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1 Overview

We consider solving the linear advection equation in one spatial dimension
with a parallel-in-time method. The model equation is

Uy — auy = f (1)

on the domain [0, 1.0] x [0,¢¢], with zero Dirichlet conditions in space. The
initial condition in time is a sine-hump over the first half of the spatial domain
(see Figure 1).

Solving even this simple problem scalably with a parallel-in-time method
has so far proven elusive [4, 2].! We will focus on the multigrid reduction
in time method (MGRIT) [1], which is equivalent to the earlier parareal
method [3], in the specialized two-grid setting with F-relaxation. See [1] for
a description of the method and of terms like F- and FCF-relaxation.

*Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
P.O. Box 808, L-561, Livermore,CA 94551. This work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. LLNL-TR-750825, schroder2@IInl.gov

!By “scalably”, we mean an O(N) method, where N is the number of unknowns, that
converges in a fixed number of iterations to a fixed tolerance, regardless of problem size.
Here, N is the number of time-steps.



Our motivation is the fact that greater dissipation in the problem leads
to better MGRIT (and parareal) convergence [4]. Thus, we will explore
different levels of artificial hyper-dissipation for this simple example. The
discretization will always be consistent with the PDE in equation (1).

The discretization uses the second-order implicit SDIRK-2 method in
time. In space, a standard centered fourth-order finite-differencing stencil
is used. Specifically, let D~ and D' be the backwards and forwards first
differencing matrices in space with stencils,

D™ =1[-11 0], 2)
Dti=[01 —1]. (3)

And define D@ with the centered stencil
DO =[-1 0 1]. (4)

Then our centered fourth-order first derivative operator is given by

1 1
D= —DO <I - D+D—> h

o 5 , where (5)

Du = u, + O(h*), (6)

and Du is a matrix vector product applied to the spatial vector u.

To complement that, we explore subtracting a fourth-order hyper-dissipation,
i.e., a multiple of the fourth spatial derivative, from the spatial discretization.
This fourth-order hyper-dissipation stencil is formed with

ar 1 - -
Dlert) — E(D+D DTD7), where (7)
DOy & vy + O(hY). (8)

The final spatial operator is then
(D — VD(“”))U Uy + O(V)“xmmma (9>

where 7 is the amount of artificial hyper-dissipation added. For instance if
v = h?9, then we have a second order accurate spatial discretization with
two orders of artificial hyper-dissipation. Traditional approaches to hyper-
dissipation would typically consider v = h%?, i.e., a third-order method in
space. In this way, both D and yD* would have a 1/h scaling.
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2 Results

We now describe some preliminary runs on uniform space-time grids. Figure
1 depicts some sample solutions at various XBraid iterations for a 2° x 27
space-time grid. Figure 2 depicts solution profiles for the same problem size
at various time-steps. The higher-order accuracy is already visible, as the

solution has not noticeable decayed.
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Figure 1: Solution snapshots during XBraid iterations.

The test setup is as follows.

— Initial condition in space is a sine hump over the first half of the domain,

and zero everywhere else.

— Random initial space-time guess. Thus, our experiments measure the
asymptotic convergence rate regardless of the initial condition.

— Coarsen to 2 points in time, yielding a truly multilevel solver

— FCF-relaxation

— Residual stopping tolerance of

10-8
Véth

— CFL number of 1.0 = &, implying ty = 0.25.

t
h
— No spatial coarsening

— SDIRK-2 in time and the spatial discretization from equation (9)

— Experiments will explore: temporal coarsening factors of m = 2 and
m = 4, V- and F-cycles, and different orders of hyper-dissipation ~.
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Solution profiles, 129 total time steps
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Figure 2: Solution profiles during XBraid iterations.

The results are depicted in Table 1. The use of “large” hyper-dissipation
at v = h%0 leads to very fast and scalable F-cycle iteration counts. Remem-
ber, despite the hyper-dissipation, this is a second order method in space and
time. Moreover, this approach appears to also work for the larger coarsening
factors in time of m = 4. This should be compared to the more traditional
third-order in space discretization of v = h3?, where the iteration counts grow
uncontrollably. The v = h*5 discretization (spatial order 2.5 discretization)
is somewhere in between, more scalable, but not completely so.

Grid: 29 x 27 210 x 28 211 x 29 212 % 210 913 5 9ll

¥ Cyc m

h3O F 2 6 8 11 18 31
h?® vV 2 5) 7 10 14 22
h?5 F 2 4 4 4 4 5

h?® F 4 4 5 5 6 9

Y 2 4 4 5 6 7

29 F 2 4 4 4 3 3

20 F 4 4 3 3 3 3

Table 1: MGRIT Iteration counts for various values of «, cycle type and
temporal coarsening factor m.



3 Conclusions

This study indicates that there are trade-offs between order of accuracy in
space and speed of convergence for MGRIT. In fact, one can achieve previ-
ously unattainable convergence rates for advection, if willing to sacrifice an
order of accuracy in space.

Regarding the generality of this result, experiments were run with classic
first-order upwinding in space, where the spatial discretization is defined with
the operator from equation (2), and backward Euler in time. If the order
of the spatial discretization is decreased from O(h) to O(h?/?), through the
addition of extra artificial dissipation, then similarly fast F-cycle results are
observed.

The equivalence between MGRIT and parareal for the special two-grid
with F-relaxation case implies that some of these techniques could be used
for parareal.

Lastly, there are downsides to this approach. Omne should use an im-
plicit scheme, because the numerical stability for explicit time-stepping is
now determined by the artificial hyper-dissipation term. And to use an im-
plicit scheme, one must invert spatial matrices representing higher deriva-
tives. These downsides are in addition to losing accuracy in space, although
overall higher-order spatial discretizations can obviously be maintained.
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