XBraid Tutorial

A flexible and scalable approach to parallel-in-time

Jacob Schroder and Rob Falgout

NSF CBMS PinT Summer School
Michigan Tech, Houghton, Michigan
August, 2022

Outline

1. Introduction
—> Tutorial software requirements and XBraid overview

To interact with the tutorial, you need

A working installation of XBraid
https://github.com/XBraid/xbraid

- Github home page has basic information on installation

- User's manual has more comprehensive information
https://github.com/XBraid/xbraid/files/5144094/user _manual.pdf

XBraid required (repository head)
GCC compiler required

MPI recommended

Python 3 with NumPy, Matplotlib recommended

hypre installation for running example ex-03 optional

https://github.com/hypre-space/hypre

https://github.com/XBraid/xbraid/files/5144094/user_manual.pdf
http://llnl.gov/casc/hypre

To interact with the tutorial, you

= Make sure you can run

heed

cd xbraid
make

make ex-01 ex-02

./ex-01
Braid: ||
Braid: ||
Braid: ||
Braid:

Braid:

S ./ex-02
|
|

Braid: |

$
$
S cd examples
$
$

B B B

B B B

w N =

N PO

o

|_\

.845538e-02,
.621939%e-04,
.000000e+00,

.041694e+00,
.037471e-01,
.926900e-03,

conv
conv
conv

conv
conv
conv

factor =
factor =
factor =

factor =
factor =
factor =

w

N

.00e+00,
.03e-02,
.00e+00,

.00e+00,
.57e-02,
.82e-02,

wall
wall
wall

wall
wall
wall

time =
time =
time =

time =
time =
time =

Multigrid is well suited for exascale

= For many applications, the fastest and most scalable solvers
are already multigrid methods

Elasticity / Plasticity Quantum Chromodynamics Magnetic Fusion Energy

= Exascale solver algorithms will need to:

- Exhibit extreme levels of parallelism (exascale - 1 billion cores)
Spatial multigrid has already scaled to over 1 million cores

- Minimize data movement
Multigrid is O(N) optimal
- Exploit machine heterogeneity
If the user’s problem can exploit heterogeneity, then so can multigrid

- Be resilient to faults
Multigrid has already shown good resilience (iterative and multilevel helps)

Parallel-in-time approach:

Leverage spatial multigrid research

Solve:
A(u) = b

)
a4 %

&

i
gt
A

{\¢¢
0y I
49

* W

smoothing
(relaxation)

7

“«) ()
ol
!ss\'fé\"‘“} V

WA

O
!

Error on the fine grid

\restriction

Error approximated on a
smaller coarse grid

prolongation
(interpolation)

Parallel time integration: Paradigm shift
driven by computer architecture trends

Data from 1970-2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham,
K. Olukotun, L. Hammond, and C. Batten. Data and plot for 2010-2015 by K. Rupp.

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 103)

Frequency (MHz)

Typical Power
(Watts)

Number of
Logical Cores

1970 1980 1990 2000 2010 2020

= Architecture trend: clock rates are no longer increasing - faster
speed is how achieved through more concurrency

= Parallel time integration methods are needed (think exascale)!

Technical approach

= Consider the general one-step method
u;, = ®;(u;—1)+g;,, 1=1,2,...N
= |n the linear setting (for simplicity), time marching = forward solve
- This is an O(N) direct method, but sequential

(1 \ () (o0

o
o
]
|
]
o3

\ T 1/ \UEN/ \QEN/

Instead solve this system iteratively with a multigrid method
- Extend multigrid reduction (MGR, 1979) to the time dimension

« Coarsens only in time (non-intrusive)
« O(N), highly parallel

Multigrid reduction in time (MGRIT)’

TO Tl AT:m5t
—+—+—+—+tt+—+—+—+f|++—++—+—+++

— F-point (fine grid only)

ot = [= (-point (coarse & fine grid)
= Relaxation is highly parallel Frelaxation
- Block-Jacobi alternating between F-points and C-points EEEEE
\WAVAVAY

= Coarse system is a time rediscretization with N/m block rows
- Approximate impractical ®" with ® A (some rediscretization with AT)

(o,) T

\ _gm I) \ —.cf.A 7)

- Apply recursively for multilevel hierarchy

1. Falgout, Friedhoff, Kolev, MacLachlan, Schroder, Parallel Time Integration with Multigrid, SISC, 2014.

Parallel decomposition

Serial time stepping Muiltigrid in time

t (time) —>

X (space) X (space)
Minus: Parallelize in space only Plus: Parallelize in space and time
Plus: Store only one time step Minus: Store several time steps, but

per processor costs still similar

Pink regions denote one processor

A broad summary of MGRIT

= Expose concurrency in the time dimension with multigrid o 7
= Non-intrusive, with unchanged fine-grid problem R
= Converges to same solution as sequential marching —® I
= Optimal for variety of parabolic problems
= Extends to nonlinear problems with FAS formulation
= |n simple two-level setting, MGRIT = Parareal
102 :
: . P e
= Large speedups available, but in a new way - Cross-over at ~ 32 cores
- Time stepping is already O(N) £ 10 ol
- Useful only beyond a crossover D
« More time steps > more speedup potential £ 107 ——— :
. g . 3 &—e Sequential Time-Stepping
¢ XBra’d 1S our MGRIT COde A #~—a XBraid: Time only parallel
1071} | == XBraid: Space-time parallel
10! 10° 10°
Total Core Count
12

1. Falgout, Friedhoff, Kolev, MacLachlan, Schroder, Parallel Time Integration with Multigrid, SISC, 2014.

XBraid: Open source, 2\
P x R@B@d}

non-intrusive, and flexible

= User writes several wrapper routines:
- Step, Init, Clone, Sum, SpatialNorm, Access, BufPack, BufUnpack
- Coarsen, Refine (optional, for spatial coarsening)

Example: Step(app, u, status)
- Advance vector v from time tstart to tstop

Code stores only C-points to minimize storage

- Memory multiplier per processor:
~0O(log N) with time coarsening, O(1) with space-time coarsening

Processes time-intervals to overlap communication and computation

Supports adaptivity in time and space

14

Outline

1. Introduction
—> Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
- Defining the App and vector structures, writing wrapper functions, running XBraid

Simplest Example: Scalar ODE

= File: examples/ex-01.c Solves: u; = A\u

= First, you must define your app and vector structures

This is your simulation application structure. Place any time-independent
data here, which is needed to take a time step.

Here, we only need the MPI rank in the App structure (for later file output).

typedef struct braid App struct({
< int rank;

} my App;

typedef struct braid Vector struct/{
double value;
} my Vector;

Simplest Example: Scalar ODE

= File: examples/ex-01.c Solves: u; = A\u

= First, you must define your app and vector structures

This is your state vector structure. It holds any time-dependent information
that should stay with a vector, e.g. mesh information and unknowns.

For this problem, the vector is one double.

typedef struct braid App struct({
int rank;

} my App;

typedef struct braid Vector struct/{
double value;
} my Vector;

A

Define the Step () function

= File: examples/ex-01.c Solves: u; = A\u

Step () evolves u from tstart to tstop

int my Step(braid App app,
braid Vector ustop,
braid Vector fstop,
braid Vector u,

braid StepStatus status)
double tstart;
double tstop;
braid StepStatusGetTstartTstop (status, &tstart, &tstop);

(u->value) = 1./(1l. + tstop-tstart)* (u->value);

return 0O;

Define the Step () function

= File: examples/ex-01.c Solves: u; = A\u

The app structure is passed into every user-written function.

iﬁ%—my:G%ep{?raid_App app,

braid Vector ustop,
braid Vector fstop,
braid Vector u,

bralid StepStatus status)
double tstart;
double tstop;
bralid StepStatusGetTstartTstop (status, &tstart, &tstop):

(u->value) = 1./(1l. + tstop-tstart)* (u->value);

return 0O;

Define the Step () function

= File: examples/ex-01.c Solves: u; = A\u

Vector at tstop from previous XBraid iteration (initial guess for implicit solvers)

int my Step(braid App app,
braid Vector ustop,
braid Vector fstop,
braid Vector u,

bralid StepStatus status)
double tstart;
double tstop;
bralid StepStatusGetTstartTstop (status, &tstart, &tstop):

(u->value) = 1./(1l. + tstop-tstart)* (u->value);

return 0O;

Define the Step () function

= File: examples/ex-01.c Solves: u; = A\u

Vector at tstart

int my Step(braid App app,
braid Vector ustop,
braid Vector fstop,
{braid_Vector u,

braid StepStatus status)

double tstart;
double tstop;
braid StepStatusGetTstartTstop (status, &tstart, &tstop);

(u->value) = 1./(1l. + tstop-tstart)* (u->value);

return 0O;

Define the Step () function

= File: examples/ex-01.c Solves: u; = A\u

Ignore by default. (XBraid forcing term, only needed if residual option is used)

int my Step(braid App app,
bralid Vector ustop,
{ﬁraid_Vector fstop,
braid Vector u,

bralid StepStatus status)

double tstart;
double tstop;

bralid StepStatusGetTstartTstop (status, &tstart, &tstop):
(u->value) = 1./(1l. + tstop-tstart)* (u->value);

return 0O;

Define the Step () function

= File: examples/ex-01.c Solves: u; = A\u

Status structures can be queried for various information (level, iteration, etc...)

int my Step(braid App app,
braid Vector ustop,
braid Vector fstop,
Ebraid Vector u,

tbraid:StepStatus status)

double tstart;
double tstop;
bralid StepStatusGetTstartTstop (status, &tstart, &tstop):

(u->value) = 1./(1l. + tstop-tstart)* (u->value);

return 0O;

Define the Step () function

= File: examples/ex-01.c Solves: u; = A\u

For instance, to get tstart, tstop

int my Step(braid App app,
braid Vector ustop,
braid Vector fstop,
braid Vector u,

bralid StepStatus status)

double tstart;
double tstop;
{braid_StepStatusGethtarthtop(Status, &tstart, &tstop);

(u->value) = 1./(1l. + tstop-tstart)* (u->value);

return 0O;

Define the Step () function

= File: examples/ex-01.c Solves: u; = A\u

Take backward Euler step

int my Step(braid App app,
braid Vector ustop,
braid Vector fstop,
braid Vector u,

bralid StepStatus status)

double tstart;
double tstop;
bralid StepStatusGetTstartTstop (status, &tstart, &tstop):

Buf>value) = 1./(1. + tstop-tstart)* (u->value);

return 0O;

Define other wrapper functions

= File: examples/ex-01.c Solves: u; = A\u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack, BufSize

Again, we see the app structure being passed in

iﬁ%—myzsﬁm{braid_App app,

double alpha,
braid Vector x,
double beta,

braid Vector y)

(y=>value) = alpha*(x->value) + beta* (y->value);
return 0;

Define other wrapper functions

= File: examples/ex-01.c Solves: u; = A\u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack, BufSize

This function carries out a simple AXPY operation

int my Sum(braid App app,
double alpha,
braid Vector x,
double beta,

braid Vector)
{

By~>value) = alpha* (x->value) + beta* (y—->value);
return 0;

Define other wrapper functions

= File: examples/ex-01.c Solves: u; = A\u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack, BufSize

This function is how the user accesses the solution
« By default, it is called at the end of the simulation for every time point
* Using braid AccessSetLevel () allows for more frequent access

int my Access (brald App app,
braid Vector u,
braid AccessStatus astatus)

int 1index; char filename[255]; FILE *file;

braid AccessStatusGetTIndex (astatus, &index);
sprintf (filename, "%s.%04d.%03d", "ex-01l.out", index, app->rank);
file = fopen(filename, "w");

fprintf (file, "%.1l4e\n", (u->value)):;

fflush (file) ; fclose(file); return O;

Define other wrapper functions

= File: examples/ex-01.c Solves: u; = A\u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack, BufSize

Here, we just write a single solution value to individual files

int my Access (brald App app,
braid Vector u,
braid AccessStatus astatus)

int 1index; char filename[255]; FILE *file;

braid AccessStatusGetTIndex (astatus, &index);
-sprintf(filename, "%$s.%04d.%03d", "ex-01l.out", index, app->rank);

file = fopen(filename, "w");
fprintf (file, "%.1l4e\n", (u->value));

fflush (file) ; fclose(file); return O;

Define other wrapper functions

= File: examples/ex-01.c Solves: u; = A\u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack, BufSize

The Buf* functions tell XBraid how to pack, unpack and size MPI Buffers

Define other wrapper functions

= File: examples/ex-01.c Solves: u; = A\u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack, BufSize

BufPack () flattens the vector u into buffer

int my BufPack(braid App app,
braid Vector u,
void *buffer,

braid BufferStatus bstatus)
double *dbuffer = buffer;

dbuffer[0] = (u->value);
braid BufferStatusSetSize(bstatus, sizeof (double));

return 0O;

Define other wrapper functions

= File: examples/ex-01.c Solves: u; = A\u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack, BufSize

Packing this buffer entails just setting a single double value

int my BufPack(braid App app,
braid Vector u,
void *buffer,

braid BufferStatus bstatus)

double *dbuffer = buffer;

{abutfer[0] = (u->value);
braid BufferStatusSetSize(bstatus, sizeof (double));

return 0O;

Define other wrapper functions

= File: examples/ex-01.c Solves: u; = A\u

= Define functions: Init, Clone, Free, Sum, SpatialNorm,
Access, BufPack, BufUnpack, BufSize

This is an example of returning a value (the buffer size) with a status structure

int my BufPack(braid App app,
braid Vector u,
void *buffer,

braid BufferStatus bstatus)
double *dbuffer = buffer;

dbuffer[0] = (u->value);
{?raid_BufferStatusSetSize(bstatus, sizeof (double));

return 0O;

Initialize App and XBraid

= File: examples/ex-01.c Solves: u; = A\u

= The next step is to setup XBraid in main ()

int main ()

braid Core core;

ntime = 10;

tstart = 0.0; tstop = 5.0;

app = (my App *) malloc(sizeof (my App)):;
(app—>rank) = rank;

braid Init (MPI COMM WORLD, MPI COMM WORLD, tstart, tstop,
ntime, app, my Step, my Init, my Clone,
my Free, my Sum, my SpatialNorm,
my Access, my BufSize, my BufPack,
my BufUnpack, &core);

Initialize App and XBraid

= File: examples/ex-01.c Solves: u; = A\u

= The next step is to setup XBraid in main ()

braid Core is the core data structure, holding all of XBraid’s internals

int main ()

{braid_Core core;
ntime = 10;
tstart = 0.0; tstop = 5.0;
app = (my App *) malloc(sizeof (my App))
(app—>rank) = rank;

braid Init (MPI COMM WORLD, MPI COMM WORLD, tstart, tstop,
ntime, app, my Step, my Init, my Clone,
my Free, my Sum, my SpatialNorm,
my Access, my BufSize, my BufPack,
my BufUnpack, &core);

Initialize App and XBraid

= File: examples/ex-01.c Solves: u; = A\u

= The next step is to setup XBraid in main ()

Define your time domain

int main ()

braid Core core;

rntime = 10;
[tstart = 0.0; tstop = 5.0;

app = (my App *) malloc(sizeof (my App))
(app—>rank) = rank;

braid Init (MPI COMM WORLD, MPI COMM WORLD, tstart, tstop,
ntime, app, my Step, my Init, my Clone,
my Free, my Sum, my SpatialNorm,
my Access, my BufSize, my BufPack,
my BufUnpack, &core);

Initialize App and XBraid

= File: examples/ex-01.c Solves: u; = A\u

= The next step is to setup XBraid in main ()

Initialize App structure

int main ()

braid Core core;

ntime = 10;

tstart = 0.0; tstop = 5.0;

rapp = (my App *) malloc(sizeof (my App));
L(app—>rank) = rank;

braid Init (MPI COMM WORLD, MPI COMM WORLD, tstart, tstop,
ntime, app, my Step, my Init, my Clone,
my Free, my Sum, my SpatialNorm,
my Access, my BufSize, my BufPack,
my BufUnpack, &core);

Initialize App and XBraid

= File: examples/ex-01.c Solves: u; = A\u

= The next step is to setup XBraid in main ()

Initialize braid Core, passing in all user-written functions

int main ()

braid Core core;

ntime = 10;

tstart = 0.0; tstop = 5.0;

app = (my App *) malloc(sizeof (my App))
(app—>rank) = rank;

-braid_Init(MPI_COMM_WORLD, MPI COMM WORLD, tstart, tstop,
ntime, app, my Step, my Init, my Clone,
my Free, my Sum, my SpatialNorm,
my Access, my BufSize, my BufPack,
my BufUnpack, &core);

Set XBraid options and run

= File: examples/ex-01.c Solves: u; = A\u

= The next step is to setup XBraid in main ()

Set all the XBraid options that you want

int main ()

'braid_SetPrintLevel(core, 2);
braid SetMaxLevels (core, 2);

braid SetAbsTol (core, 1.0e-06);
_braid_SetCFactor(core, -1, 2);

braid Drive (core) ;

braid Destroy (core);

Set XBraid options and run

= File: examples/ex-01.c Solves: u; = A\u

= The next step is to setup XBraid in main ()

Run the simulation

int main ()

braid SetPrintLevel (core, 2);
braid SetMaxLevels (core, 2);

braid SetAbsTol (core, 1.0e-06);
braid SetCFactor (core, -1, 2);

{braid_Drive(core);

braid Destroy (core);

Set XBraid options and run

= File: examples/ex-01.c Solves: u; = A\u

= The next step is to setup XBraid in main ()

Clean up

int main ()

braid SetPrintLevel (core, 1);
braid SetMaxLevels (core, 2);

braid SetAbsTol (core, 1.0e-06);
braid SetCFactor (core, -1, 2);

braid Drive (core) ;

{braid_Destroy(core);

Output

= File: examples/ex-01.c

Solves: u; = A\u

= Finally! We can run the example.

Ur O U0 U\

cd examples

make ex-01
./ex-01

cat ex-01.out.00%*

R N W oo oo DN D> oY

.00000000000000e+00
.606606666666667e-01
.A44444444444444e-01
.96296296296296e-01
.97530864197531e-01
.31687242798354e-01
.77914951989026e-02
.85276634659351e-02
.90184423106234e-02
.60122948737489e-02
.73415299158326e-02

1.0

I

0.8

0.6

I

u(z,t)

0.2

I

0.0 : :

Outline

1. Introduction
—> Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
- Defining the App and vector structures, writing wrapper functions, running XBraid

3. Explore more XBraid settings in examples/ex-01l-expanded.c

Moving to ex-0l-expanded.c

= File: examples/ex-0l-expanded.c Solves: wu; = A\u

= Adds more XBraid features and a command line interface to ex-01.c

Let’s experiment with some of these options!

S cd examples
$ make ex-0l-expanded
$./ex-0l-expanded -help

-ntime <ntime> : set num time points

-ml <max levels> : set max levels

-nu <nrelax> : set num F-C relaxations

-nul0 <nrelax> : set num F-C relaxations on level O
-tol <tol> : set stopping tolerance

-cf <cfactor> : set coarsening factor

-mi <max iter> : set max iterations

-fmg : use FMG cycling

-res : use my residual

Examine the standard XBraid output

= File: examples/ex-0l-expanded.c Solves: wu; = A\u

Residual history is printed out, along with convergence factors and wall times

S ./ex-01l-expanded

Braid: Begin simulation, 10 time steps
Braid: || r O || not available, wall time = 1.8le-04
41Braid: || r 1 || = 2.845538e-02, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 8.621939%-04, conv factor = 3.03e-02, wall time =
 Braid: || r 3 || = 0.000000e+00, conv factor = 0.00e+00, wall time =

Braid Solver Stats:

start time = 0.000000e+00
stop time = 5.000000e+00
time steps = 10

use seq soln? =0

storage = -1

max iterations = 100
iterations = 4

residual norm = 0.000000e+00
stopping tolerance = 1.000000e-06

use relative tol? = 0

Examine the standard XBraid output

= File: examples/ex-0l-expanded.c Solves: wu; = A\u

Basic time domain information

S ./ex-01l-expanded
Braid: Begin simulation, 10 time steps

Braid: || r O || not available, wall time = 1.8le-04

Braid: || r 1 || = 2.845538e-02, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 8.621939%-04, conv factor = 3.03e-02, wall time =
Braid: || r 3 || = 0.000000e+00, conv factor = 0.00e+00, wall time =

Braid Solver Stats:
start time = 0.000000e+00

stop time = 5.000000e+00
time steps = 10

use seq soln? =0

storage = -1

max iterations = 100
iterations = 4

residual norm = 0.000000e+00
stopping tolerance = 1.000000e-06

use relative tol? = 0

Examine the standard XBraid output

= File: examples/ex-0l-expanded.c Solves: wu; = A\u

Advanced options

S ./ex-01l-expanded
Braid: Begin simulation, 10 time steps

Braid: || r O || not available, wall time = 1.8le-04

Braid: || r 1 || = 2.845538e-02, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 8.621939%-04, conv factor = 3.03e-02, wall time =
Braid: || r 3 || = 0.000000e+00, conv factor = 0.00e+00, wall time =

Braid Solver Stats:

start time = 0.000000e+00
stop time = 5.000000e+00
time steps = 10

ruse seq soln? =0

Lstorage = -1

max iterations = 100
iterations = 4

residual norm = 0.000000e+00
stopping tolerance = 1.000000e-06

use relative tol? = 0

Examine the standard XBraid output

= File: examples/ex-0l-expanded.c Solves: wu; = A\u

Max allowed XBraid iterations

S ./ex-01l-expanded
Braid: Begin simulation, 10 time steps

Braid: || r O || not available, wall time = 1.8le-04

Braid: || r 1 || = 2.845538e-02, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 8.621939%-04, conv factor = 3.03e-02, wall time =
Braid: || r 3 || = 0.000000e+00, conv factor = 0.00e+00, wall time =

Braid Solver Stats:

start time = 0.000000e+00
stop time = 5.000000e+00
time steps = 10

use seq soln? =0

storage = -1

Emax iterations = 100
iterations = 4

residual norm = 0.000000e+00
stopping tolerance = 1.000000e-06

use relative tol? = 0

Examine the standard XBraid output

= File: examples/ex-0l-expanded.c Solves: wu; = A\u

XBraid iterations taken

S ./ex-01l-expanded
Braid: Begin simulation, 10 time steps

Braid: || r O || not available, wall time = 1.8le-04

Braid: || r 1 || = 2.845538e-02, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 8.621939%-04, conv factor = 3.03e-02, wall time =
Braid: || r 3 || = 0.000000e+00, conv factor = 0.00e+00, wall time =

Braid Solver Stats:

start time = 0.000000e+00
stop time = 5.000000e+00
time steps = 10

use seq soln? =0

storage = -1

max iterations = 100
Literations = 4

residual norm = 0.000000e+00
stopping tolerance = 1.000000e-06

use relative tol? = 0

Examine the standard XBraid output

= File: examples/ex-0l-expanded.c Solves: wu; = A\u

XBraid final residual norm and halting tolerance

S ./ex-01l-expanded
Braid: Begin simulation, 10 time steps

Braid: || r O || not available, wall time = 1.8le-04

Braid: || r 1 || = 2.845538e-02, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 8.621939%-04, conv factor = 3.03e-02, wall time =
Braid: || r 3 || = 0.000000e+00, conv factor = 0.00e+00, wall time =

Braid Solver Stats:

start time = 0.000000e+00
stop time = 5.000000e+00
time steps = 10

use seq soln? =0
storage = -1
max iterations = 100
iterations = 4

residual norm = 0.000000e+00

I-stoppilrlg tolerance = 1.000000e-06
Luse relative tol? = 0

Examine the standard XBraid output

= File: examples/ex-0l-expanded.c Solves: wu; = A\u
Describe the XBraid options set for this run
S ./ex-01l-expanded
Braid: Begin simulation, 10 time steps
use fmg? =0
access level 1
print level =1
max number of levels = 2
min coarse 2
number of levels = 2
skip down cycle 1
periodic 0
relax only cg 0
finalFCRelax 0
number of refinements = 0
level time-pts cfactor nrelax
0 10 2 1
1 5
wall time =

Examine the standard XBraid output

= File: examples/ex-0l-expanded.c Solves: wu; = A\u
Describe the XBraid options for setting number of levels / how far to coarsen
S ./ex-01l-expanded
Braid: Begin simulation, 10 time steps
use fmg? =0
access level 1
print level =1
max number of levels = 2
min coarse = 2
number of levels = 2
skip down cycle 1
periodic 0
relax only cg 0
finalFCRelax 0
number of refinements = 0
level time-pts cfactor nrelax
0 10 2 1
1 5
wall time =

Examine the standard XBraid output

= File: examples/ex-0l-expanded.c Solves: wu; = A\u
Advanced XBraid options, e.g., periodic problem, num adaptive refinements, ...
$./ex-0l-expanded
Braid: Begin simulation, 10 time steps
use fmg? =0
access level 1
print level =1
max number of levels = 2
min coarse = 2
_number of levels 2
skip down cycle 1
periodic 0
1 relax only cg 0
finalFCRelax 0
_number of refinements = 0
level time-pts cfactor nrelax
0 10 2 1
1 5
wall time =

Examine the standard XBraid output

= File: examples/ex-0l-expanded.c Solves: wu; = A\u
Describes the levels in the XBraid hierarchy
$./ex-0l-expanded
Braid: Begin simulation, 10 time steps
use fmg? =0
access level 1
print level =1
max number of levels = 2
min coarse 2
number of levels = 2
skip down cycle 1
periodic 0
relax only cg 0
finalFCRelax 0
number of refinements = 0
level time-pts cfactor nrelax
0 10 2 1
1 5
wall time =

Increase number of time points

= File: examples/ex-0l-expanded.c Solves: wu; = A\u
Now, compare the effects of increasing the time domain size

$./ex-0l-expanded -ntime 16
Braid: Begin simulation, 16 time steps
Braid: || r O || not available, wall time = ..
Braid: || r 1 || = 2.851025e-02, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 1.040035e-03, conv factor = 3.65e-02, wall time =
Braid: || r 3 || = 3.530338e-05, conv factor = 3.39%9e-02, wall time =
Braid: || r 4 || = 3.716892e-07, conv factor = 1.05e-02, wall time =
$./ex-0l-expanded -ntime 128
Braid: Begin simulation, 128 time steps
Braid: || r O || not available, wall time = ...
Braid: || r 1 || = 2.851112e-02, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 1.049429%9e-03, conv factor = 3.68e-02, wall time =
Braid: || r 3 || = 4.437913e-05, conv factor = 4.23e-02, wall time =
Braid: || r 4 || = 1.990483e-06, conv factor = 4.49e-02, wall time =
Braid: || r 5 || = 9.174722e-08, conv factor = 4.6le-02, wall time =

FCF-relaxation

= File: examples/ex-0l-expanded.c Solves: wu; = A\u

Observe how changing the number of FCF-relaxations improves convergence
$./ex-0l-expanded -ntime 128 -nu O
Braid: Begin simulation, 128 time steps
Braid: || r O || not available, wall time = .
Braid: || r 1 || = 6.415003e-02, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 5.312734e-03, conv factor = 8.28e-02, wall time =
Braid: || r 3 || = 5.0550060e-04, conv factor = 9.51e-02, wall time =
Braid: || r 4 || = 5.101391e-05, conv factor = 1.0le-01, wall time =
Braid: || r 5 || = 5.290607e-06, conv factor = 1.04e-01, wall time =
Braid: || r 6 || = 5.570496e-07, conv factor = 1.05e-01, wall time =
$./ex-0l-expanded -ntime 128 -nu 3
Braid: Begin simulation, 128 time steps
Braid: || r O || not available, wall time = ...
Braid: || r 1 || = 5.631827e-03, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 4.094709e-05, conv factor = 7.27e-03, wall time =
Braid: || r 3 || = 3.420453e-07, conv factor = 8.35e-03, wall time =

Halting tolerance and max-iterations

= File: examples/ex-0l-expanded.c Solves: wu; = A\u

Observe how changing the tolerance and max-iter (-mi) parameters affect XBraid

$S./ex-01l-expanded -ntime 128 -tol le-3

iterations = 4

$./ex-0l-expanded -ntime 128 -tol le-12

iterations = 10

$./ex-01l-expanded -ntime 128 -tol le-12 -mi 3

iterations = 3

Don't over solve your problem

Full multigrid cycles (FMG)

= File: examples/ex-0l-expanded.c Solves: wu; = A\u

Now, use the fmg parameter and plot braid.out.cycle (file generated at runtime)

$./ex-0l-expanded -ntime 32 -ml 15 -mi 4 -fmg
$ python ../misc/user utils/cycleplot.py

This functionality can be used to adaptively refine in time (nested iteration)

Ay

— 2.9e-02

— 3.8e-04

— 1.5e-07

1 2 3
[teration

2.0e-09

17|

Outline

1. Introduction
—> Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
- Defining the App and vector structures, writing wrapper functions, running XBraid

3. Explore more XBraid settings in examples/ex-01l-expanded.c

4. Porting a user-code to XBraid with examples/ex-02
- Debugging the connection to XBraid
—> Intrusiveness versus efficiency

How to convert a user-code

= File: examples/ex-02%*

Solves: u; = Uy,

ex-02-serial.c

/* Define space-time domain */
tstart= 0.0; tstop= 2*PI; ...

/* Initialize u(t=0) */
get solution(values, ..

oy

ex-02-lib.c
Shared functions for serial and XBraid

ex-02.c

How to convert a user-code

= File: examples/ex-02%*

Solves: u; = Uy,

ex-02-serial.c

/* Define space-time domain */
tstart= 0.0; tstop= 2*PI;

/* Initialize u(t=0) */
get solution(values, ...);

/* Main time step loop */

for (step=1; step <= ntime; step++) {
t =t + deltaT;
take step(values, t, ...);

/* Output Solution */
save solution (filename, ...);

error = compute error norm(...);

ex-02-lib.c
Shared functions for serial and XBraid

ex-02.c

$ex-02-serial -ntime 64 -nspace 17

How to convert a user-code

= File: examples/ex-02%*

Solves: u; = Uy,

ex-02-serial.c

/* Define space-time domain */
tstart= 0.0; tstop= 2*PI;

/* Initialize u(t=0) */
get solution(values, ...);

/* Main time step loop */

for (step=1; step <= ntime; step++) {
t =t + deltaT;
take step(values, t, ...);

/* Output Solution */
save solution (filename, ...);

error = compute error norm(...);

ex-02-lib.c
Shared functions for serial and XBraid

/* Initialization routine */
void get solution(...)

/* Helpers for take step */
void solve tridiag(...)
void matvec tridiag(...)
void compute stencil(...)

ex-02.c

$ex-02-serial -ntime 64 -nspace 17

How to convert a user-code

= File: examples/ex-02%*

Solves: u; = Uy,

ex-02-serial.c

/* Define space-time domain */
tstart= 0.0; tstop= 2*PI;

/* Initialize u(t=0) */
get solution(values, ...);

/* Main time step loop */

for (step=1; step <= ntime; step++) {
t =t + deltaT;
take step(values, t, ...);

/* Output Solution */
save solution (filename, ...);

error = compute error norm(...);

ex-02-lib.c
Shared functions for serial and XBraid

/* Initialization array of values*/
void get solution(...)

/* Helpers for take step */
void solve tridiag(...)
void matvec tridiag(...)
void compute stencil(...)

/* Core time-stepping routine */
void take step(...)

/* Output Functions */
double compute error norm(...)
void save solution(...)

ex-02.c

$ex-02-serial -ntime 64 -nspace 17

How to convert a user-code

= File: examples/ex-02%*

Solves: u; = Uy,

ex-02-lib.c
Shared functions for serial and XBraid

ex-02.c

/* Initialization routine */
void get solution(...)

/* Helpers for take step */
void solve tridiag(...)
ex-serial.c void matvec tridiag(...)
void compute stencil(...)

/* Core time-stepping routine */
void take step(...)

/* Output Functions */
double compute error norm(...)
void save solution(...)

App structure holds time-independent data for stepping

typedef struct braid App struct
MPI Comm comm;
double matrix([3]; // 3pt stencil

How to convert a user-code

= File: examples/ex-02%*

Solves: u; = Uy,

ex-02-lib.c
Shared functions for serial and XBraid

ex-02.c

ex-serial.c

/* Initialization routine */
void get solution(...)

/* Helpers for take step */
void solve tridiag(...)
void matvec tridiag(...)
void computg_stencil(...)

/* Core time-stepping routine */
void take step(...)

/* Output Functions */
double compute error norm(...)
void save solution(...)

Vector holds time-dependent data for stepping

typedef struct braid App struct
MPI Comm comm;

double matrix([3]; // 3pt stencil

typedef struct braid Vector struct
int size;

double *values; // vector at time t

How to convert a user-code

= File: examples/ex-02%*

Solves: u; = Uy,

ex-02-lib.c
Shared functions for serial and XBraid

ex-02.c

/* Initialization routine */
void get solution(...)

/* Helpers for take step */
void solve tridiag(...)
ex-serial.c void matvec tridiag(...)
void compute stencil(...)

/* Core time-stepping routine */
void take step(...)

/* Output Functions */
double compute error norm(...)
void save solution(...)

Various wrapper functions re-use library routines

typedef struct braid App struct
MPI Comm comm;

double matrix([3]; // 3pt stencil

typedef struct braid Vector struct
int size;

double *values; // vector at time t

int my Step(u, ...)
take step(u->values, ...);

int my Access(u, ...)

compute error norm(u->values, ...);

oy

save solution (fname, u->values,

int my Init(u, ...)
get solution(u->values, ...);

How to convert a user-code

= File: examples/ex-02%*

Solves: u; = Uy,

ex-02-lib.c
Shared functions for serial and XBraid

ex-02.c

ex-serial.c

/* Initialization routine */
void get solution(...)

/* Helpers for take step */
void solve tridiag(...)
void matvec tridiag(...)
void computg_stencil(...)

/* Core time-stepping routine */
void take step(...)

/* Output Functions */
double compute error norm(...)
void save solution(...)

Actually running XBraid is easy!

typedef struct braid App struct
MPI Comm comm;
double matrix[3];

typedef struct braid Vector struct
int size;
double *values;

int my Step(u, ...)
take step(u->values, ...);

int my Access(u, ...)

compute error norm(u->values, ...);

oy

save_ solution (fname, u->values,

int my Init(u, ...)

get solution(u->values, ...);
main ()

braid Core core; app = (my App *)

braid Init(..., core);

braid Drive (core);

// 3pt stencil

// vector at time t

How to convert a user-code

= File: examples/ex-02%*

Solves: u; = Uy,

ex-02-lib.c
Shared functions for serial and XBraid

ex-serial.c

/* Initialization routine */
void get solution(...)

/* Helpers for take step */
void solve tridiag(...)
void matvec tridiag(...)
void computg_stencil(...)

/* Core time-stepping routine */
void take step(...)

/* Output Functions */
double compute error norm(...)
void save solution(...)

/* XBraid specific spatial
interpolation/coarsening */
void interpolate 1D(...)
void coarsen 1D(...)

ex-02.c

$ ex-02 -ntime 64 -nspace 17; python viz-ex-02.py

typedef struct braid App struct
MPI Comm comm;
double matrix[3];

typedef struct braid Vector struct
int size;
double *values;

int my Step(u, ...)
take step(u->values, ...);

int my Access(u, ...)

compute error norm(u->values, ...);

oy

save solution (fname, u->values,

int my Init(u, ...)

get solution(u->values, ...);
main ()

braid Core core; app = (my App *)

braid Init(..., core);

braid Drive (core);

Run code in parallel -- Speed up!

= File: examples/ex-02.c Solves: wu; = u,,

Run sequential baseline

$./ex-02 -nspace 1025 -ntime 1024 -ml 1

- 0.45s
Discretization error at final time: 1.9145e-03

Run Parareal

$ mpirun -np 6 ex-02 -nspace 1025 -ntime 1024 -ml 2 -tol le-4 -nu 0 -cf 16

- 0.19s, 7 iterations
Discretization error at final time: 1.9146e-03

Run MGRIT (still two-level, but with FCF)

$ mpirun -np 6 ex-02 -nspace 1025 -ntime 1024 -ml 2 -tol le-4 -nu 1 -cf 16

- 0.19s, 4 iterations
Discretization error at final time: 1.9125e-03

Run MGRIT with Richardson extrapolation in time (still two-level, but with FCF)

S mpirun -np 6 ex-02 -nspace 1025 -ntime 1024 -ml 2 -tol le-4 -nu 0 -cf 16 -richardson

- 0.20s, 4 iterations
Discretization error at final time: ©6.1440e-05

For larger problems, can go to more levels, further tune coarsening factor (cf), and
so on...

How to debug your new code

= File: examples/ex-02.c Solves: u; = U,y

Set max-levels=1. The answer should exactly match sequential time stepping.

$./ex-02 -ntime 64 -nspace 17 -ml 1
$ python viz-ex-02.py

In practice, you want to check that the above XBraid run and a
seperate sequential time-stepping run agree to 15 or 16 decimals

Continue with max-levels=1, but switch to multiple processors in time.
- Check that the answer again exactly matches sequential time stepping.

$ mpirun -np 2 ex-02 -ntime 64 -nspace 17 -ml 1
$ python viz-ex-02.py

How to debug your new code

Solves: u; = U,y

= File: examples/ex-02.c

Check that XBraid is a fixed-point method

Set max-levels=2, tol=0.0, max-iter=3, and initialize XBraid with the
sequential solution

r—

0

$./ex-02 -ntime 64
Braid:
Braid:
Braid:
Braid:
Braid:

-nspace 17 -ml 2 -tol 0.0 -mi 3 -use seq
1.00e+00,

O O O O O

.000000e+00,
.000000e+00,
.000000e+00,
.000000e+00,
.000000e+00,

conv
conv
conv
conv
conv

factor

factor =
factor =
factor =

factor

nan,
nan,
nan,
nan,

wall
wall
wall
wall

wall
time
time

time =

time

How to debug your new code

= File: examples/ex-02.c

Solves: u; = U,y

Turn on debug-level printing and check that the exact solution is propagating
With FCF-relaxation, the exact solution propagates forward 2 C-points each iter

Braid:
Braid:
Braid:
Braid:
Braid:

time
time
time
time
time

Il 0

time
time
time
time
time

step:
step:
step:
step:
step:

step:
step:
step:
step:
step:

14

~

o BN O
~

14

8,

$./ex-02 -ntime 8 -nspace 17 -mi 3
Braid:
Braid:
Braid:
Braid:
Braid:
Braid:

rnorm:
rnorm:
rnorm:
rnorm:
rnorm:

1.355604e+00,

0,

14

o o) B DN
~ 0~

~

rnorm:
rnorm:
rnorm:
rnorm:
rnorm:

-print level 3

= 01 O O

R O O O

.00e+00
.00e+00
.61le-01
.23e+00

1.
conv factor

0.
.00e+00
.00e+00
.00e+00
.33e-02

8oe-02

00e+00

= 1.00e+00, wall time =

Then, run some larger, multilevel tests of XBraid, checking that the sequential
and time-parallel versions agree to within the halting tolerance

Intrusiveness versus efficiency

= The more intrusive XBraid is allowed to be, the more efficient it is

- Residual option: computing the residual with a naive implementation of XBraid
is as expensive in FLOPs as sequential time stepping. Writing this extra
function allows you to avoid this for implicit schemes.

— This function also allows relaxation to be significantly less expensive
— Creates a method closer to Gander/Neumueller
— Further modifications can result in a method similar to space-time MG

- Adaptivity: adaptively refine in time and space, building new MGRIT levels

- Storage: store all time-steps (C and F), provides improved initial guess for
implicit scheme

- Level-dependent time-stepper: Change Step () on coarse-levels for
efficiency (problem dependent), e.g., vary implicit solve tolerance in Step ()

- Spatial coarsening: this can affect convergence, but is required for an O(N)
method in both time and space

Outline

1. Introduction
—> Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
- Defining the App and vector structures, writing wrapper functions, running XBraid

3. Explore more XBraid settings in examples/ex-01l-expanded.c

4. Porting a user-code to XBraid with examples/ex-02
- Debugging the connection to XBraid
—> Intrusiveness versus efficiency

5. Afew application area highlights

Experiments coupling our code XBraid with
various application research codes

Navier-Stokes (compressible and incompressible), Shallow Water
- Strand2D, CarT3D, Cyclops, Chord

Heat equation (including moving mesh example)
« MFEM, hypre

Elasticity (e.g., cardiac modeling)
« CHeart

Nonlinear diffusion, the p-Laplacian
.« MFEM

Power-grid simulations
« GridDyn+SunDials

Explicit time-stepping coupled with space-time coarsening
- Advection, Burger’s Equation
« MFEM

Optimization (XBraid-adjoint), Machine Learning
« CoDiPack, TorchBraid

16

Powergrid (DAE)

= Discontinuous square pulse applied to bus 141 every second’

- Must handle discontinuities (events) for real-world relevance
- Explore scalability w.r.t. number of discontinuities, 460s simulation has 460 events
- Adaptively refine in time around discontinuities for improved accuracy

Serial baseline _—=— F-cycle, ty = 460s _|

—eo— V-cycle

Z102-

()

=

= Max speedup ~50x

s

| G
10 P on
| | | WECC System: 179 buses
10° 10 104 and 793 unknowns

Total Core Count .

1. Schroder, Lecouvez, Falgout, Woodward, Top, Parallel-in-Time Solution of Power Systems with Scheduled Events, PES IEEE, 2018.

XBraid-Adjoint! for numerical optimization

= Extend the XBraid interface to accept a user-defined adjoint-Step()
- Solve upper block-bidiagonal adjoint equation

= Automatically generate adjoint-Step () with CoDiPack

= Model Problem: 8 . . p— 128

Advection-diffusion adjoint — & -

« Minimize difference _ 4 r 1 =
of space-time averaged é Eé/
solution to preset value Tés 2 32 g

k= 2,

& =

. 2 1 F 16 @

= When used with £ :

one-shot strategies, = s LN = 60000 L F

the max speedup is 25x N = 120000

N = 240000 ~30 -
0.25 | | | | | | 4
2 4 8 16 32 64 128 256

cores
Scaling of primal (solid lines) and
adjoint (dashed lines) XBraid solvers.

1. Guither, Gauger, S., Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library, CVS Springer, 2017.

Parallel-in-time and residual neural networks
~ Layer 2 Layer 3

Lo X7 @\

7 ANV
XX
Z0N A

Insert time-step
parameter

Input Layer
Jahke 1Indinp

= Residual Retworks (ResNets) «— ODE constrained optimization’
- Let W,,,b\, vy, be the weights, biases, and state at layer n
. Classified tryining with input/output pair: (Ydata, Cdata)

— Forward problem
Yo = Ydaka

Yni1 =Yn + FWpyn +b,) ¥Yn=0,....,N—1

— Learning problem

vﬁni? Loss(yn, caata) SuUbject to above forward problem

= Resnet propagation is equivalent to a forward Euler discretization and
backpropagation is equivalent to discrete adjoint’

1. Haber, Ruthotto. Stable Architectures for Deep Neural Networks. Inverse Probl., 2017.

Parallel-in-time and residual neural networks

= ResNet propagation is equivalent to a forward Euler discretization,
and ResNet backpropagation is equivalent to discrete adjoint!

- Use this equivalence to apply XBraid-adjoint

Assign each block of layers to different procs

= Parallel-in-time goals’
- Treat layers as time-

SRR B oo o

to t N

- Good strong and weak scaling with respect to number of network layers
- Train a network with 5 layers with same wall-clock time as 1000 layers

- Solve the same training problem (no shortcuts) as the sequential training version

- Provide novel layer-parallelism (decoupled layer computations in parallel)
20

1. Gunther, Ruthotto, Schroder, et al. Parallel-in-Layer Optimization for Training of Deep Residual Networks. SIMODS, 2020.

Parallel-in-time and neural networks (ResNets)

= Apply XBraid-adjoint solver to ResNet training
- Goal: Train a network with 5 layers in the same time as 1000 layers
- Solve the same training problem (no shortcuts) as sequential

= MNIST image classification’

40964 ~TTTTTTTTTTTTTTTT T T T T T TS — Layers = 32

790/ &% et
| 90 ¢ % _ o S
L ¥ /4 /5 s

Q265 % | =

22dA3 4 Y

2 $073¢€

'8 16 32 64 128 256 512 1024 2048
. Num Cores
= Qverall, good strong and weak scaling Strong scaling for ResNet training

- Best training speedup 21x at 4096 layers Solid lines: TorchBraid (MGRIT)

- Yes, it's too many layers, but the point is Dashed lines: Sequential-in-layer
a scalable algorithm for future problems
21
1. Gunther, Ruthotto, Schroder, et al. Parallel-in-Layer Optimization for Training of Deep Residual Networks. SIMODS, 2020.

Extreme scale machine

learning (ML)

ML on traditional high-performance
supercomputers is an open problem

« Current work with Hewett, Cyr, & Saavedra
- Train on 103, 109, ..., compute nodes?

- Urgently needed for >TB datasets
- Split data (e.g., image) across processors

Target problems: Sandia CT scans and
NMDID database (UNM) (>TB in size)

- Training enabled by novel spatial
decomposition coupled with MGRIT

 Preliminary results promising

Future: MG/Opt, GPU extensions, ...

Average time per image (seconds)

64

32

16

Parallel spatial decomposition
of CT scan for ML

----- 1283 For: Spdup=1.8
- 1283 Back: Spdup=2.0
AN N e 2563 For: Spdup=6.5
- 2563 Back: Spdup=9.8
N . ----- 5123 For: Spdup=3.6

i - 5123 Back: Spdup=4.9

............
'''''''

64 128 256 512 1024 2048 4096
Num processors

Speedups from spatial decomposition for
image segmentation (identify material)

22

Machine learning algorithmic and parallel speedups:
Multigrid optimization (MGOPT) plus layer-parallel

= ML algorithmic speedups possible with MGOPT (multilevel optimization)?
- Core concept: minimize the objective function on hierarchy of refined networks
min LOSS(yn, Cdata)

nys¥n

- ODE perspective provides a natural way to coarsen problems in layer (time)
- Coarser networks provide parameter updates to finer networks

- Coarse objective functions have an additional term’ for consistency (FAS)
— Let 91, 9n, WH be coarse gradient, fine gradient, and coarse weights, resp.,
— Update coarse objective function with new term: — {9y — gn, Wg)
— Make coarse and fine objective functions "consistent”

= When applied to ML2:3 the results are promising and provide an
algorithmic speedup for some classification problems

= Can we combine this algorithmic speedup with parallel speedup? Yes!

1. Nash, A multigrid approach to discretized optimization problems, Optimization Methods and Software, 2000.
2. von Planta, Kopanicakova, Krause, Training of deep residual networks with stochastic MG/OPT, (Arxiv) 2021.
3. Kopanicakova, Krause, Multilevel minimization for deep residual networks, (Arxiv) 2020.

Machine learning algorithmic and parallel speedups:
Multigrid optimization (MGOPT) plus layer-parallel

Train with MNIST

Adam optimizer versus
MGOPT + Layer-parallel

- Layer-parallel computes
gradients for MGOPT

- 128 layers (as demonstration)

« Parallel runs on Quartz
(Intel cluster at LLNL)

For this simple problem,
MGOPT + layer-parallel
exhibits an algorithmic
and parallel speedup

Next: fashion MNIST and
other harder problems

98 -

(o}
~

Mean Test Set Accuracy
O (e}
u [e)}

94 A

= Adam

— MGOPT + Layer-parallel
- == MGOPT + Layer-parallel scaled by parallel runtime

0.'0 2.'5 5.'0 7.'5 16.0 12'.5 15'.0 17.5
Normalized Artificial Time Units (~3.3 Gradient Evals)

24

Hyperbolic problems are traditionally difficult

= |Important initial successes 1D Burgers’ Equation

= 1D/2D advection and Burgers’ equation’
- F-cycles needed (multilevel), slow iteration growth
- Requires adaptive spatial coarsening

Time

 Dissipation improves convergence
« FCF-relaxation and small coarsening factors important Space

Taylor-Green Problem :
= Recent big improvements for linear advection? | WithCartD

- Special semi-Lagrangian coarse-grid discretization ,',\‘\ Iy, | Vot Meuce

AT W
S \
= Navier-Stokes in 2D and 3D3:4 » - -1-

L]

., .
 Multiple codes: Strand2D, Cart3D, CHeart, Chord '\ . W,)
- Compressible and incompressible, modest Re Ta \'\,‘.

0.025
0.02
e a) 25
1. De Sterck, Howse, Schroder, et al., Parallel-in-Time MG with Adaptive Coarsening for Inviscid Burgers, SISC, 2019.
2. Krzysik, De Sterck, Falgout, Fast MGRIT for Advection via Modified Semi-Lagrangian CG Operators, 2022, https://arxiv.org/abs/2203.13382
3. Falgout, Katz, Kolev, Schroder, Wissink, Yang, Parallel Time Integration with MGRIT for Compressible Fluid Dyn., 2014.
4. Christopher, Gao, Guzik, Falgout, Schroder, Space-Time Parallel Alg. with Adaptive Mesh Refinement for CFD, CVS Springer, 2020.

Y

Hyperbolic problems: Explicit methods

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection
(convection dominated)

- Diffusion term 0.001
= Sequential Time Stepping

- Sharp profile is transported
over 1100 time steps

11
0.7625

‘ 0.425

0.0875

- 3rd order explicit method

-0.25

26

Hyperbolic problems: Explicit methods

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 0
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

- Sharp profile is transported
over 1100 time steps

11

0.7625

-1 0.425

- 3rd order explicit method

0.0875

- 3-level XBraid hierarchy

-0.25

26

Hyperbolic problems: Explicit methods

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 5
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

- Sharp profile is transported
over 1100 time steps

11

0.7625

#0.425

0.0875

- 3rd order explicit method
- 3-level XBraid hierarchy

-0.25

26

Hyperbolic problems: Explicit methods

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 10
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

- Sharp profile is transported
over 1100 time steps

11

0.7625

#0.425

0.0875

- 3rd order explicit method
- 3-level XBraid hierarchy

-0.25

26

Hyperbolic problems: Explicit methods

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 15
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

- Sharp profile is transported
over 1100 time steps

11

0.7625

#0.425

0.0875

- 3rd order explicit method
- 3-level XBraid hierarchy

-0.25

26

Hyperbolic problems: Explicit methods

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 20
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

- Sharp profile is transported
over 1100 time steps

11

0.7625

#0.425

0.0875

- 3rd order explicit method
- 3-level XBraid hierarchy

-0.25

26

Hyperbolic problems: Explicit methods

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 20
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

- Sharp profile is transported
over 1100 time steps

11

qwzs

0.0875

- 3rd order explicit method
- 3-level XBraid hierarchy

« Future Work

- Convergence can be vastly improved with better coarse-grid equations’

-0.25

- Consider space-time AMG solvers

1. De Sterck, Falgout, Friedhoff, Krzysik, Optimizing MGRIT and Parareal coarse-grid operators for linear advection, NLSAA 2021?6

Periodic fluid-structure interaction (FSI)

= Goal: speedup biomedical simulations, e.g., blood flow Vein 1\
- Example problem: Periodic nonlinear flow in left ventricle
- Equations: elasticity for solid deformations, Navier-Stokes for blood

Vein 4

= Periodicity allows for greater MGRIT efficiency’
- MGRIT simulates only one periodic time interval
- Standard method simulates many intervals until steady state
- 20 processors in time - 5x speedup

Aorta ————

= Current research is using multilevel convergence theory?
to guide algorithm development 7

Left ventricle

27
1. Hessenthaler, Falgout, Schroder, Nordsletten, Roehrle, Time-Periodic Steady-State Solution of Fluid-Structure Interaction and

Cardiac Flow Problems through MGRIT. Comput. Meth. Appl. Mech. Eng., (Submitted) 2021.
2. Hessenthaler, Southworth, Nordsletten, Rohrle, Falgout, Schroder, Multilevel convergence analysis of MGRIT, SISC, 2020.

Nearly 50 years of research exists,
but has only scratched the surface

Earliest work goes back to 1964 by Nievergelt
- Led to multiple shooting methods, Keller (1968)

Space-time multigrid methods for parabolic problems

« Hackbusch (1984); Horton (1992); Horton+Vandewalle (1995); Gander+Neumueller
(2016)

- The last two are among the most efficient methods for linear parabolic problems

Parareal was introduced by Lions, Maday, and Turincini in 2001

« Probably the most widely studied method
- Gander and Vandewalle (2007) show that parareal is two-level FAS multigrid

Discretization specific work includes
« Minion, Williams (2008, 2010) - PFASST, spectral deferred correction / parareal
- De Sterck, Manteuffel, McCormick, Olson (2004, 2006) - FOSLS

Research on these methods is ramping up!
- Ong, Ruprecht, Krause, Speck, Minion, Langer, De Sterck ... not an exhaustive list

28

Summary and conclusions

Sequential time integration bottleneck is real
- Parallel in time is needed for future architectures
- This is a major paradigm shift

XBraid applies multigrid reduction to the time dimension
-« Multigrid is ideal for exascale (optimal, resilient, ...)
- Result is a flexible and non-intrusive approach

The more intrusive XBraid is allowed to be, the more efficient the
algorithm is.

There is much future work to be done!

- More problem types, more complicated discretizations
- Performance improvements, adaptive meshing

- Enabling novel parallelism in machine learning

Selected references

Parallel-in-Time

1.

Falgout, Friedhoff, Kolev, MacLachlan, Schroder, Parallel Time Integration with
Multigrid, SIAM J. Sci. Comput. (SISC), 2014.

2. Dobrev, Kolev, Petersson, Schroder, Two-level Convergence Theory for MGRIT,
SIAM J. Sci. Comput. (SISC), 2017.

3. Guenther, Ruthotto, Schroder, Cyr, Gauger, Layer-parallel training of deep residual
neural networks. SIAM J. Math. Data Sci. (SIMODS), 2020.

4. Sugiyama, Schroder, Southworth, Friedhoff, Weighted Relaxation for Multigrid
Reduction in Time. Numer. Lin. Alg. Appl. Submitted, June 2021.

5. Ong, Schroder, Applications of Time Parallelization. CVS, Springer, 2020.
Review paper.

Software

1.

XBraid: https://github.com/XBraid/xbraid

Xeaae-

PARALLEL MULTIGRID IN TIME

31

Outline

1. Introduction
—> Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
- Defining the App and vector structures, writing wrapper functions, running XBraid

3. Explore more XBraid settings in examples/ex-01l-expanded.c

4. Porting a user-code to XBraid with examples/ex-02
- Debugging the connection to XBraid
—> Intrusiveness versus efficiency

5. Afew application area highlights

Appendix: Advanced XBraid features
« Temporal adaptivity * Residual and storage options

» Shell-vectors and BDF-k + Spatial coarsening
* Fortran90 Interface » Python Interface

Advanced feature: FMG allows for
adaptivity in time and space
= User returns refinement factor in Step ()

= Example time grid hierarchy

= (C-point (coarse grid) — F-point
Level O | 2 | 4 = 2 | H |
Level 1 | | |
Level 2 | I
= User requests refinement factors on the finest grid which Notice
generates a new grid and hierarchy new
C-pts
Level -1| : F+——— : } : ;
Level O | i | : i |
Level 1 | | i

Level 2 I

Advanced feature: adaptivity in time

= File: examples/ex-02.c Solves: Uy = Uy,

« This example uses a built-in Richardson error estimator for refinement in time

 braid StepStatusSetRFactor(status, k) refines an interval k times
« Called from inside of Step ()

S make ex-02
S ./ex-02 -ntime 8 -refinet 3e-2

Braid: Begin simulation, 8 time steps

Braid: || r O || = 1.855448e+00, conv factor = 1.00e+00, wall time =
Braid: || r 1 || = 2.371288e-02, conv factor = 1.28e-02, wall time =
Braid: Temporal refinement occurred, 38 time steps

Braid: || r 1 || = 6.407304e-01, conv factor = 3.45e-01, wall time =
Braid: || r 2 || = 1.242778e-02, conv factor = 1.94e-02, wall time =
Braid: Temporal refinement occurred, 66 time steps

Braid: || r 2 || = 8.337944e-02, conv factor = 1.30e-01, wall time =
Braid: || r 3 || = 2.215613e-03, conv factor = 2.66e-02, wall time =

Braid: Temporal refinement occurred, 70 time steps

Braid: || r 3 || = 1.602040e-02, conv factor = 1.92e-01, wall time =
Braid: || r 4 || = 2.011504e-04, conv factor = 1.26e-02, wall time =
Braid: || r 5 || = 4.412674e-06, conv factor = 2.19e-02, wall time =
Braid: || r 6 || = 1.013677e-07, conv factor = 2.30e-02, wall time =

Discretization error at final time: 2.3758e-02

Advanced feature: adaptivity in time

= File: examples/ex-02.c Solves: Uy = Uy,

* Now, visualize the cycling
« Observe how the new levels (and time-points) are added
 This causes an uneven reduction in the residual

$ python ../misc/user utils/cycleplot.py

XBraid Cycling

— 1.9e+00

‘ — 1.1e-03

Level

— 1.2e-06

1 T T T T 6.7e-10

Iteration

7]

Advanced feature: residual function

= File: examples/ex-0l-expanded.c Solves: wu; = A\u

Observe how turning on the residual function changes convergence

$S./ex-01l-expanded -ntime 128 -res
iterations = 7

$S./ex-01l-expanded -ntime 128

iterations = 0

= File: examples/ex-03.c Solves: U = —Uyy —

Uyy

S make ex-03
S ./ex-03 -nt 128 -nx 9 9 -mi 4 -res

S ./ex-03 -nt 128 -nx 9 9 -mi 4

Braid: || r 1 || = 5.231464e-01, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 6.067546e-02, conv factor = 1.1l6e-01, wall time =

Braid: || r 1 || = 5.002967e-01, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 2.701758e-02, conv factor = 5.40e-02, wall time =

Understanding the residual feature

Let space-time block operator be

o ey (B

Au = o =

N O B v

Block row of this system: A;(u;,u;_1) = f;

Block row of operator: A;(u;,u;_1) = —®(u;_1) + ¥(u;)
Residual: ri = fi + Ai(a;,u;_1)

XBraid Default

User defines Step (Wi—1)= ®(u;_1)

XBraid assumes ¥V = [

XBraid computes the residual with no additional information

BUT for implicit, ® must be a full implicit solve on finest level for accurate residual
OUCH! This residual computation has same FLOPS as serial time-stepping.

Residual setting: remove this cost
« Compute the residual with another new user-defined function

Understanding the residual feature

Residual setting: define new user function for cheap residual computation

ri = fi + Aj(u;,u;_1)

New function
r; = fi + Residual (u;, u;_q1)

Residual (Ui, ui—l) = Ai(ui, 1,17;_1) = —<I>(ui_1) + \I!(uz)

Let ® = I, ¥ = sparse matrix inverted by implicit time-stepping

- Now, residual computation requires NO matrix inverse and is cheap
Step () now computes ¥ 1(f; + ®(u;_q)) — u;

BUT, this operation is only used for relaxation
- THUS, cheap inexact solves are used, e.g., 1 or 2 spatial multigrid V-cycles

Note the f; term
« Provided to user with the £stop vectorin Step ()
- This is the forcing term provided by FAS on coarse MGRIT levels

Advanced feature: shell-vectors & BDF-k

= File: examples/ex-01-expanded-bdf2.c Solves: wu; = Au

= XBraid is desighed for one-step methods. This is the standard way to
partition the time-line.

F-point |
t() tl t2 t3 C—pOIﬂt I

Advanced feature: shell-vectors & BDF-k

File: examples/ex-0l-expanded-bdf2.c Solves: wu; = Au

XBraid is designed for one-step methods. The new way to partition so that
BDF-k looks “one-step” is to group k time-steps together (here, k = 2).

I} (I I] - F-point | (]
l‘() tl tz t3 C_pOInt I :]

- Creates non-uniform time-step sizes on coarse grids

The shell-vector feature allows for the storage of meta-data at every time
point, including F-points that are otherwise not stored.

- This meta-data allows for tracking the irregular time-grid spacing

Other BDF-k strategies, like reducing order on coarse-grids, are possible

To use the shell option, you must define new shell functions for allocating,
copying, and freeing vector shells

Advanced feature: extra storage

= File: examples/ex-03.c Solves: u; = ugy + Uy

« Set a storage value k (default is -1)
* Forlevel= k=0, store all points
For level < k, store only C-points
« k=0 storage at all points on all levels
« k=-1 special value, storage only at C-points on all levels

B T e e S e B e S S e [m e

— F-point (fine grid only)
== (C-point (coarse & fine grid)

 The extra storage critically gives improved initial guesses to implicit solvers
 The extra storage changes the problem being solved

« The operator & changes as the initial guess changes

* Look at the residual histories with

Ux

make ex-03
./ex-03 -nx 17 17 -nt 128 -storage -1

Ux

$./ex-03 -nx 17 17 -nt 128 -storage 0

$./ex-03 -nx 17 17 -nt 128 -storage 1

Advanced feature: skip option

= File: examples/ex-03.c

* By default, skip is turned on
 Compare the residual histories for

« Skip allows XBraid to skip (typically useless) relaxations on the 1st down cycle

$./ex-03 -nx 17 17 -nt 128 —-mi 3 -skip
$./ex-03 -nx 17 17 -nt 128 —-mi 3 -skip

No Skip

XBraid Cycling

— 2.0e+0

— 1.4e-03

Level
Level

— 1.9e-06

T T 1.3e-10
1 2 3

Iteration

Skip

XBraid Cycling

F— 2.8e-01

— 3.3e-04

— 1.1e-07

Iteration

1.3e-10

Advanced feature: parallel-run

= File: examples/ex-03.c Solves: u; = ugy + Uy
Run in parallel!

$ mpirun -np 8 ex-03 -pgrid 2 2 2 -nt 256 -nx 17 17
Braid: || r O || not available, wall time = .
Braid: || r 1 || = 6.166798e-01, conv factor = 1.00e+00, wall time =
Braid: || r 2 || = 2.319985e-02, conv factor = 3.76e-02, wall time =
Braid: || r 3 || = 6.972052e-04, conv factor = 3.0le-02, wall time =
Braid: || r 4 || = 1.135286e-05, conv factor = 1.63e-02, wall time =

Advanced feature: spatial coarsening

= File: examples/ex-02.c Solves: Uy = Ugy

Here, we use simple bilinear interpolation (and its transpose) for spatial coarsening

$./ex-02 -ntime 64 -nspace 17 -ml 3 -sc

Braid: || r 0 || = 3.652579e+00, conv factor = 1.00e+00, wall time =
Braid: || r 1 || = 1.714767e-01, conv factor = 4.69e-02, wall time =
Braid: || r 2 || = 6.3006301e-03, conv factor = 3.68e-02, wall time =
Braid: || r 3 || = 3.238587e-04, conv factor = 5.14e-02, wall time =
level dx dt dt/dx"2

0 | 1.96e-01 9.82e-02 2.55e+00 S ial .

1 | 3.93e-01 1.96e-01 1.27e+00 patial coarsening can

2 | 7.85e-01 3.93e-01 6.37e-01 negatively impact convergence.

S ./ex-02 -ntime 64 -nspace 17 -ml 3

Braid: || r O || = 3.652579e+00, conv factor = 1.00e+00, wall time =
Braid: || r 1 || = 1.557155e-01, conv factor = 4.26e-02, wall time =
Braid: || r 2 || = 7.580438e-03, conv factor = 4.87e-02, wall time =
Braid: || r 3 || 2.430763e-04, conv factor = 3.21e-02, wall time =
level dx dt dt/dx"2

0 | 1.96e-01 9.82e-02 2.55e+00

1 | 1.96e-01 1.96e-01 5.09e+00

2 | 1.96e-01 3.93e-01 1.02e+01

Advanced feature: coarsening factor

= File: examples/ex-02.c Solves: uy = U,y

« Changing the coarsening factor does not change convergence (much)
« This powerful fact applies to parabolic problems in general

« Allows for a great deal of performance tuning

* Requires that FCF-relaxation or F-cycles be used

$./ex-02 -ntime 1024 -nspace 128 -cf 16 -ml 10
iterations = 7
$./ex-02 -ntime 1024 -nspace 128 -cf 2 -ml 10

iterations = 8

Fortran90 interface

= File: examples/ex-01-expanded-£f.£90 Solves: wu; = \u

Uses Fortran90 modules to define the App and Vector Types

module braid types

type my vector
double precision val
end type my vector

User-defined wrapper functions are the same, only written in Fortran90

subroutine braid Sum F90 (app, alpha, x, beta, y)
! Braid types
use braid types
implicit none
type (my vector) X, Y
type (my_app) 1 oapp

double precision alpha, beta
ysval = alpha* (x%val) + beta* (ysval)
end subroutine braid Sum F90

Python interface

= File: examples/ex-01-cython/ex 01.pyx Solves: u; = \u

= Requires: Cython, MPI4PY, Numpy, Scipy
= [nstalls with: ex 0l-setup.py (see file for instructions)

User-defined wrapper functions defined in Cython (hybrid Python/C)

cdef int my step(braid App app, braid Vector ustop,
braid Vector fstop, braid Vector u,
braid StepStatus status):
tstart = 0.0

tstop = 0.0
braid StepStatusGetTstartTstop (status, &tstart, &tstop)

Cast C objects as Python objects
pyU = <PyBraid Vector> u
pyApp = <PyBraid App> app

pyU.value[0] = 1./(1. + tstop-tstart) *pyU.value[0]
return O

Python interface

= File: examples/ex-01-cython/ex 01.pyx Solves: u; = \u

= Requires: Cython, MPI4PY, Numpy, Scipy

= [nstalls with: ex 0l-setup.py (see file for instructions)

Run as normal Python package, e.g., with MPI4PY

$ mpirun -np K python3 ex 01 run.py

File:ex 01 run.py

Use XBraid as normal Python package
import ex 01

core, app = ex 0l.InitCoreApp ()

ex 0l.run Braid(core, app)

|deas for More Tutorial Examples

= Do more of a Python example

= Add a three-part example [??? Maybe, maybe not...may be full enough]

« Parareal

- MGRIT
- S.t. similar to Gander/Neumueller with PFMG iters and -res, may need to fix
code

= Add/Change reaction or convection term to ex-02...? see what

happens?
- Connect to theory for convergence on real, imag, complex eigs

