is used to measure solution progress. To investigate the dependency of the wall
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Figure 10. Wall clock time for MGRIT with Scheme II and FMG-cycles with ml = 5 and cmm−1 = 2 for all
m. Note, that even for small processor counts a marginal speedup can be achieved with relaxed convergence

criteria besides the relatively large coarse grid size with c
ml−1
0 = 16.

clock time for MGRIT on the convergence criterion, we vary the tolerance between 3.1 · 10−7 and

3.1 · 10−5.

All reported timing results were obtained on CAB (Intel Xeon E5-2670 architecture, 16 cores

2.6GHz and 32GB RAM per node) at Lawrence Livermore National Laboratory, CA, USA. Data

export was switched off and status messages were restricted to a bare minimum to ensure that

reported wall clock times are almost entirely dominated by computation and communcation costs

but not data I/O tasks.

The elapsed wall clock time for the sequential time stepping algorithm (using Scheme II) was

1932 seconds, which is established as baseline in Figure 10. As illustrated in Figure 10, the elapsed

wall clock time for the five-grid MGRIT algorithm drops from approximately 7010 seconds to 4990
seconds when using 2048 processors instead of 256 processors for parallelizing in the temporal

domain. By relaxing the convergence criterion for the time-parallel algorithm, the wall clock time

of the time-parallel algorithm drops below the wall clock time for the sequential algorithm with

a marginal speedup. Here, it is important to note that although the achieved speedup is almost

negligible, one can expect to improve the parallel speedup, for example, by selecting a more efficient

cycling and relaxation strategy (e.g., cheaper MGRIT iterations and improved reduction of residual

norm per MGRIT iteration) and a larger coarsening factor cml−1
0 in combination with growing

processor counts.

4. DISCUSSION

In the previous sections, two different backward Euler time discretization schemes were presented

and investigated. It was shown, that MGRIT with Scheme I exhibits strong instabilities parallel-in-

time. The observations are in line with previous works in this field [9, 10]. Although MGRIT with

Scheme II uses only a slightly modified time discretization, a convergent scheme can be derived for

a range of coarsening factors, both for two-grid V-cycles and multigrid FMG-cycles.

Intuitively, the modification in Scheme II changes how the discretized version of the stress tensor

in Equation 6 is evaluated (compare Equation 12 and Equation 15), such that it is evaluated at

given discrete time points across all levels in the time grid hierarchy in a consistent manner, see

Section 2.5. Here, we note that both time discretizations are consistent and converge to the same
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numerical solution for decreasing time step sizes. By rewriting the time-discrete Equation 14,

ui = ui−1 + δNt
vi (39)

= ui−1 +
δNt

2
(vi + vi−1) +

δ2Nt

2
(
vi − vi−1

δNt

), (40)

one may argue that, for δNt
, Equation 40 becomes increasingly similar to the time-discrete

Equation 11. Further, rewriting Equation 11,

ui = ui−1 +
δNt

2
(vi + vi−1) = ui−1 + δNt

vi−1 −
δNt

2
vi−1 +

δNt

2
vi (41)

= ui−1 + δNt
vi−1 +

δ2Nt

2
(
vi − vi−1

δNt

), (42)

and assuming that the last term in Equation 42 can be neglected for small δNt
, one would effectively

approximately discretize Equation 5 by an explicit step. This might be a hint for explaining the

observed instability of MGRIT with Scheme I. On the other hand, the two-grid theory presented in

[12], when used as an a priori tool for estimating convergence of MGRIT with Scheme I, provides

a more mathematical and clear pathway for relating observed divergence in numerical experiments

with the employed time-discretization.

In the case of using MGRIT with Scheme II, convergence was predicted for two-grid algorithms

with F- and FCF-relaxation and a range of coarsening factors. The predictions matched quite closely

with observations in the numerical experiments, supporting the use of the analysis presented in [12]

as a powerful tool to design convergent algorithms a priori.

Two-grid results also motivated the design of a hybrid algorithm with the use of Scheme I on the

fine grid and Scheme II on the coarse grid. Although, we were not able to derive a convergent hybrid

scheme in this work, we showed that the use of Scheme II on the coarse grid removes the instability

observed for MGRIT with Scheme I on both time grid levels. Further, Figure 8 illustrates that the

predicted worst-case convergence factors are close to one, whereas for MGRIT with Scheme I on

all levels yielded immediate and strong divergence with estimates cFf , c
FCF
f >> 1. Thus, hybrid

schemes might be a promising approach to combine the advantages of different time discretization

schemes.

Although the analysis presented in [12] is restricted to the two-grid case, the multilevel algorithm

using MGRIT with Scheme II (presented in Section 3.4.1) was a direct result from the design of

the convergent two-grid algorithm using MGRIT with Scheme II. Here, the use of FMG-cycles was

beneficial to accelerate convergence in the true multilevel case, enabling larger combined coarsening

factors cml−1
0 compared to the two-grid case.

Further, preliminary timing results for the time-parallel algorithm were presented in Section 3.4.2.

While only a marginal speedup could be achieved in the presented case for MGRIT with Scheme II

and a five-grid hierarchy, results are promising. That is, reported wall clock times are almost entirely

dominated by computation and communication. However, it is important to note that data export,

for example, is a completely serial process for sequential time-stepping while it is parallel for the

MGRIT algorithm. Thus, for practical applications that include data I/O tasks, larger speedups

can be expected. Furthermore, the reported timing results were also restricted to a relatively small

combined coarsening factor c40 = 16. Thus, an MGRIT algorithm with improved convergence rates

and larger coarsening factors (i.e., smaller coarse-grid size) will exhibit much better speedup over

sequential time-stepping.

5. CONCLUSION

In this work, we provided an analysis of the convergence of the multigrid reduction in time algorithm

for the dynamic linear elasticity equations. It was shown that the two-grid convergence theory

presented in [12] provides a mathematical explanation for the instability observed in previous
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works [9, 10]. Using the two-grid convergence theory as a design tool to estimate convergence

of a modified backward Euler scheme (MGRIT with Scheme II) a priori, we were able to obtain a

convergent parallel-in-time algorithm for a range of coarsening factors, advancing the application

of parallel-in-time methods for second-order hyperbolic equations. In this study, the predicted

theoretical convergence bounds were in excellent agreement with the worst-case convergence

factors in numerical experiments. We then extended the algorithm to the multilevel case, noting

that FMG-cycles and slow temporal coarsening can improve convergence compared to the two-grid

algorithm.

In future work, we will investigate other cycling strategies (e.g. switching from FMG- to V-

cycles after a number of initial iterates) to improve and accelerate convergence. Moreover, spatial

coarsening will be investigated. Further, we aim to generalize the framework to the efficiently solve

nonlinear hyperelastic stress-strain relationships with MGRIT to tackle fluid-structure interaction

applications, particularly in the field of biomedical engineering.
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