
A PARALLEL-IN-TIME ALGORITHM FOR VARIABLE STEP
MULTISTEP METHODS

ROBERT D. FALGOUT∗, MATTHIEU LECOUVEZ† , AND CAROL S. WOODWARD∗

Abstract. This paper presents a multigrid reduction in time (MGRIT) algorithm using BDF
methods for achieving time parallelism for nonlinear, differential-algebraic equations of index 1.
This MGRIT approach transforms the linear multistep methods into single step methods applied
to groups of time steps. Stability considerations are addressed through lowering of the order on
coarse grids. The methods are presented for fixed and variable time step formulations. Numerical
results show moderate speedups for the resulting methods on both heat equation and IEEE power
grid test problems. Performance of MGRIT with BDF is compared to performance of MGRIT with
Runge-Kutta methods of the same orders for both fixed and variable step methods1.

Key words. parallel in time, differential-algebraic systems, power grid simulations, multigrid
reduction in time

AMS subject classifications. 65L06, 65L80, 65M55, 65Y05

1. Introduction. Because clock speeds are no longer increasing, the sequential
time marching approach used in nearly all science simulation codes is becoming a
bottleneck. Parallel time integration is a way of creating concurrency in a simulation
that can be exploited to remove this bottleneck and reduce computing time, some-
times dramatically [10, 8]. However, parallel-in-time algorithms represent a radical
departure from established practice, and although significant progress has been made
on a variety of research fronts, there are still many outstanding hurdles to overcome
to make this approach a practical alternative.

One major issue is the question of convergence. With time stepping, the term
convergence usually relates to the accuracy of the discrete equations. Parallel-in-time
methods are nonlinear iterative methods over the time domain, so they have the added
difficulty that the iteration itself must converge efficiently to the discrete space-time
solution. When developing such methods, the character of the underlying system
greatly influences algorithmic choices. In addition, it is important to accommodate
essential features of modern simulation codes, such as adaptivity and error estimation,
while recognizing that these codes are often extremely complex and represent many
person-years of development effort.

Most physics-based applications involve the solution of time-dependent (partial)
differential equations. The most common form of differential equations are ordinary
differential equations (ODEs) in their explicit form

(1) u̇ = f(t, u), u(t0) = u0,

where u is the (vector) time dependent unknown, and f may be nonlinear. A more
general variant of these ODEs is the implicit form

(2) F(t, u, u̇) = 0, u(t0) = u0,

∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
P.O. Box 808, L-561, Livermore, CA 94551 (falgout2@llnl.gov, woodward6@llnl.gov). This work
was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-739759.
†Centre d’études scientifiques et techniques d’Aquitaine, CEA/Cesta, 15 Avenue des Sablières,

33114 Le Barp, France (matthieu.lecouvez@cea.fr)
1This paper shares some introductory material with [20] on the description of the MGRIT algo-

rithm.

1

mailto:falgout2@llnl.gov
mailto:woodward6@llnl.gov
mailto:matthieu.lecouvez@cea.fr

2 R. D. FALGOUT, M. LECOUVEZ, AND C. S. WOODWARD

where the Jacobian of F with respect to u̇, ∂F
∂u̇ , is assumed to be nonsingular for all t.

With this assumption, it is easy to see that these two forms are equivalent. When the
Jacobian may be singular, we have differential-algebraic equations (DAEs), and many
theoretical results for ODEs are not valid anymore (see [2]). DAEs arise in various
fields of science, from astrophysics to power grid simulations and mechanics. In most
of these applications, the function, F , is nonlinear.

Much work has been done on developing efficient time stepping methods for DAEs
[2, 5, 12]. This work has resulted in very efficient variable step and (in the case of linear
multistep methods) variable order adaptive methods and software for these systems
[13]. In particular, the linear multistep methods have been shown to be very efficient
in a number of application areas, especially circuit [15] and power grid simulation
[23, 3]. A challenge with parallel-in-time methods has been developing strategies that
accommodate these highly efficient adaptive methods.

In this paper, we focus on the parallel-in-time solution of DAEs discretized with
multistep backward difference formula (BDF) time integration on variably-spaced
temporal grids. Research in this area has been limited to date. The approach we con-
sider here is called multigrid reduction in time (MGRIT) [7], which has the advantage
of being relatively non-intrusive on existing application codes and allows for signifi-
cant reuse of existing simulation software and technology. The MGRIT approach was
first applied to DAEs in [20] where speedups were demonstrated for a simple single-
machine, infinite-bus power grid problem discretized with a high-order Runge-Kutta
method. In the current paper, the focus is instead on BDF methods and variable step
time grids, and more complex power grid problems are considered1. Since the DAEs
considered here are power system problems, it is insightful to compare and contrast
the MGRIT approach to some of the previous work done in this area. In the interest
of space, we mention only two methods here, one early [18, 17] and the other more
recent [11].

The method introduced in [18] was well ahead of its time and was one of the first to
demonstrate potential for speeding up power grid simulations with a parallel-in-time
approach. Like MGRIT, the algorithm uses a sequence of coarse grids and coarse-
grid problems. It does nested iteration in an effort to provide better and better initial
guesses on each grid level, starting on the coarsest grid and moving up the hierarchy to
the finest grid. A variety of relaxation/Newton methods were studied as the iterative
solver on each grid level [17]. MGRIT differs primarily through the FCF-relaxation
scheme (see Section 2) and the different grid cycling strategies used. In general, nested
iteration with relaxation will not produce an optimal O(N) algorithm, where N is
the number of discrete points on the time grid, and more complex cycling strategies
such as F-cycles (Figure 2) are needed.

The method in [11] is based on the popular parareal algorithm [21]. Like MGRIT,
parareal is also non-intrusive and easy to integrate with existing serial time-stepping
codes, and, as mentioned above, it is equivalent to MGRIT when using only two
time grids and just F-relaxation. The work in [11] demonstrates the potential for
speedup in power grid simulations by running serial code and assuming that parallel
communication costs are negligible. In general, scalability of multigrid algorithms in
parallel requires more than two grid levels. A more extensive discussion of this along
with detailed parallel performance analyses can be found in [7, 8].

In Section 2, we introduce the MGRIT algorithm, and in Section 3, we introduce
time integration methods for DAEs. In Section 4, we describe our approach for
solving BDF discretizations with MGRIT and discuss the stability of the method. In
Section 5, we provide numerical results for the 2D heat equation and several power

A PARALLEL-IN-TIME ALGORITHM FOR VARIABLE STEP MULTISTEP METHODS 3

grid problems on uniform and variable-step temporal grids. Section 6 gives concluding
remarks and discusses future work. Lastly, Appendix A provides additional details
on the stability analysis in Section 4.

2. Multigrid Reduction in Time algorithm. Research on parallel-in-time
methods started with the work of Nievergelt in 1964 [22]. Since then, a variety of
approaches have been developed. However, relatively little work has been done in
this area overall, especially considering that more than 50 years have passed since
it was first explored. For a recent review of the literature, see [10]. The method
considered here is called multigrid reduction in time (MGRIT) [7, 8, 9, 6, 20]. It
is based on multigrid reduction techniques [24, 25] and is relatively non-intrusive on
existing codes.

Let u(t) be the solution to some time-dependent problem (for example, a DAE)
on time interval [0, T]. Let 0 = t0 < t1 < · · · < tN = T be a discrete temporal mesh on
that interval, and let ui be an approximation to u(ti). A one-step time discretization
is then given by

u0 = g0, ui = Φi(ui−1) + gi, i = 1, 2, ..., N.(3)

A traditional time stepping method solves for u1 through uN in sequence. To motivate
the MGRIT approach, first consider the simple linear case where each function Φi is
a matrix. Then, time stepping is equivalent to a forward solve of the block linear
system Au = g given by

(4)

I
−Φ1 I

. . .
. . .

−ΦN I

u0

u1

...
uN

 =

g0

g1

...
gN

 .

The idea is to replace the O(N) sequential time stepping method with an O(N)
multigrid [26] iterative solver that is highly parallel. One well-known direct method
for solving tridiagonal systems is cyclic reduction. The MGRIT multigrid method
is a kind of approximate block cyclic reduction algorithm that utilizes a sequence of
coarser temporal systems to accelerate the solution of the fine grid problem in (4).
Although the above motivation assumes a linear system, the algorithm applies to the
full nonlinear setting. It is also important to note that we solve the same discrete
space-time system as in (3); that is, the MGRIT approach is discretization agnostic
and converges to the solution produced by sequential time stepping on the finest grid.

The coarse grids in MGRIT are formed from the original fine grid by successively
coarsening with factor m > 1. The coarsening of a grid induces a decomposition of
that grid into two sets called C-points (points that align with the coarse grid) and F -
points (everything else). Figure 1 provides an illustration in the case of the finest grid
level. With this decomposition in hand, we can describe relaxation and coarse-grid
correction, the two main components of multigrid.

In the case of MGRIT, relaxation alternates between so-called F-relaxation and
C-relaxation. F-relaxation updates the F -point values, ui, on interval (Tj , Tj+1) by
propagating the C-point value, umj , (i.e., ui where i = mj) across the interval using
the time propagators Φi in sequence. Although this process is sequential, the F-
intervals are independent from each other and can be computed in parallel. Similarly,
C-relaxation updates the C-point value, umj , based on the F -point value, umj−1,
and these updates can also be computed in parallel. We define FCF-relaxation as

4 R. D. FALGOUT, M. LECOUVEZ, AND C. S. WOODWARD

Fig. 1. Fine grid (ti) and coarse grid (Tj) for coarsening factor m = 5. The coarse grid
induces a decomposition of the fine grid into C-points (red) and F -points (black).

Fine
grid

Coarse
 grid

Fig. 2. Multigrid V-cycle (left) and F-cycle (right). Cycles represent the order in which dif-
ferent time grids are visited in the recursive MGRIT algorithm. Going down to a coarser grid
corresponds to step 2 of the MGRIT algorithm, while going up corresponds to step 5.

the composition of successive F-, C-, and F-relaxations. Simple injection is used to
transfer values between grids (Steps 2 and 5 below).

The two-grid MGRIT algorithm is then as follows:
1) Apply FCF-relaxation to A(u) = g.

2) Restrict the fine grid approximation and residual to the coarse grid:
u∆,j ← umj , r∆,j ← gmj −A(u)mj .

3) Solve the coarse system A∆(v∆) = A∆(u∆) + r∆.

4) Compute coarse error approximation: e∆ = v∆ − u∆.

5) Correct u at C-points: umj = umj + e∆,j .

6) Apply F-relaxation.
The multilevel algorithm uses the two-grid method in a recursive fashion to solve the
system in Step 3. A variety of standard multigrid cycling strategies may be applied,
including V-cycles and F-cycles (see Figure 2). For a fairly comprehensive reference
on multigrid methods and techniques, see [26]. One important aspect of MGRIT is
that the user only needs to define Φi, which corresponds to the original time stepping
method. Hence, most of a users’ original time integration code can be used as is. This
property makes the MGRIT method relatively non-intrusive.

2.1. XBraid. Through the open-source library XBraid [1], users gain access to
MGRIT parallel time integration capabilities by writing only a small amount of new
code that wraps their existing time-stepping method, error estimation techniques,
etc. The variable step methods explored in this paper utilize XBraid’s time adap-
tivity feature, which uses a Full MultiGrid (FMG) cycle as depicted in Figure 3. As
opposed to starting on the fine grid as described above, in FMG the user specifies an
initial coarse temporal grid (often this is just a uniform grid). Then as the system
is solved, the user tells XBraid if a time interval should be refined. This decision
about refinement uses the same error estimation techniques employed in the original
time-stepping code. From this user-provided information, XBraid then constructs a
refined grid and redistributes the time intervals across the processors (Figure 3b) so
that each processor owns approximately the same number of time points. This process
continues until all of the time intervals are adequately refined. Once the the fine time
grid is developed, XBraid will conduct any iterations needed to ensure the 2-norm
of the relative residual of (4) is below a given tolerance. During this FMG cycle,

A PARALLEL-IN-TIME ALGORITHM FOR VARIABLE STEP MULTISTEP METHODS 5

(a) FMG cycle

Refined

Fine
2 24 1 1r-factors→

Refinement

(b) Time refinement example

Fig. 3. (a) Temporal adaptivity is achieved in XBraid via an FMG-cycle. The fine grid is solved
using either V-cycles or F-cycles, then it is refined (red arrows) to create a new fine grid with better
approximation properties, and the process continues until the final grid is considered satisfactory.
Here, one V-cycle is shown for each fine grid problem solution. (b) User-provided refinement factors
are used to construct refined grids which are automatically redistributed by XBraid. A 5 processor
example is shown here. Refinement factors indicate needed refinement of the interval to the left of
the mark.

spatial adaptivity is also possible. XBraid provides all of the software infrastructure
for passing data between grids and applying distributed memory parallelism through
MPI in the multigrid algorithm.

3. Introduction to methods for DAEs. In the numerical solution of systems
of DAEs, the solution is approximated on a discrete time grid t0 < t1 < · · · < tN = T ,
and for all n ≤ N , we let un be the approximation of u(tn), the solution at time tn.
Traditionally, and starting from the initial condition u0, the values un are computed
one-by-one using previous steps. In the following sections we describe two main classes
of time integrators.

3.1. Runge-Kutta solvers. Runge-Kutta integrators are one-step, multi-stage
methods [19]. An s-stage Runge-Kutta method of order q is given by its so-called
Butcher tableau,

(5)

c1 a11 . . . a1s

...
...

. . .
...

cs as1 . . . ass
(q) b1 . . . bs

.

The computation of un from the previous step un−1 is given by

(6) un = un−1 + hn

s∑
i=1

biKi,

where hn = tn − tn−1, and the Ki, i = 1, ..., s are solutions of the following nonlinear
problem

(7) F

tn−1 + cihn, un−1 + hn

s∑
j=1

aijKj , Ki

 = 0, ∀ 1 ≤ i ≤ s.

All the properties (especially the order of accuracy) of the Runge-Kutta method are
determined by its Butcher tableau. From (7), we can see that one step of an s-stage
Runge-Kutta method requires the solution of an snu × snu nonlinear system (where
nu denotes the size of the unknown vector u). For large problems or high order
methods, the cost of the nonlinear solve may become prohibitive. Specific Runge-
Kutta methods have been developed to overcome this issue. Indeed, if the coefficients

6 R. D. FALGOUT, M. LECOUVEZ, AND C. S. WOODWARD

(aij) of the Butcher tableau form a lower triangular matrix, then solving (7) would
require s nonlinear solves of nu×nu problems. Furthermore, if the coefficients on the
diagonal are all equal, a11 = · · · = ass = a, then a modified quasi-Newton solver can be
efficiently used to solve the s nonlinear problems to further reduce the computational
cost (the same Jacobian can be used for all the s nonlinear solves).

Adaptive step time integration methods are critical to efficient solution processes
in many application areas. To allow variable time step sizes, one needs, at any given
point in time, to be able to predict the required size of the following time step. This
prediction requires an error estimate on the solution computed at the current step.
Embedded Runge-Kutta methods are well suited for that purpose. These schemes
consist of two Runge-Kutta methods of different orders, q and q−1, sharing the same
coefficients (aij) and (ci). We can combine their Butcher tableaux as follows

(8)

c1 a11 . . . a1s

...
...

. . .
...

cs as1 . . . ass
(q) b1 . . . bs

(q − 1) b̃1 . . . b̃s

.

Because the two schemes share coefficients, the solutions of the systems in (7) are
computed only once, then two solutions of different orders of accuracy are computed

(9)

un = un−1 + hn

s∑
i=1

biKi (order q)

ũn = un−1 + hn

s∑
i=1

b̃iKi (order q-1),

and the next step size, hn+1, is determined to satisfy

(10)

(
hn+1

hn

)q

‖en‖ ≈ ε,

where en = un − ũn is an error estimation, and ε is a given tolerance. Using this
technique, one can see that the step sizes are determined through the estimation of a
local error of order q − 1, even though the solutions are of order q. The norm used is
usually either the L2-norm (if all components of the solution vector are commensurate)
or a weighted root-mean-square (WRMS) norm. In the latter case (10) becomes

(11)

(
hn+1

hn

)q

‖en‖WRMS ≈ 1, ‖en‖WRMS =

√√√√ 1

nu

nu∑
i=1

en,i
εrel|un,i|+ εabs,i

εrel is a relative tolerance, and εabs is a vector of absolute tolerances. Note that this
norm is based on the current value of the solution un. This is the norm that we used
in our numerical simulations presented in section 5.

3.2. Backward Difference Formula (BDF) integrators. Unlike the one-
step, multistage Runge-Kutta methods, backward difference formula (BDF) methods
are multistep methods. These methods require several previous steps to compute
the solution at a new point in time, by means of polynomial interpolation. A BDF

A PARALLEL-IN-TIME ALGORITHM FOR VARIABLE STEP MULTISTEP METHODS 7

method is given by a finite difference approximation of u̇n

(12) β0,n hnu̇n =

q∑
i=0

αi,nun−i,

and this approximation is used to obtain the nonlinear problem

(13) g(un) = F

(
tn, un,

1

β0,nhn

q∑
i=0

αi,nun−i

)
= 0

to solve for un at each time step. In the case of uniform time steps, the coefficients
β0,n and αi,n do not depend on n anymore and are given in Table 1 for q ≤ 6. When
time steps are not uniform, the coefficients need to be adapted. To that purpose, two
main techniques are available with different stability properties and implementation
advantages. It is worth noting that both methods reduce to the original BDF method
when uniform time steps are used.

3.2.1. Fully variable coefficients. This is the most stable strategy. Here,
coefficients are derived directly from finite differences based on unequally spaced time
points,

(14) u̇n = [un, un−1] + hn [un, un−1, un−2] + hnhn−1 [un, un−1, un−2, un−3] + . . .

where the divided differences are defined by the recursion formula

(15)
[un] = un

[un, un−1, · · · , un−i] = [un,un−1,··· ,un−i+1]−[un−1,··· ,un−i]
tn−tn−i

Table 2 presents the resulting coefficients for the BDF-2 method. We can see that
all the coefficients (including β0) vary with step size. This variance has an important
implication on the implementation and cost of the method. Indeed, when solving the
(usually) nonlinear (13) with a Newton-like method, the Jacobian Jg arises, given by
(since α0,n = 1)

(16) Jg =
∂F
∂u

+
1

β0,n

∂F
∂u̇

.

Since computing the Jacobian is expensive, most efficient time integrators re-use the
same Jacobian over several time steps to solve (13). Having the coefficient β0 vary
at each time step makes this technique more difficult to implement, and the Jacobian
would require many more updates.

3.2.2. Fixed leading coefficient. The fixed leading coefficient method has
been designed to overcome the issue of the Jacobian that appears with the fully
variable method [14]. Here, the leading coefficient, β0, is fixed to the one used for
fixed time steps. To compensate for the fixed coefficient and to keep the correct order
of accuracy, one extra term is needed in (12). We add this term, β1,nhnu̇n−1, to the
left of the equation to get

(17) β0,n hnu̇n + β1,n hnu̇n−1 =

q∑
i=0

αi,nun−i.

8 R. D. FALGOUT, M. LECOUVEZ, AND C. S. WOODWARD

Table 1
Coefficients of the BDF methods for uniform time steps.

Order q β0 α0 α1 α2 α3 α4 α5 α6

1 1 1 −1

2 2
3 1 − 4

3
1
3

3 6
11 1 − 18

11
9
11 − 2

11

4 12
25 1 − 48

25
36
25 − 16

25
3
25

5 60
137 1 − 300

137
300
137 − 200

137
75
137 − 12

137

6 60
147 1 − 360

147
450
147 − 400

147
225
147 − 72

147
10
147

With this method, one extra vector u̇n−1 needs to be saved to compute a new step.
This method is based on polynomial interpolation. First a predictor polynomial wp

is built that fits the previously computed values,

(18)

{
wp(tn−i) = un−i, i = 1, ..., q
ẇp(tn−1) = u̇n−1.

This polynomial wp gives a first estimate u
(0)
n = wp(tn) of un, and a first estimate

u̇
(0)
n = ẇp(tn) of u̇n. Then, a corrector polynomial wc, which coincides with wp on

uniformly spaced time values (t = tn − ihn, i = 1, . . . , q), is defined so that with
wc(tn) = un

(19)

{
wc(t) = wp(t) + c(t)

(
un − u(0)

n

)
c(tn − hn) = · · · = c(tn − qhn) = 0, c(tn) = 1.

Note that from the definition of the polynomial, c, it follows that β0hnċ(tn) = 1.
Finally, the BDF formula simply reads u̇n = ẇc(tn), or

(20) β0hnu̇n = β0hnu̇
(0)
n + hn

(
un − u(0)

n

)
.

Table 2 shows the resulting BDF coefficients for the second order BDF method, using
uniform steps or variable steps for both approaches. The main advantages of the
fixed leading coefficient approach are first the possibility to reuse the Jacobian (16)
during several time steps since β0,n is now independent of n. The second advantage
comes from the predictor polynomial wp. This polynomial gives an order q estimate

u
(0)
n of the (order q) solution un. Hence, the error estimate en = un − u(0)

n is also of
order q and can be used together with (10) to control the size of the steps to achieve
a required accuracy, for no extra computational cost.

3.3. Solving nonlinear systems. As indicated in the last two sections, solv-
ing nonlinear DAEs (or ODEs with implicit schemes) requires the solution of at least
one nonlinear problem per time step. To solve these systems, we use a modified
Newton method (see Algorithm 1). This method is a simple Newton algorithm in
which the Jacobian matrix is evaluated only once at the beginning of the time step.
This modification greatly reduces the cost of the nonlinear solve since the Jacobian
is expensive to evaluate. Moreover, this algorithm allows us to factorize the Jacobian
in the initialization step, reducing the overall cost of the linear solves. The Newton

A PARALLEL-IN-TIME ALGORITHM FOR VARIABLE STEP MULTISTEP METHODS 9

Table 2
Coefficients of the BDF-2 method for uniform steps (US), fully variable coefficient (FVC), and

fixed leading coefficient (FLC) methods. Here ρn = hn/hn−1 is the ratio between the current and
previous step sizes.

Method β0 β1 α0 α1 α2

US (ρn = 1)
2

3
0 1 −4

3

1

3

FVC
ρn + 1

2ρn + 1
0 1 − (ρn + 1)

2

2ρn + 1

ρ2
n

2ρn + 1

FLC
2

3

1− ρn
3

1 −1− ρ2
n

3

ρ2
n

3

algorithm we employ is given in Algorithm 1. In the case of Singly Diagonally Im-
plicit Runge-Kutta methods (with a lower triangular Butcher tableau and the same
coefficient a11 = · · · = ass = a on the whole diagonal), the same Jacobian matrix, J ,
is reused for all of the Runge-Kutta stages.

Algorithm 1 Modified Newton algorithm

Require: Function g, Jacobian function G, initial guess x0, tolerance ε.
Ensure: ‖g(x∗)‖ < ε

1: xk ← x0

2: r ← g(xk)
3: J ← G(xk)
4: while ‖r‖ ≥ ε do
5: xk ← xk − J−1 r
6: r ← g(xk)
7: end while
8: x∗ ← xk

4. BDF trick. The MGRIT algorithm described previously is developed for
general one-step methods, such as Runge-Kutta methods. The algorithm requires the
solution un at time tn be computed from the solution un−1 at time tn−1 through a
step function Φn

(21) un = Φn(un−1).

Φn can be multi-stage (like high order Runge-Kutta methods) and involve nonlinear
solves. This framework is, however, restricted to one-step methods, and multistep
methods, such as BDF, cannot be used. Nonetheless, a redefinition of the problem
can be used to write multistep methods as a general one-step method. This trick first
appeared in [8] but only BDF-2 methods were considered, and stability issues and
variable-step grids were not investigated.

Let Ψ be a general q-step integrator, meaning that the solution un at time tn is
computed from the previous steps un−1, ..., un−q through the q-variable function Ψn,

(22) un = Ψn (un−1, un−2, . . . , un−q) .

10 R. D. FALGOUT, M. LECOUVEZ, AND C. S. WOODWARD

Fig. 4. Representation of how a two-step method (left) can be redefined into a one-step method
by gathering unknowns (right).

Writing q steps of this process leads to

(23)

un+1 = Ψn+1 (un, un−1, . . . , un−q+1) ,
un+2 = Ψn+2 (un+1, un, . . . , un−q+2) ,

. . .
un+q−1 = Ψn+q−1 (un+q−2, un+q−3, . . . , un−1) .

We now redefine the problem by gathering q unknowns together. Let wn be the vector
of gathered unknowns

(24) wn =

uqn
uqn+1

. . .
uqn+q−1

 .
It is easy to see that with this notation, all values of wn+1 can be computed from
values of wn by doing a series of sequential steps similar to (22)-(23). Let Φn+1 denote
this process. We then have

(25) wn+1 = Φn+1(wn),

and our redefined integrator fits the framework of the MGRIT algorithm. Figure 4
represents this gathering process.

4.1. Stability concerns. Using the redefined problem in a multigrid context,
however, has consequences on the MGRIT algorithm and more specifically on the
coarse time grids. Since the gathering technique described previously is done on the
finest level, the coarsening process involves only the new set of larger unknowns. The
resulting coarse time grid is not uniform, and the discrepancy between the step sizes
may become extremely large. An illustration of the issue is represented in Figure 5 for
the case of a 3-step method and a coarsening factor of 2. A simple recurrence shows
that the ratio, ρ, between the largest step and the smallest step on level, l, using a
coarsening factor, c, and a q-step method is given by

(26) ρl(q, c) = q
(
cl − 1

)
+ 1

and may be arbitrarily large. This discrepancy has an important effect on the stability
of the time integrator on the coarse levels. The stability regions for BDF-2 and BDF-3
with fully variable coefficients and fixed leading coefficients are presented in Figures
6 and 7, respectively. See Appendix A for more details on the computation of the
stability region.

If the BDF-2 method with fully variable coefficients (Figure 6.a-d) shows a sur-
prisingly good stability on all coarse grids, this is definitely not the case for the other

A PARALLEL-IN-TIME ALGORITHM FOR VARIABLE STEP MULTISTEP METHODS 11

C F CC F

C F C

C C

Level 0

Level 1

Level 2

Fig. 5. Resulting coarse grids when using a 3-step method and a coarsening factor of 2. Each
tick represents an actual point in time. The dotted circles show how points in time are gathered,
and the thick ticks are the time points as seen by the MGRIT algorithm (labelled C or F for coarse
points and fine points, respectively). The coarsest grid gives the largest discrepancy in time step
sizes.

= 1.000000000

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

(a) ρ = 1

= 3.000000000

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

(b) ρ = 3

= 7.000000000

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

(c) ρ = 7

= 15.000000000

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

(d) ρ = 15

= 1.000000000

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

(e) ρ = 1

= 3.000000000

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

(f) ρ = 3

= 7.000000000

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

(g) ρ = 7

= 15.000000000

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

(h) ρ = 15

Fig. 6. Stability region (in blue) of the BDF 2 method, using fully variable coefficient (top) or
fixed leading coefficient (bottom) methods. From left to right, we represent the stability region for
the time grid on levels 0 to 3, with a coarsening factor of 2. Axes are real and imaginary part of
hλ, h being the size of the step (on the finest grid) and λ is the complex parameter of the scalar test
equation u̇ = λu.

methods. In particular, using the fixed leading coefficient strategy results in great
instability, with a stability region shrinking at least as fast as ρ−1. Such a behavior
is obviously a great concern for the MGRIT algorithm. It is indeed necessary to keep
the integration method stable on coarse grids to obtain a good coarse grid correction.
To that purpose, we propose the two following strategies to be applied within the
embedded cycle method within FMG.

• The first few “coarse” grids are not coarsened in time, but a lower order BDF
method is used, until reaching a BDF method of order 1, then the time grid
is coarsened the usual way.

• The grid hierarchy is built the usual way, coarsening in time from level 0, but
the order of the BDF method is decreased simultaneously.

The first strategy is the most stable, as the method simply reduces to a backward
Euler method on uniform steps before coarsening the time grid. It is also the most

12 R. D. FALGOUT, M. LECOUVEZ, AND C. S. WOODWARD

= 1.000000000

-5 0 5

-6

-4

-2

0

2

4

6

(a) ρ = 1

= 4.000000000

-5 0 5

-6

-4

-2

0

2

4

6

(b) ρ = 4

= 10.000000000

-5 0 5

-6

-4

-2

0

2

4

6

(c) ρ = 10

= 22.000000000

-5 0 5

-6

-4

-2

0

2

4

6

(d) ρ = 22

= 1.000000000

-5 0 5

-6

-4

-2

0

2

4

6

(e) ρ = 1

= 4.000000000

-5 0 5

-6

-4

-2

0

2

4

6

(f) ρ = 4

= 10.000000000

-5 0 5

-6

-4

-2

0

2

4

6

(g) ρ = 10

= 22.000000000

-5 0 5

-6

-4

-2

0

2

4

6

(h) ρ = 22

Fig. 7. Stability region (in blue) of the BDF 3 method, using fully variable coefficient (top) or
fixed leading coefficient (bottom) methods. From left to right, we represent the stability region for
the time grid on levels 0 to 3, with a coarsening factor of 2. Axes are real and imaginary part of
hλ, h being the size of the step (on the finest grid) and λ is the complex parameter of the scalar test
equation u̇ = λu.

computationally expensive as the integration is performed several times on the finest
grid. Numerical experiments show that the second strategy is stable enough in almost
all cases, and, for that reason, this strategy will be used in the following sections.

5. Numerical results. We present numerical results for simple diffusion prob-
lems and an application to power grid systems. We are interested in comparing our
implementation of the MGRIT algorithm using the LLNL XBraid implementation to
an optimal (in terms of number of function evaluations) but sequential time stepping
implementation. To that purpose, several quantities of interest are presented

• The time-to-solution is the time needed to obtain the solution over the entire
time interval considered.

• The crossover point is the number of cores required by our algorithm to break
even with traditional sequential time stepping. With a lower number of cores,
MGRIT takes more time than sequential time stepping to get the solution.

• Best speedup: this is the ratio between the time-to-solution for the sequential
method and the best time to solution for MGRIT. It describes how much
faster MGRIT is compared to sequential time stepping.

From the description of the MGRIT algorithm in Section 2, it is easy to see that
the solution only needs to be saved at C-points, even for multistep integrators. Hence,
an efficient implementation will not save F -point solutions. This is one of the storage
options available in XBraid (see [9] for more discussion on storage costs). However,
to use adaptive time refinement in XBraid, some extra information may be needed
when computing the gathered unknowns. For instance, one cannot assume uniform
time steps, and it becomes necessary to save the inner time step values at all points
(at C-points as well as F -points, on all grids). This extra storage remains negligible
for large problems since only q extra time step values per gathered time point are
needed, where q is the order of the BDF method on the finest grid. Parallel com-

A PARALLEL-IN-TIME ALGORITHM FOR VARIABLE STEP MULTISTEP METHODS 13

munications are needed mainly during F- and C-relaxations and are performed with
MPI (Message Passing Interface). XBraid is implemented to reduce the cost of com-
munication by overlapping these communications with computations. For example,
during an F-relaxation, each processor starts with its rightmost coarse interval (see
the grid layout in Figure 1) then sends the result to its right neighbor processor. While
this communication is occurring, each processor works on its interior coarse intervals.
Once each processor receives the communication from its left neighbor processor, the
leftmost coarse interval can be completed. A similar strategy is used for C-relaxation
and other components of the code.

In all of our numerical examples, we use F-cycles (see Figure 2). In the adaptive
case, we use one F-cycle to solve each intermediate FMG grid level, and otherwise
the number of cycles is determined by a relative residual stopping tolerance of 10−8.
To initialize the algorithm, we start on a uniform initial grid, taken to be decidedly
coarse in the adaptive case. Then, each point in time is initialized to the value of the
initial condition: u0

n = u0. Additional parameters, such as the coarsening factor m,
can be problem-dependent. Below we use the coarsening factor that gave the best
overall results for each problem. For all variable time step cases below we use 10−8

for the time integrator tolerance in (10).
All runs below were conducted on the “Cab” Linux cluster at Lawrence Livermore

National Laboratory. This machine is an Intel Xeon-based system with over 1,200
nodes, each with two 8-core CPUs in a shared memory configuration. Speedup results
are presented for a number of cores ranging from 1 to 2,048.

5.1. Heat equation. This first test case corresponds to solving the heat equa-
tion on a square domain, Ω = [0, π]2, with a uniform spatial grid of nx × ny using
finite differences in space. Dirichlet boundary conditions are imposed on all sides of
the square. The continuous problem is given by

(27)

∂u

∂t
−∆u = f(x, t) in Ω× [0, T]

u(x, t) = 0 on ∂Ω× [0, T]
u(x, 0) = u0(x) in Ω

,

where x = (x, y) denotes a point in Ω. In this test, the initial condition is a
sine: u0(x) = sin(x) sin(y), and we also choose a sine right-hand side: f(x, t) =
u0(x) sin(2t). We integrate on the interval [0, T], T = 5s. Two sets of experiments
are conducted using BDF methods of order 1 to 4. The first set of experiments
uses uniform time steps, and the second uses adaptive time steps. For this diffusion
problem, we use a coarsening factor of 4.

5.1.1. Uniform time steps. Here we use uniform time steps, with the number
of steps ranging from 1, 000 to 100, 000 points in time. Figure 8 and Table 3 show
the scalability results of our implementation of the MGRIT algorithm compared to
sequential time stepping with the same integrator. Note that because uniform time
steps are used, the order of the BDF method does not influence the time-to-solution
of the sequential time stepping.

In the case of 1, 000 time points (Figure 8a), MGRIT can merely reach the se-
quential times, and no real speedup can be achieved. This lack of speedup is due to
the small number of time points. The computational time becomes rapidly negligible
compared to communications. However, a higher number of points in time allows for
a more efficient use of parallelism, and larger speedups can be obtained. We see a
speedup of at least 3 for the 10, 000 point test case (Figure 8b) and at least 21.9 for

14 R. D. FALGOUT, M. LECOUVEZ, AND C. S. WOODWARD

Table 3
For each BDF method and number of points on the time grid, we show the best time-to-solution

achieved by MGRIT, the corresponding speedup compared to the sequential time stepping, and the
crossover point (i.e. the number of cores required to reach the sequential time).

Points 1, 000 10, 000 100, 000

Sequential time ≈ 10.1s ≈ 100s ≈ 993s

BDF 1

time

speedup

crossover

7.88s

1.3×
≈ 82

12.54s

7.9×
≈ 17

22.36s

43.7×
≈ 16

BDF 2

time

speedup

crossover

11.16s

0.9×
–

19.45s

5.2×
≈ 22

32.88s

30.2×
≈ 16

BDF 3

time

speedup

crossover

13.11s

0.8×
–

26.94s

3.7×
≈ 25

44.80s

22.2×
≈ 16

BDF 4

time

speedup

crossover

15.63s

0.7×
–

33.82s

3.0×
≈ 26

45.44s

21.9×
≈ 16

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

cores

10 0

10 1

10 2

10 3

10 4

10 5

Ti
m

e
to

 s
ol

ut
io

n
(s

)

1,000 points in time
BDF 1
BDF 2
BDF 3
BDF 4

(a) 1, 000 pts

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

cores

10 0

10 1

10 2

10 3

10 4

10 5

Ti
m

e
to

 s
ol

ut
io

n
(s

)

10,000 points in time
BDF 1
BDF 2
BDF 3
BDF 4

(b) 10, 000 pts

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

cores

10 0

10 1

10 2

10 3

10 4

10 5

Ti
m

e
to

 s
ol

ut
io

n
(s

)

100,000 points in time
BDF 1
BDF 2
BDF 3
BDF 4

(c) 100, 000 pts

Fig. 8. Scalability results for the 2D heat equation problem on uniform time grids. The time
for sequential time integration is represented by the dotted line. Note that for a fixed number of
points, the sequential time is similar for all orders of the BDF method.

the 100, 000 point test case (Figure 8c). Also, it is worth mentioning that the order
of the BDF method has an influence on the speedup results. Lower order methods
perform slightly better on large numbers of cores. This behavior can be explained
by the “trick” we have used to re-write a multistep method into a one step method.
For a method of order q, q points in time are gathered into a single, larger unknown.
Thus, if N points in time are initially present on the fine grid, after gathering, the
MGRIT algorithm only has N/q unknowns, hence limiting the scalability. Also, since
the unknowns are q times larger, communications are more expensive.

5.1.2. Variable time steps. In this section, we use the error estimation capa-
bility of the BDF methods (recall Section 3.2.2) to do adaptivity in time with MGRIT.
Starting with a coarse initial grid, the time grid is refined where needed based on the
estimation of the error made during a step. The refinement factor is computed using

A PARALLEL-IN-TIME ALGORITHM FOR VARIABLE STEP MULTISTEP METHODS 15

the ratio of the current step size and the optimal one given by (10), leading to the
formula

(28) rfactor =
hn
hn+1

=

⌈(
‖en‖
ε

) 1
q

⌉
,

where d·e is the ceiling function (as refinement factors must be integers in XBraid)
and en is the error estimate. Here we take absolute and relative tolerances of 10−8.
This refinement leads to a non-uniform time grid. We present scalability results for
two different time domains. In the first case, we integrate on the time domain [0, 5s]
(Table 4 and Figure 9), and in the second case, the time domain is [0, 50s] (Table 5
and Figure 10). As above, we use BDF methods of orders 1 to 4.

In the first case (time interval of 5s), the scalability is quite limited. A speedup
of about 8 can be obtained for the first order method and of about 1.7 for the second
order method. No speedup can be achieved for higher order BDF methods. The cause
of the poor scalability is easy to understand as BDF methods are highly efficient when
using time adaptivity, and only a few points in time are needed to reach the required
accuracy. This condition is particularly true for high order methods. For instance,
when using a fourth order method, the final fine grid only has 85× 4 time points. It
is not reasonable to expect speedup for such a small number of time points.

The second case uses a time interval of 50s, leading to more time points on the
final fine grid. As expected, the scalability results are better. Using a first order
method leads to a large number of time points (about 700k), so scalability is good.
A speedup of about 20 can be obtained with 2,048 cores, but Figure 10a shows that
using more cores would lead to more speedup. Using a second order method, we
obtain a speedup of about 6.8, and a speedup of about 1.8 is obtained using a third
order method. However, no speedup can be obtained using a fourth order method.
The number of points (934× 4) is still too low.

5.2. GridDyn. GridDyn is an electric power transmission grid research code
developed at LLNL by P. Top [16]. It uses the SUNDIALS IDA package [13] as its
sequential time integrator for DAE systems, which has been replaced by custom BDF
and Runge-Kutta time integrators, interfaced with XBraid to achieve parallelism in
time. Two test cases are presented here. The first test is the IEEE 39 bus problem
described in [4]. The second problem is the reduced WECC system, which features
179 buses. Unless otherwise specified, we use absolute and relative tolerances of 10−8

(for the control of step sizes as well as for XBraid stopping criteria) and a coarsening
factor of 10. Also, F-cycles are used and no limit on the number of levels in the
XBraid hierarchy is imposed. We compare the behavior of the BDF method of order
2, to a Runge-Kutta method of the same order. For fixed time steps, the Runge-
Kutta method is SDIRK-2, and for variable time steps, the Runge-Kutta method is
an embedded method of order 2 and 4 (meaning two solutions are computed of order
2 and 4, giving an error estimate of order 2, on which the timestep sizes are based).

5.2.1. IEEE 39 bus test case. This test case has 39 buses, 46 links, and 10
generators resulting in 215 total unknowns. A sine load is applied with a period of
2s and an amplitude of 0.1. A BDF2 method is compared to an embedded Runge-
Kutta method of order 2-4 using variable time steps for two time intervals, 20s and
100s. Figure 11a shows the evolution of the time to solution for both methods when
the interval of integration is 20s. For this run, the final time grid has about 10.5k
points using BDF and 16k points using Runge-Kutta. We can see that with the

16 R. D. FALGOUT, M. LECOUVEZ, AND C. S. WOODWARD

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

cores

10 0

10 1

10 2

10 3

10 4

10 5

Ti
m

e
to

 s
ol

ut
io

n
(s

)

Variable time steps
BDF 1

(a) BDF 1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

cores

10 0

10 1

10 2

10 3

10 4

10 5

Ti
m

e
to

 s
ol

ut
io

n
(s

)

Variable time steps
BDF 2

(b) BDF 2

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

cores

10 0

10 1

10 2

10 3

10 4

10 5

Ti
m

e
to

 s
ol

ut
io

n
(s

)

Variable time steps
BDF 3

(c) BDF 3

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

cores

10 0

10 1

10 2

10 3

10 4

10 5
Ti

m
e

to
 s

ol
ut

io
n

(s
)

Variable time steps
BDF 4

(d) BDF 4

Fig. 9. Scalability results for the 2D heat equation problem using adaptive time steps and
T = 5s. Sequential time is represented by the dotted line.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

cores

10 0

10 1

10 2

10 3

10 4

10 5

Ti
m

e
to

 s
ol

ut
io

n
(s

)

Variable time steps
BDF 1

(a) BDF 1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

cores

10 0

10 1

10 2

10 3

10 4

10 5

Ti
m

e
to

 s
ol

ut
io

n
(s

)

Variable time steps
BDF 2

(b) BDF 2

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

cores

10 0

10 1

10 2

10 3

10 4

10 5

Ti
m

e
to

 s
ol

ut
io

n
(s

)

Variable time steps
BDF 3

(c) BDF 3

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

cores

10 0

10 1

10 2

10 3

10 4

10 5

Ti
m

e
to

 s
ol

ut
io

n
(s

)

Variable time steps
BDF 4

(d) BDF 4

Fig. 10. Scalability results for the 2D diffusion problem, using variable time steps and T = 50s.
Sequential time is represented by the dotted line.

A PARALLEL-IN-TIME ALGORITHM FOR VARIABLE STEP MULTISTEP METHODS 17

Table 4
Scalability results on the 2D heat equation problem using variable time steps and T = 5s. We

indicate in each case the number of points on the final fine time grid, the time-to-solution, and, for
the MGRIT algorithm, the speedup and crossover point compared to the sequential case.

Sequential MGRIT

BDF 1

points

time

speedup

crossover

54,017

529.3s

–

–

79,923

60.2s

8.8×
≈ 78

BDF 2

points

time

speedup

crossover

2,443

24.5s

–

–

1,591×2

14.7s

1.7×
≈ 53

BDF 3

points

time

speedup

crossover

566

5.9s

–

–

217×3

13.4s

0.4×
–

BDF 4

points

time

speedup

crossover

215

2.5s

–

–

85×4

7.2s

0.3×
–

sequential approach, the Runge-Kutta method is much more expensive than the BDF
method (about 3 times). On the contrary, using MGRIT with XBraid, the BDF
method becomes about 2 times more expensive than the Runge-Kutta method, and
no speedup can be achieved with the BDF method. A speedup of 5.7 is observed for
Runge-Kutta.

On a longer time integration (Figure 11b), we can make similar remarks. While in
serial, the Runge-Kutta method is more expensive, it becomes cheaper using MGRIT
with XBraid. A speedup of more that 10 is observed. With the BDF method, the
speedup is modest, about 1.5. The poor performance of the BDF method can be
explained by a degraded convergence rate on the IEEE 39 bus problem. It takes more
than 20 iterations for XBraid to converge (1 iteration to develop the fine grid, and 19
iterations on that grid to get to convergence), while with the Runge-Kutta method,
XBraid converges within 5 to 7 iterations.

5.2.2. Reduced WECC system. This problem has 179 buses, 255 links, and
29 generators resulting in 793 total unknowns. The load is a triangular pulse of
period 3s and an amplitude of 0.2. Three different test cases were run with parameters
described in Table 6. All other parameters, in particular XBraid parameters, are fixed:
coarsening factor of 5, tolerance of 10−8, F-cycles, and as many levels as possible. The
absolute and relative tolerance for the Newton solver and the error estimate are also
10−8. Two time intervals are used for the integration. For fixed time steps, we use a
time interval of 10s, which leads to 1ms or 0.1ms steps. For variable time steps, we
use a longer time interval of 100s. Scalability results are presented in Figure 12 and
summarized in Table 7.

18 R. D. FALGOUT, M. LECOUVEZ, AND C. S. WOODWARD

Table 5
Scalability results for the 2D heat equation problem, using variable time steps and T = 50s.

We indicate in each case the number of points on the final fine time grid, the time-to-solution, and,
for the MGRIT algorithm, the speedup and crossover point compared to the sequential case. *In the
case of BDF 1, the limits of scalability are not reached at 2,048 cores; using more cores would lead
to better speedup and lower time-to-solution; see Figure 10a

Sequential MGRIT

BDF 1

points

time

speedup

crossover

518,996

5,092.1s

–

–

796,014

256.2*s

19.9*×
≈ 82

BDF 2

points

time

speedup

crossover

22,911

227.5s

–

–

13,768×2

33.3s

6.8×
≈ 31

BDF 3

points

time

speedup

crossover

5,182

51.5s

–

–

1,976×3

27.7s

1.8×
≈ 57

BDF 4

points

time

speedup

crossover

2,183

22.0s

–

–

936×4

26.2s

0.8×
–

1 2 4 8 16 32 64 128 256 512 1024

Number of processors

10
0

10
1

10
2

10
3

T
im

e
 t

o
 s

o
lu

ti
o

n
 (

s
)

XBraid - RK_SDIRK_24

sequential - RK_SDIRK_24

XBraid - BDF_2

sequential - BDF_2

(a) Variable steps, Tmax=20s

1 2 4 8 16 32 64 128 256 512 1024

Number of processors

10
0

10
1

10
2

10
3

T
im

e
 t

o
 s

o
lu

ti
o

n
 (

s
)

XBraid - RK_SDIRK_24

sequential - RK_SDIRK_24

XBraid - BDF_2

sequential - BDF_2

(b) Variable steps, Tmax=100s

Fig. 11. Time to solution for the IEEE 39 bus test case versus the number of cores using
variable step sizes for different lengths of total time interval. Horizontal lines represent sequential
time stepping for reference.

For fixed time steps, good speedups can be obtained even for 1ms steps. The
Runge-Kutta method leads to a 5.4 speedup, while the BDF method gives a 3.4

2Note that using variable time stepping, XBraid tends to build grids that are sub-optimal in
terms of number of points. This is because at the beginning of the algorithm, the solution is not
accurate and we may refine in parts where it would not be actually needed. This behaviour tends to
be worse for BDF methods in general.

A PARALLEL-IN-TIME ALGORITHM FOR VARIABLE STEP MULTISTEP METHODS 19

Table 6
Description of the test cases for the Reduced WECC System test problem.

Time integration
Number of steps

Sequential XBraid
Variable steps?

#1 10s 10,000 No
#2 10s 100,000 No

#3
RK-24
BDF-2

100s
13,315 15,755
16,368 23,872

2 Yes

1 2 4 8 16 32 64 128 256 512 1024

Number of processors

10
0

10
1

10
2

10
3

10
4

T
im

e
 t
o
 s

o
lu

ti
o
n
 (

s
)

XBraid - RK_SDIRK_12

sequential - RK_SDIRK_12

XBraid - BDF_2

sequential - BDF_2

(a) 10k pts, Tmax=10s

1 2 4 8 16 32 64 128 256 512 1024 2048

Number of processors

10
0

10
1

10
2

10
3

10
4

T
im

e
 t
o
 s

o
lu

ti
o
n
 (

s
)

XBraid - RK_SDIRK_12

sequential - RK_SDIRK_12

XBraid - BDF_2

sequential - BDF_2

(b) 100k pts, Tmax=10s

1 2 4 8 16 32 64 128 256 512 1024 2048

Number of processors

10
0

10
1

10
2

10
3

10
4

T
im

e
 t
o
 s

o
lu

ti
o
n
 (

s
)

XBraid - RK_SDIRK_24

sequential - RK_SDIRK_24

XBraid - BDF_2

sequential - BDF_2

(c) Variable steps, Tmax=100s

Fig. 12. Time to solution for the WECC test case (179 buses) versus the number of cores, using
fixed and variable step sizes. Horizontal lines represent the sequential time stepping for reference.

speedup. Using 100k points in time leads again to much better speedups for both
methods. In the case of Runge-Kutta, we obtain a speedup of 25.5, while for BDF
we see about 20. These speedups are for 2,048 cores. The difference between the
Runge-Kutta and the BDF method can be explained here by the fact that Runge-
Kutta methods are slightly more expensive, which impacts its sequential time but
only mildly the parallel time since more parallelism is available.

Again, the behavior is different for variable time step methods. Here, we use an
embedded Runge-Kutta method of order 2 and 4 and a BDF method of order 2. The
Runge-Kutta method produces a second order as well as a fourth order solution and
compares them to estimate the local error made at each step. Hence, we get an error
estimate of second order. Similarly, with the BDF method, both the polynomial esti-
mate and the solution are second order, leading also to a second order error estimate.
This means that the Runge-Kutta method produces a number of time points of the
same order as the BDF method (since both are based on second order error estimates),
even though the Runge-Kutta solution is more accurate. This behaviour is typical of
Runge-Kutta methods as the solution and the error estimate are of different order.

If the time to solution for the sequential time stepping shows a difference be-
tween Runge-Kutta and BDF (Runge-Kutta is a bit more expensive), this difference
is inverted using the MGRIT algorithm (BDF becomes slightly more expensive than
Runge-Kutta on 1 core). In the end, the speedup obtained for the Runge-Kutta
method is about 2.6 and 1.9 for BDF.

In general, the BDF method performs slightly less well than the Runge-Kutta
method when using variable time steps. This difference is due to two factors. First,
the BDF methods are highly efficient in sequential mode, with few points in time and
are quite cheap (only one nonlinear solve per step). The second point comes from a
degraded convergence rate of XBraid, leading to more iterations.

20 R. D. FALGOUT, M. LECOUVEZ, AND C. S. WOODWARD

Table 7
Summary of the scalability results for the reduced WECC system

Steps : Fixed (10k) Fixed (100k) Variable

RK
Speedup

Iterations
Refinements

5.4
4
–

25.5
4
–

2.6
1
7

BDF
Speedup

Iterations
Refinements

3.4
6
–

20
4
–

1.9
3
9

6. Concluding remarks and future work. This paper developed an MGRIT
formulation for variable step BDF methods. The key to the algorithm is a gathering
of variables into packets with the same number of time steps as the order of the
method. This gathering technique allows the method to be written as a one step
method which can easily be incorporated into the MGRIT framework. The resulting
time-parallel BDF methods show parallel speedups for large numbers of fine grid time
steps. In the variable step case, the high efficiency of the sequential BDF methods,
especially for higher orders, does not provide many time steps over which to parallelize
resulting in less speedup than achieved by the Runge-Kutta methods. For sequential
time stepping, the BDF methods are faster than the Runge-Kutta methods. However,
with MGRIT parallelization, the Runge-Kutta methods were shown to be faster.

While the results here show significant progress in incorporating state of the art
adaptive linear multistep methods into a parallel-in-time framework, future work will
focus on further improvements to the adaptive fine grid development. This work will
include investigation of alternate coarsening strategies that will break the gathered
time step packets. Such methods will allow for fewer points on the final fine time
grid. In addition, we will investigate methods that will emphasize refinement and
derefinement as the fine grid is formed in order to have smaller numbers of time
points on the fine grid that allow for accurate time stepping.

Acknowledgments. The authors would like to thank Philip Top at LLNL for his
invaluable help with the GridDyn package. The authors also thank the Department of
Energys Office of Electricity Delivery and Energy Reliability Advanced Grid Modeling
(AGM) program for the funding support. This work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore National Laboratory under
contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

Appendix A. Stability region of a variable step BDF2 method. To
determine the stability region of a method, we study its behavior on the test equation

(29) u̇ = λu, λ ∈ C.

Assuming a uniform fine grid with step size h, then by construction of the grid hier-
archy (see Section 4 and (26)), on level l the time step size alternates between h and
hρl(2, c) = hρ. A general 2-step integrator is written as

(30) β0,nhnu̇n + β1,nhnu̇n−1 = α0,nun + α1,nun−1 + α2,nun−2

A PARALLEL-IN-TIME ALGORITHM FOR VARIABLE STEP MULTISTEP METHODS 21

or, using (29)

(31) un = −β1,nλhn − α1,n

β0,nλhn − α0,n︸ ︷︷ ︸
An

un−1 +
α2,n

β0,nλhn − α0,n︸ ︷︷ ︸
Bn

un−2.

Note that, besides the explicit dependency λhn, the coefficients An and Bn depend
only on the ratio ρn = hn/hn−1, whose value alternates between ρ and 1/ρ. It follows
that

(32) A2n = A2, A2n+1 = A3, B2n = B2, B2n+1 = B3.

Similarly, one gets

(33)
un+1 = An+1un +Bn+1un−1

= (An+1An +Bn+1)un−1 +An+1Bnun−2.

So, the gathering process described in Section 4 for a 2-step method formally can be
written as

(34)

[
u2n

u2n+1

]
︸ ︷︷ ︸

wn

=

[
B2n A2n

A2n+1B2n A2n+1A2n +B2n+1

]
︸ ︷︷ ︸

Mn

·
[
u2n−2

u2n−1

]
.

From (32), it comes that Mn+1 = Mn, and the stability of the integration process of
wn (and thus un) is directly linked to the eigenvalues of Mn. More specifically, the
process is stable if and only if

(35) max |eig(Mn)| < 1.

Also, the eigenvalues are given by

(36) eig±(Mn) =
A2A3 +B2 +B3

2
± 1

2

√
(A2A3 +B2 +B3)

2 − 4B2B3.

In our case, hn = ρh, hn+1 = h, and using the coefficients given in Table 2 with
ρn = ρ and ρn+1 = 1/ρ, it is easy to evaluate the stability region of the method. If
the exact formula is of little interest, it is worth mentioning the behavior for large ρ
(i.e. for the coarsest grids). This behavior is different depending on the method (fully
variable coefficients or fixed leading coefficient). In both cases, one of the eigenvalues
tends to zero. The other eigenvalue is

(37)

FVC : eig+ ∼ 1

λh− 1
for ρ→ +∞

FLC : eig− ∼ λh

2(3− 2λh)
ρ for ρ→ +∞

,

and the condition (35) becomes (still for ρ → +∞) for the fully variable coefficient
method

(38) FVC : |λh− 1| > 1 .

For large ρ (or coarse grids), the stability region of the BDF 2 method with fully
variable coefficients corresponds to the exterior of a circle centered at z = 1 and of

22 R. D. FALGOUT, M. LECOUVEZ, AND C. S. WOODWARD

radius 1. This region means the method remains A-stable on all the coarse grids.
On the contrary, the eigenvalue associated to the BDF 2 method with fixed leading
coefficient grows as ρ, leading to stability region whose size shrinks as ρ−1. The
computation of the stability region for BDF 3 follows the same principle but leads to
more complex formulas of little interest and is omitted here.

REFERENCES

[1] XBraid: Parallel multigrid in time. http://llnl.gov/casc/xbraid.
[2] U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations amd

Differential-Algebraic Equations, SIAM, 1998.
[3] J. Astic, A. Bihain, and M. Jerosolimski, The mixed adams-bdf variable step size algorithm

to simulate transient and long term phenomena in power systems, IEEE Transactions on
Power Systems, 9 (1994), pp. 929–935.

[4] T. Athay, R. Podmore, and S. Virmani, A practical method for the direct analysis of transient
stability, IEEE Transactions on Power Apparatus and Systems, PAS-98 (1979), pp. 573–
584, http://dx.doi.org/10.1109/TPAS.1979.319407.

[5] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution of initial-value
problems in differential-algebraic equations, SIAM, 1995.

[6] V. Dobrev, T. Kolev, N. Petersson, and J. Schroder, Two-level convergence theory for
multigrid reduction in time (MGRIT), SIAM J. Sci. Comput., 39 (2017), pp. S501–S527.
LLNL-JRNL-692418.

[7] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder,
Parallel time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635–C661.
LLNL-JRNL-645325.

[8] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, J. B. Schroder, and
S. Vandewalle, Multigrid methods with space-time concurrency, Computing and Visual-
ization in Science, (2017), http://dx.doi.org/10.1007/s00791-017-0283-9, https://doi.org/
10.1007/s00791-017-0283-9. LLNL-JRNL-678572.

[9] R. D. Falgout, T. A. Manteuffel, B. O’Neill, and J. B. Schroder, Multigrid reduction
in time for nonlinear parabolic problems: A case study, SIAM J. Sci. Comput., 39 (2017),
pp. S298–S322. LLNL-JRNL-692258.

[10] M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time
Domain Decomposition Methods, T. Carraro, M. Geiger, S. Körkel, and R. Rannacher,
eds., Springer Verlag, 2015, pp. 69–114.

[11] G. Gurrala, A. Dimitrovski, S. Pannala, S. Simunovic, and M. Starke, Parareal in time
for fast power system dynamic simulations, IEEE Trans. Power Syst., 31 (2016), pp. 1820–
1830.

[12] E. Hairer, C. Lubich, and M. Roche, The numerical solution of differential-algebraic systems
by Runge-Kutta methods, vol. 1409, Springer, 2006.

[13] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,
and C. S. Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic equation
solvers, ACM Transactions on Mathematical Software (TOMS), 31 (2005), pp. 363–396.

[14] K. R. Jackson and R. Sacks-Davis, An alternative implementation of variable step-size mul-
tistep formulas for stiff ODEs, ACM Transactions on Mathematical Software (TOMS), 6
(1980), pp. 295–318.

[15] E. R. Keiter, T. Mei, T. V. Russo, E. L. Rankin, R. L. Schiek, H. K. Thornquist, J. C.
Verley, D. A. Fixel, T. S. Coffey, R. P. Pawlowski, et al., Xyce parallel electronic
simulator: reference guide., tech. report, Sandia National Laboratories, 2012.

[16] B. M. Kelley, P. Top, S. G. Smith, C. S. Woodward, and L. Min, A federated simulation
toolkit for electric power grid and communication network co-simulation, in Modeling and
Simulation of Cyber-Physical Energy Systems (MSCPES), 2015 Workshop on, April 2015,
pp. 1–6, http://dx.doi.org/10.1109/MSCPES.2015.7115406.

[17] M. La Scala and A. Bose, Relaxation/Newton methods for concurrent time step solution of
differential-algebraic equations in power system dynamic simulations, Circuits and Systems
I: Fundamental Theory and Applications, IEEE Transactions on, 40 (1993), pp. 317–330.

[18] M. La Scala, A. Bose, D. J. Tylavsky, and J. S. Chai, A highly parallel method for transient
stability analysis, IEEE Trans. Power Syst., 5 (1990), pp. 1439–1446.

[19] J. D. Lambert, Numerical Methods for Ordinary Differential Systems, Wiley, 1991.
[20] M. Lecouvez, R. D. Falgout, C. S. Woodward, and P. Top, A parallel multigrid reduc-

http://llnl.gov/casc/xbraid
http://dx.doi.org/10.1109/TPAS.1979.319407
http://dx.doi.org/10.1007/s00791-017-0283-9
https://doi.org/10.1007/s00791-017-0283-9
https://doi.org/10.1007/s00791-017-0283-9
http://dx.doi.org/10.1109/MSCPES.2015.7115406

A PARALLEL-IN-TIME ALGORITHM FOR VARIABLE STEP MULTISTEP METHODS 23

tion in time method for power systems, in Power and Energy Society General Meeting
(PESGM), 2016, IEEE, 2016, pp. 1–5. LLNL-CONF-679148.

[21] J. L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps pararéel,
C.R.Acad Sci. Paris Sér. I Math, 332 (2001), pp. 661–668.

[22] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM,
7 (1964), pp. 731–733.

[23] C. Parmer, E. Cotilla-Sanchez, H. K. Thornquist, and P. D. Hines, Developing a dynamic
model of cascading failure for high performance computing using trilinos, in Proceedings of
the first international workshop on High performance computing, networking and analytics
for the power grid, ACM, 2011, pp. 25–34.

[24] M. Ries and U. Trottenberg, MGR-ein blitzschneller elliptischer löser, Tech. Report
Preprint 277 SFB 72, Universität Bonn, 1979.

[25] M. Ries, U. Trottenberg, and G. Winter, A note on MGR methods, Linear Algebra Appl.,
49 (1983), pp. 1–26.

[26] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, San Diego,
2001.

	Introduction
	Multigrid Reduction in Time algorithm
	XBraid

	Introduction to methods for DAEs
	Runge-Kutta solvers
	Backward Difference Formula (BDF) integrators
	Fully variable coefficients
	Fixed leading coefficient

	Solving nonlinear systems

	BDF trick
	Stability concerns

	Numerical results
	Heat equation
	Uniform time steps
	Variable time steps

	GridDyn
	IEEE 39 bus test case
	Reduced WECC system

	Concluding remarks and future work
	Appendix A. Stability region of a variable step BDF2 method
	References

