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Abstract—This work presents a time-parallel approach for
solving power grid problems with scheduled events (e.g., a square
pulse applied to a bus). The multigrid reduction in time (MGRIT)
method, implemented in the XBraid code, is used to nonintru-
sively add time parallelism to GridDyn, an existing open-source
power grid simulation tool. The approach extends standard
practices for sequential time stepping and scheduled events to
the time-parallel setting and then explores temporal refinement.
The paper concludes with parallel experiments validating the
approach and showing speedups of around 50x for the WECC
179 bus system. Scalability with respect to scheduled events is
examined by applying a one second long square pulse to bus 143
every 2 seconds.

I. INTRODUCTION

Time-domain simulations of power system dynamics are
currently used in numerous areas, including dynamic con-
tingency analysis, small signal stability analysis, control and
system response analysis, renewable planning, and cascading
event analysis. The latter two uses require simulations over
the course of minutes or even hours. For some applications,
faster than real-time simulations are necessary, but others
require faster simulation time to allow for higher resolution
models or additional scenarios. For both the cases of long
simulation times and desired faster computations, significant
code speedups over current technologies are needed.

High performance parallel computers (HPC) can enable
these speedups. One strategy for using HPC has been to
parallelize the computation over system components [1], [2],
but this strategy poses a large challenge in development of
effective distributed memory parallel linear system solvers.
These solvers are an active area of research [3], [4], and no
solver has yet proven to be fully effective.

Another strategy for parallelization of these systems is to
decompose time into subintervals and distribute these subin-
tervals over the processors. This parallel-in-time approach is
also an active area of research in many fields, and it has
been shown to give substantial speedup. This method was
first used for power systems in the relaxation/Newton method
developed by [5], [6] where multiple groups of coupled time
step solutions were solved in parallel, and relaxation was done
on a sequence of finer and finer temporal grids in a multilevel
nested iteration approach. More recently, researchers have

explored the parareal algorithm which is a two-level parallel-
in-time method. In [7], the parareal algorithm was shown to be
effective compared to the relaxation Newton method. In [8], a
simpler reduced model was used for the coarse propagator
in an effort to decrease computational cost and speed up
simulation time within the parareal framework.

In this paper, we study a different parallel-in-time approach
called multigrid reduction in time [9]. Here, multiple levels of
coarsening in time are used, and the method is applied to the
full differential algebraic equation (DAE) system, not just the
differential portion within a partitioned approach. In the pre-
vious work [10], we applied our approach to a single machine
infinite bus system on uniform time grids and demonstrated
speedups of up to 13x over sequential time stepping. In [11],
we extended the method from single-step multi-stage Runge-
Kutta schemes to multi-step backward differencing (BDF)
schemes on variably-stepped temporal grids applied to an
IEEE 39 bus problem and a reduced WECC 179 bus problem.
Moderate speedups were observed, depending on the order of
the BDF discretization and the size of the temporal grid. In this
paper, the main focus is on handling scheduled discontinuities,
such as occur during load or generator output changes. We first
describe the method and discuss its implementation based on
the open-source code XBraid [12]. We then provide parallel
performance results for the WECC 179 bus model problem,
and finish with conclusions and plans for future work.

II. PARALLEL IN TIME METHOD

The parallel-in-time method used here is multigrid reduction
in time (MGRIT) [9]. This method is based on multigrid re-
duction [13], and, when restricted to two levels, it is equivalent
to parareal [14], perhaps the most popular parallel-in-time
method. For a recent review of the literature, see [15].

We now give a brief overview of MGRIT and refer the
reader to [9] for more details. Consider the one-step time
discretization

ui = Φi(ui−1) + gi, for i = 1, 2, ..., N and u0 = g0, (1)

of some time-dependent process on the interval [0, T ]. Partition
the time domain as in Figure 1, where ti = iδt is the
fine time grid, and Ti = miδt is the coarse time grid for
coarsening factor m. Let ui be an approximation to u(ti).
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Fig. 1. Example fine and coarse level for a coarsening factor of m = 5.
F-points (black) are present on only the fine level, whereas C-points (red) are
on both the fine and coarse level.

Then, considering the linear case for simplicity, sequential
time stepping is equivalent to a forward solve of the system
Au = g,
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where the solution u includes the state at all time points.
MGRIT replaces this O(N) but sequential solve of (2) with an
iterative O(N) solution using parallel multigrid reduction that
simultaneously solves for all time solutions. As such, MGRIT
converges to the same solution that serial time stepping
produces. Additionally, the user need only define a routine
that applies Φ, the map that advances the solution from one
step to the next, making the method nonintrusive and allowing
for reuse of serial time-stepping codes.

The new concurrency offered by MGRIT is made possible
by coarse time grids which accelerate convergence to the
solution on the original fine grid. Each coarse time grid is
formed with an approximate block cyclic reduction strategy
that eliminates block rows and columns in the system (2).
If all the block rows corresponding to the black F-points in
Figure 1 are eliminated, then a Schur-complement system,
smaller by a factor of 1/m, would result. This coarse system
is approximated by a cheaper system that has the same form
as (2) and uses a coarse time-stepping operator based on the
larger coarse time-step size. Often, this new operator is taken
to be just a rediscretization in time.

Complementing the coarse-grid corrections in MGRIT is
relaxation which alternates between block Jacobi applied to the
rows corresponding to F-points in (2) and then block Jacobi
applied to the rows corresponding to C-points. FCF-relaxation
corresponds to successive relaxation sweeps over F-points,
then C-points, and then F-points again. Each relaxation sweep
is a highly parallel process. Interpolation between time grids
is done by injection.

This process is implemented as a full approximation storage
(FAS) multigrid cycle [16], capable of solving nonlinear
problems [17] and is described in [10]. The MGRIT algorithm
uses standard multigrid cycling such as the V-cycles and F-
cycles in Figure 2. F-cycles are more robust but scale less well
in parallel because of the additional visits to coarse-levels.

Figure 3 depicts a cycle adapted to allow for variable
time-step sizes through a user controlled temporal refinement
strategy. Essentially, refinement in time occurs where the user’s
Φ routine reports a large temporal error. In the figure a V-cycle
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Fig. 2. Cycling strategies: V-cycle (left) and F-cycle (right).
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Fig. 3. Variable time-step strategy using F-cycles. The approach here is to
begin on a coarse time grid, allow the user to specify which time intervals to
refine, and then form a new level based on the newly refined time grid.

is carried out after each temporal refinement, although an F-
cycle can also be carried out instead. This strategy is similar
to nested iteration.

III. EVENT HANDLING

Our strategy for handling events that present as scheduled
discontinuities in the DAE system extends standard practices
for serial time stepping, i.e.,

1) Place a time point at each event location.
2) Allow for adaptive refinement in time on both sides of
the event, using temporal error estimators.

3) Associate state information with each time point and
retain this information on coarse grids. When taking a
time step, state information associated with the starting
time point is used. Hence, when taking a time step to
the exact time value of an event, state information from
before the event is used, and when taking a time step
from the exact time value of an event, state information
from after the event is used.

Interestingly, this strategy allows for a time point at an event to
be coarsened away on coarser time grids. In addition, although
state information may be discontinuous across event time
values on the finest grid, discontinuities may not remain on
coarser grids. As we will see, these changes in discontinuities
on coarse grids do not degrade convergence.

The strategy used for extending MGRIT from one-step to
multistep methods, such as BDF2, can be found in [11]. For
a k-step method, k time points are lumped together, so that
each group of time points depends only on the previous group,
thus creating the appearance of a one-step scheme to MGRIT.
However, this lumping can lead to instability in BDF methods
through disparate time step sizes on coarse grids, and the
solution used here is to coarsen in order to first-order BDF1,
before coarsening in time.

IV. IMPLEMENTATION

In this section, we detail the implementation of the MGRIT
algorithm for power grid problems. Power grid simulation



involves the solution of differential algebraic equations (DAE),
whose most general formulation is

F (t, y, ẏ) = 0, y(0) = y0, (3)

where the Jacobian ∂F
∂ẏ may be singular. One of the time

integration methods we consider is implicit Runge-Kutta. An
s-stage Runge-Kutta method is defined by its set of coefficients
(Ai,j), (bi) and (cj) for i, j = 1, ..., s. If yn represents an
approximation of y(tn), then the computation of yn from the
previous step yn−1 is given by yn = yn−1 + h

∑s
i=1 biKi,

where the Ki satisfy the following nonlinear equations [18],

F

tn−1 + cih, yn−1 + h

s∑
j=0

ai,jKj , Ki

 = 0, (4)

for i = 1, ..., s. Although not necessary, we use the same time
integrator for each grid level.

In this work, we apply either a BDF2 implicit integrator or
a diagonally-implicit, five-stage and fourth-order Runge-Kutta
method, developed by Cash in [19]. For both methods, the
nonlinear systems arising at each time step are solved by a
Newton solver and require the evaluation of the Jacobians ∂F

∂y

and ∂F
∂ẏ . These Jacobians are directly evaluated and updated

only once at the beginning of each time step. The linear
systems are solved by a direct solver (Lapack LU factorization)
and all methods are implemented in C++.

We used the nonintrusive open source software library
XBraid [12] to implement our parallel MGRIT solver. Using
XBraid mainly requires writing a step function that produces
the action of Φi in (1), and that step function is usually just
a wrapper around a preexisting time stepping routine. In our
case, the step function solves the nonlinear problem (4) or a
corresponding nonlinear problem for BDF2.

To provide memory savings, XBraid only requires solution
values to be stored at C-points. It also employs techniques
to overlap communication and computation in the various
components of the MGRIT algorithm (e.g., relaxation). This
overlap is achieved by first posting a non-blocking receive
from the processor to the left (earlier in time), then beginning
computation with the right-most F-interval, so that a non-
blocking send can be posted as soon as possible to the right
processor. While this communication is completing, computa-
tion is done on the interior of the processor’s interval.

V. RESULTS

This section describes the results of the proposed scheduled
event handling approach for MGRIT. The model problem
used is based on the WECC 179 bus system [20] with 793
unknowns, including 358 algebraic variables for the voltage
and angles associated with the buses, plus 87 algebraic and
348 differential variables associated with the generators, with
4172 non-zero entries in the Jacobian. The generators are
modeled using a 6th order machine model, with standard
TGOV1 models for the governors and EXDC2 for the exciters.
For this test the limits on the governors and exciters were
disabled.
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Fig. 4. Two solution components for bus 143 over [0s, 7s].

The system was modified by adding a periodic square wave
load to Bus 143. The period of the load was set to 2 seconds
with the equivalent of a 50 MW load turning on and off
at regular intervals. The simulation resulted in a series of
sudden shifts in the loading and discontinuities in the algebraic
variables of the solution. The computed voltages and angles
at Bus 143 for the first few seconds are shown in Figure 4.

This simulation is intended to test the ability of the the
parallel-in-time solver to handle scheduled discontinuities in
the simulation, and the particular bus was chosen as a typical
bus, rather than for any particular significance.

We now examine the scalability of XBraid for solving this
problem by running strong scaling studies on Quartz, an Intel
Xeon-based cluster at Lawrence Livermore, with 2 sockets and
36 cores per node.

Of particular interest is the scalability of XBraid as the
number of events (i.e., discontinuities) increases. Scalability
is explored by examining time-domain sizes of tf = 7s,
57s and 460s, with corresponding numbers of time steps of
Nt = 1, 440, 11, 520, and 92, 160, respectively. Recall that
each second of simulated time encounters one event, thus we
choose a longer final time value (here 460s) to test a large
number of events. Additionally, this large final time allows
for XBraid to demonstrate its ability to offer large speedups.

The number of time steps was chosen to match the core
counts on the machine, e.g., 256 nodes on Quartz corresponds
to 9,216 cores, which in turn implies that Nt = 92, 160 is a
good choice for an XBraid coarsening factor of 10. In general,
for an XBraid coarsening factor of k, placing k time points
on each processor in time is an efficient strategy [9]. The final
times are chosen so that the time step size δt ≈ 5ms. The
Newton solver used to take each time step uses a relative and
absolute tolerance of 10−8.

The XBraid parameters are as follows. We examine the use
of F-cycles and V-cycles with FCF-relaxation. The stopping
criteria is a residual tolerance of 10−8. Thus, the relative
difference between the XBraid solution and the sequential time
stepping solution is less than 10−8. All experiments coarsened
to a time grid consisting of 4 points, thus making the method
truly multilevel. Following the guidance of [10], we use a
temporal coarsening factor of 10 for the implicit Runge-Kutta
4 method, and 5 for BDF2.

Three different time-stepping approaches are examined, the
implicit RK4 scheme with a fixed time grid, BDF2 with a
fixed time grid, and the implicit RK4 scheme with variable



step sizes, i.e., temporal adaptivity. The variable time-stepping
experiments use the adaptive cycling strategies discussed in
Section II and Figure 3. We examine adaptivity with both
V- and F-cycles. For the adaptivity, time intervals are refined
based on an absolute and relative tolerance for the error
estimator of 10−8. The chosen implicit RK4 scheme provides a
built-in estimator. The maximum allowed temporal refinement
factor is 4. These parameters hold both for the sequential base-
line experiments and XBraid. XBraid is allowed to refine the
time grid until a grid with over 100,000 time points is reached,
and sequential time stepping has its refinements capped with
a minimum time-step size of 10−5. These values were chosen
so that the minimum δt in each case is comparable. Similar
to [11], XBraid refines more than sequential time stepping,
yielding 114,868 time steps, while sequential time stepping
yields 104,513 time steps.

Table I depicts, for each fixed time grid problem, the
maximum speedup achieved, XBraid iterations, and the first
core count at which XBraid offers a speedup (cross-over). A
‘*’ indicates that the experiment showed no cross-over, i.e.,
XBraid was always slower than sequential time stepping. We
see that both the RK4 and BDF2 schemes on a fixed time grid
show good scalability with respect to increasing numbers of
discontinuities, i.e., the number of XBraid iterations increases
only slightly.

TABLE I
XBRAID MAXIMUM SPEEDUP, CROSSOVER AND ITERATION COUNTS FOR

THE FIXED TIME GRID STRONG SCALING STUDIES

tf = 7s 57s 460s

Speedup 0.51 2.1 11.7
BDF2, V-cycles Cross-over (core count) * 4608 288

XBraid iterations 21 28 30

Speedup 0.50 1.95 9.1
BDF2, F-cycles Cross-over (core count) * 4608 288

XBraid iterations 11 13 14

Speedup 2.5 10.5 53.3
RK4, V-cycles Cross-over (core count) 36 36 36

XBraid iterations 7 9 10

Speedup 2.2 7.4 34.4
RK4, F-cycles Cross-over (core count) 36 36 36

XBraid iterations 6 7 7

Figure 5 depicts the strong scaling study for the implicit
RK4 method. The time to solution is shown as a function
of the number of processors, with the horizontal dashed line
representing the baseline time to solution for sequential time
stepping. The exact cross-over point is the place where the
baseline time to solution and the XBraid time to solution
intersect. XBraid scales well, especially for V-cycles, with
some degradation in scaling at the largest core counts. This
degradation is due to communication costs beginning to dom-
inate. We also see that V-cycles scale better than F-cycles at
large core counts, eventually achieving faster runtimes, despite
taking overall more iterations. This difference is because V-
cycles have a lower per-iteration cost and have a superior
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Fig. 5. Strong scaling study for three different problem sizes on a fixed time
grid with δt = 4.9ms, using the implicit RK4 method.
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Fig. 6. Strong scaling study for three different problem sizes on a fixed time
grid with δt = 4.9ms, using BDF2.

communication complexity. We note that the speedup for the
largest problem is 53.3x.

Figure 6 depicts the same strong scaling study, but for
BDF2. We see similar strong scaling behavior with the max-
imum speedup being 11.7x. This speedup is less than that
observed for the implicit RK4 scheme for two reasons. One,
XBraid does not converge as fast for BDF schemes, requiring
more overall iterations (see Table I). Two, the sequential BDF
scheme is faster than the sequential implicit RK4 scheme,
because each time step requires only one nonlinear solve.

Table II is analogous to Table I, but depicts results for the
variable step implicit RK4 scheme with tf = 460s. We see
qualitatively the same robust convergence and speedup as in
Table I, which confirms that the addition of variable time-
stepping did not affect XBraid convergence.

TABLE II
XBRAID MAXIMUM SPEEDUP, CROSSOVER AND ITERATION COUNTS FOR

THE VARIABLE STEP STRONG SCALING STUDIES

Cycle F V

Speedup 27.3 46.8
Var RK4, tf = 460s Cross-over (core count) 36 36

XBraid iterations 7 9
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Fig. 7. Strong scaling for variable step sizes and the RK4 method.
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Fig. 8. Adaptive time grid found by XBraid, zoomed in around an event.

Figure 7 depicts the strong scaling study for the variable
step implicit RK4 experiment with tf = 460s. The maximum
observed speedup is 46.8x. Figure 8 depicts the time-step sizes
around the event at t = 3.5, showing the adaptive refinement.

VI. CONCLUSIONS

This work presents and validates an approach for handling
scheduled events (i.e., discontinuities) for parallel-in-time sim-
ulations of power grid systems, using the XBraid framework.
Overall, the approach extends standard practices for sequential
time-stepping to the time-parallel setting for problems with
discontinuous loads. Time points are placed at the location
of the discontinuity and then adaptive temporal refinement is
applied around these points for good discretization accuracy.
When time-stepping to the discontinuity, state information
before the discontinuity is used, and then when taking a
step away from the discontinuity, the new state information,
discontinuous from the previous time-point, is used.

The other main achievement is a demonstration of this
approach on the WECC-179 system in parallel. The observed
speedups are in the range of 11x for BDF2 and 53x for
implicit RK4 (47x for adaptive time-stepping). We note that,
to our knowledge, no other previous results for parallel-in-time
methods and scheduled events with power grid systems exist.
Future work will target the handling of unscheduled events.
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