A Performance Model for Allocating the
Parallelism in a Multigrid-in-Time Solver

Hormozd Gahvari, Veselin A. Dobrev, Robert D. Falgout,
Tzanio V. Kolev, Jacob B. Schroder, Martin Schulz, Ulrike Meier Yang
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA USA
{gahvaril,dobrev,rfalgout,tzanio,schroder2,schulzm,umyang } @1Inl.gov

Abstract—The traditional way to numerically solve time-
dependent problems is to sequentially march through time,
solving for one time step and then the next. The parallelism in
this approach is limited to the spatial dimension, which is quickly
exhausted, causing the gain from using more processors to solve
a problem to diminish. One approach to overcome this barrier is
to use methods that are parallel in time. These methods have the
potential to achieve dramatically better performance compared
to time-stepping approaches, but achieving this performance
requires carefully choosing the amount of parallelism devoted
to space versus the amount devoted to time. Here, we present
a performance model that, for a multigrid-in-time solver, makes
the decision on when to switch to parallel-in-time and on how
much parallelism to devote to space vs. time. In our experiments,
the model selects the best parallel configuration in most of our
test cases and a configuration close to the best one in all other
cases.

I. INTRODUCTION

On our path to exascale and beyond we continue to see
a steep increase in the amount of parallelism provided by
leading HPC systems. Already today, core counts have reached
the millions, and they are expected to grow even more in the
future. Algorithms must be capable of exploiting this available
parallelism efficiently in order to make use of these machines.
However, this is increasingly becoming problematic, especially
for strong-scaling problems, since the increase in the level
of parallelism requires a finer and finer decomposition of the
domain and data. If this decomposition gets too fine, we are
faced with higher data transfer overheads, or, in the extreme
case, even idling resources. We therefore need to find new
sources to extract parallelism.

Time-dependent simulations are traditionally time-stepped,
i.e., a data domain (often a grid or mesh) is decomposed in
2D or 3D physical space and evolved over time through a
main loop using a series of sequential time steps. Each time
step relies on the result of the previous one and advances the
simulation by a time-step size dt. In this approach, parallelism
is achieved by distributing the decomposed 2D or 3D space
among the compute resources, which can work on their
parts concurrently. Consequently, the amount of parallelism
is constrained by the granularity of the spatial domain decom-
position, which can be limited.

One way to overcome this limitation is to use a method

that is parallel in time. Such methods reformulate time-
dependent problems to include time as a dimension that can
be decomposed across processors. This way, all time steps
can be solved in parallel. This adds a very large amount of
parallelism, making these methods a good match for current
and future HPC systems.

However, using a parallel-in-time approach does not come
for free: it typically exhibits higher overheads and hence is
only suitable when used on a large number of processing cores.
Determining the exact cross-over point at which a parallel-
in-time approach outperforms a traditional sequential solver
is not trivial and typically requires a lot of trial and error.
Furthermore, with time now another dimension that can be
parallelized, determining the right tradeoff between resources
used in the spatial dimensions versus the time dimension is an
equally unanswered problem. Solving both questions, however,
is critical for the successful use of parallel-in-time solutions.

In this work, we make the following contributions:

o We derive a general performance model for MGRIT [1],
a parallel-in-time solver based on multigrid. This model
allows us to determine both the correct cross-over point in
terms of scale as well as a suitable processor distribution
in space vs. time.

o We validate our model on three different platforms using
two case studies, a 2D heat transfer problem and an
advection-diffusion problem.

e Our model accurately predicts the best distribution of
processes in space and time about 85 percent of the time,
for a given problem, process count, and coarsening factor.
In most of the cases where it did not, the prediction was
close to the best one.

e Most importantly, our work lays the foundation for the
practical use of parallel-in-time methods. Without a pre-
dictive model to guide when to use these methods, and
how much parallelism to devote to space and time, getting
the best performance requires a lot of guesswork that can
be a real burden to users.

The remainder of the paper is organized as follows. Section
IT discusses the basics of the MGRIT algorithm. Section
III introduces our performance model, and Section IV gives
specifics on how we adapt the model so that it can be used to

make predictions. Section V discusses our results, and Section
VI discusses future directions for further development of the
model. Related work is overviewed in Section VII, and our
conclusions are in Section VIII.

II. MULTIGRID-IN-TIME BASICS

As mentioned before, parallel-in-time methods work by
treating time as yet another dimension that can be decomposed
across processors. To visualize this, consider solving a first-
order system of ordinary differential equations,

u'(t) = £(¢,u(t)), u(0) € [0, tmax)-

For simplicity, consider discretization on a uniform temporal
mesh of T time steps with spacing 0t = tyax/7 and time
values of ¢; = it for ¢ = 0,1,...,7T. A general one-step
time discretization of this system can then be written as

= 80,

ui:q)i(uifl)"’_gia i:1727"‘7T7

where uy = gg. For instance, one application of ®; could be
forward or backward Euler. To further simplify the presenta-
tion, we assume f is linear. ! Then the discretized system of
ODE:s is equivalent to the linear system

I ug 8o
-¢; I up g1
—O7r I ur gr

(D

Solving the system of ODEs with sequential time-stepping is
equivalent to a direct block-triangular solve of (1). However,
triangular solvers scale poorly in parallel. This has led to the
use of other solvers for leveraging parallelism in time, such as
multigrid, which has the desirable property of ideal algorith-
mic scalability. One such solver is multigrid-reduction-in-time
(MGRIT), which works by non-intrusively adding parallelism
in time to an existing sequential time-marching code [1]. This
is accomplished through a multigrid reduction [3], [4] strategy
that uses coarse time grids to accelerate convergence to the
solution on the finest time grid. MGRIT is implemented in
the software package XBraid [5], which has already seen use
in a compressible fluid dynamics application problem [6].
XBraid allows the user to non-intrusively wrap pre-existing
time-stepping and problem initialization routines. A call to a
driver routine then starts the MGRIT solver. We use the XBraid
implementation of MGRIT in our experiments.

We now briefly describe a two-grid MGRIT process, but
note that the process can be done recursively for a multilevel
solver. Let the coarse time grid be formed with a coarsening
factor of ¢;, as depicted in Figure 1. MGRIT first proceeds
with a local relaxation process, alternating between F- and
C-points (fine and coarse grid points as depicted in Figure
1). An F-relaxation consecutively updates all {u;} on an
interval (7;,7;41) through applications of ®;. Each F-interval

Nonlinear problems can also be solved, see Falgout et al. [2].

T0 T1 At = Ct5t
—_—
to ti t2 ts T te 57 -
Fig. 1. Fine and coarse time-grids. Fine grid points ¢; are present on only

the fine grid, whereas coarse grid points 7; (red) are on both the fine and
coarse grids.

@‘

S w
pace § paCe / paCe

Fig. 2. Example MGRIT solution process for the 1D linear advection
equation. For illustration, the initial space-time guess is uniformly random, and
then the MGRIT algorithm iteratively updates the entire space-time solution
until convergence.

Initial Space-Time Guess- Converge

is sequentially updated, but intervals are independent and done
in parallel. C-relaxation updates each C-point in parallel with
an application of ®;. In practice, relaxation is either an F-
sweep or a more powerful FCF-sweep.

After relaxation, the residual r = g — Au is restricted
(with injection) to the coarse time-grid. Next, the coarse grid
residual equation Apea = ra is solved, where - represents
coarse grid quantities. The matrix Aa has the same structure
as A, only it represents just the T'/c; coarse time-steps and
uses a coarse grid time propagator ®; o which is typically a
rediscretization in time using At = ¢;t. For example, ®; A
could be backward Euler using At, while ®; is backward Euler
using dt. This is the key approximation made in the method.
The error correction ea is then harmonically interpolated [1]
to the fine-grid and updates the solution, completing a two-grid
cycle. Figure 2 depicts this cycling process on the fine-grid for
the 1D linear advection equation.

In summary, MGRIT exposes concurrency in the time
dimension with multigrid. It is non-intrusive and leaves the
time discretization unchanged. The user simply wraps their
existing time-stepping routine to form the ® operator. As such
MGRIT, converges to the same solution as sequential time-
stepping. The method is optimal for a variety of parabolic
problems, regardless of the coarsening factor or the spatial
dimension of the problem being solved [7], [1]. In a simple
two-level setting with F-relaxation, MGRIT is equivalent [§]
to the Parareal method [9], which is perhaps the most popular
parallel-in-time method.

Regarding performance, sequential time-stepping and
MGRIT are both linear in the number of time steps. More
specifically, they are both linear in the number of rounds of
communication and computation required, but time-stepping
has a lower constant for the computation term and a sig-
nificantly higher constant for the communication term than
MGRIT. However, MGRIT is able to utilize far more proces-
sors to parallelize its computational term. Hence, there is a

performance cross-over point between the two methods [1].
For processor counts less than the cross-over, sequential time-
stepping is faster, but for larger processor counts, MGRIT
is faster. Determining this cross-over point can be time-
consuming and costly. Thus, a major goal of this paper is
to determine the cross-over a priori with a model, and to
furthermore predict the optimal space-time processor layout
for a fixed processor count.

III. BASIC MODELING

We build our model of MGRIT in a modular fashion, to
allow for a wide range of possible time-stepping routines
®. In fact, we assume that both ® and the problem being
solved are arbitrary. For a given problem, each application of
® incurs some computation and some communication. This
might be as simple as a combination of a nearest neighbor
stencil computation with its associated communication, in the
case of an explicit @, or as involved as an iterative solver
with multiple rounds of communication and computation, plus
collective communication to check convergence, in the case of
an implicit ® that uses an iterative solver. The definitions of
the modeling terms are summarized in Table I.

We count the time spent in the involved operations as
follows. Let ¢(N) be the time spent in computation when
applying ® to N spatial points in serial. Let ¢)(N, P) be the
time spent in point-to-point communication when applying ®
to N points with P processes, and let £(P) be time spent in
collective communication when applying ® with P processes.
These values will depend on the machine, the time-stepping
routine, and the problem being solved. Assuming like before
that we take 7" time steps, the time spent when using sequential
time-stepping is
¢(N)

Toeq =T (+¢(N,P) + f(P)) . 2)
When moving to multigrid in time, we will look at the
operation count in terms of relaxations and matrix-vector
multiplications. Assume we are using P = P, P, processes,
where P, is the number of processes in space and F; is the
number of processes in time. The process layout is shown in
Figure 3 with P, = 4 and P, = 4, compared with sequential
time-stepping with four processes in space. Moving to parallel-
in-time requires the storage of several time steps at once,
which leads to larger storage requirements than is the case for
sequential time-stepping, where only one time step needs to
be stored. To save memory, MGRIT stores only the C-points.
Assuming, as before, that we are coarsening in time with
factor ¢;, relaxation using the matrices in (1) takes time

o T <¢(N)

C:
Py

N
v rer)) o

for C-relaxation, and

fo= g (1-2) (B2 o) +em) @

Serial time stepping
OO0

t (time}—
[)

X (space)

Fig. 3. Processor layout comparison, where the blue dots represent parts of
the domain being actively computed and stored, and the pink boxes represent
the data that a process owns.

Fig. 4. Multigrid V-cycle (left), and full multigrid cycle (right). The V-cycle
progresses from the finest grid to the coarsest grid, and then back to the
finest grid. The full multigrid cycle starts on the coarsest grid, and consists
of a series of V-cycles of progressively increasing depth until the final one,
which starts on the finest grid.

for F-relaxation. A matrix-vector multiplication using these
matrices takes time T + T, to cover both the C-points and
F-points.

To expand this to a multigrid V-cycle, which is pictured
in Figure 4, we consider each level in time separately. This
requires us to introduce a coarsening factor in space, c,. The
reason for this is that when ® represents an explicit time-
stepping routine, the spatial grid needs to be coarsened along
with the temporal grid to keep the relative grid spacings from
violating the CFL limit, which would prevent the solver from
obtaining the correct answer [10].

Define expressions for the time spent in C-relaxation and
F-relaxation on grid ¢ to be:

. T 6(N) N
TC —maX{C%,Pt,l} <cilpz +¢(Pzapx) +§(Pac)>

. T 1
T}l?:max{“ <1—>,Ct—1}'
Cy Pt Ct

N N
(A 4 v p +)
Both of these enforce minimums on the number of consec-
utive relaxations performed. For C-relaxation, which can be
performed completely in parallel, this minimum is simply
1, i.e., at least one C-relaxation has to be performed. F-
relaxation, however, requires relaxation on the previous F-
point to be complete before proceeding to the next one, making
the minimum equal to the number of F-points between each
C-point.

Relaxation on a particular grid can be a number of different
combinations of C-relaxation and F-relaxation. Here, we as-

TABLE I
DEFINITIONS OF MODELING TERMS.

Parameter | Definition
N Number of spatial points
T Number of time steps
P Total number of processes
P, Number of spatial processes
Py Number of processes in the time direction
¢(N) Computation time for applying ® to N points in serial
(N, P) | Point-to-point communication time for applying ® to N
points using P processes
&(P) Collective communication time for applying ® using P
processes
To Time for C-relaxation
T Time for F-relaxation
Té Time for C-relaxation on grid 4
Ty Time for F-relaxation on grid %
L Number of multigrid cycles in time
Tryma Time for a full multgrid cycle

sume an F-relaxation sweep followed by a C-relaxation sweep
and another F-relaxation sweep, which we denote as FCF-
relaxation. Matrix-vector multiplication with the A operator
in (1), which forms the residual before proceeding to the next
coarsest grid, is treated as a sweep of F-relaxation and a sweep
of C-relaxation. After the coarse grid correction is determined,
there is a another sweep of F-relaxation before interpolating
the result to the next finest grid, except on the finest level. We
also charge a C-relaxation sweep to account for the application
of the coarse-grid operator when forming the right-hand-side
for the Full Approximation Storage (FAS) coarse-grid [11]. 2
The cycle time is then
L-1
3TE + 3Tk + Y (3Té +ATg) + 2T + 3Tk, (5)
i=2

where L < |log,, T'| is the number of multigrid levels in time.

We can further extend the model to the full multigrid cycle,
which is also pictured in Figure 4, as follows. First, we express
(5) as a V-cycle from grid ¢ to grid j:

j—1
V) = 3T, + 3T + Y (3TE+4TE) + 2T% + 3T% (6)
k=i+1

The time taken by a full multigrid cycle can then be expressed
as

L-1
Tene = »_ Vb, (7)
=1

which is a sum of V-cycles of depths 1,..., L, with L being
the coarsest grid for each cycle.

IV. MAKING PREDICTIONS

The baseline performance model of MGRIT, introduced
above, is very general in terms of how the cost of the time-
stepping routine depends on the problem, the number of points,
and the number of processes. This does not automatically
allow for us to build a performance model that can be used in
a practical setting in order to determine how many processes

2FAS is nonlinear multigrid, allowing XBraid to solve nonlinear problems.

to use in space and how many to use in time. To build such a
model, we focus on the relative costs of communication and
computation. This enables us to make simplifying assumptions
about the terms in the model in the previous section, which
then leads to a way to measure them and make predictions.
Our first simplifying assumption deals with the communi-
cation involved in applying ®. We assume that the communi-
cation involved in an application of ® for the problem being
solved takes a constant amount of time 1/; This assumes that
latency and overhead dominate the point-to-point communi-
cation involved in time-stepping, which is not unreasonable
when doing time-stepping for the targeted settings, where the
available parallelism in space has been exhausted, leading to a
large number of small, latency dominated messages. We make
one more assumption, which is to relate the time spent in
collectives to the point-to-point time by the relation

&(P) = (alogy P)y. (8)

This relates the time spent in collectives to the point-to-point
communication cost, expressing the collective communication
cost in terms of point-to-point messages along a binary tree,
a typical implementation of collective operations, again espe-
cially for small message sizes. Finally, to aid in parameter
measurement, we define a parameter é = mf}. We do this
because we will be using linear equations to measure the
parameters, which will not be possible with the unknown
coefficient a in the equations.

The parameters we end up measuring are ¢(INV), &, and é
for the problem we are solving. Given our earlier definitions
of them, if we take m measurements 77,...,7T,, of the
time-stepping routine ® for different numbers of processes

Pi,..., P, we can solve the least squares problem
7 1 log, P #(N) Ty
Do ; ¥ =1 :)
7= 1 logy Py 3 T,

for ¢(N), 1, and . If P, = 1 for some row i, we set the
second and third entries in that row to 0.

It is possible that we know the value of é will be zero, or
that we get an impossible value for é when performing this
measurement. This can happen with an explicit time-stepping
routine that has no collective communication, or a network
with highly optimized and fast collective operations. In that
case, we set § to zero, which also makes the coeffecient a
relating it to 1 zero, and solve the least squares problem

401 T

P 1
- (10

P{n 1 T,

for ¢(N) and t). If P; = 1 for some row i, we set the second
entry in that row to 0. Then, for a given process count and
the solution to either (9) or (10), we can use (2) to estimate
the time spent when using sequential time-stepping and (5)

, MEEECO0OD mEm| P
o EEOO00d 11§
DOComm EEE | |3

. DOonEN NN 9

L 10° SlEl [RN |65
2] NN 2
2 1] HEE| | S
810} u 110 g
5 mEE| |, §
o

[y

o
-

N

10° L - - - -
10° 10° 10* 10° 10°
Communication Time/Flop Time

Fig. 5. Best process configurations for 128 x 128 spatial problem solved
over 4096 time steps with explicit time-stepping. Colored areas correspond
to using MGRIT with the corresponding number of processes in space. Areas
with no color mean that sequential time-stepping is preferable.

multiplied by the number of cycles to estimate the time spent
when using MGRIT.

This approach is based on the idea that the variance in
computation and communication time across different pro-
cess counts is too complicated to directly measure, and so
we should instead strive for measuring average-case values
that reflect the overall relative costs of communication and
computation. These relative costs can then be used to give a
reasonable idea of which configuration of processes in space
and time will result in the best performance. Though the re-
sulting performance model is relatively simple, it explains the
observed performance, while avoiding unnecessary complexity
that makes a performance model harder to use in practice. 3

The underlying principle behind our approach is illustrated
in Figure 5, which plots the estimated process configurations
given the total number of processes used and the ratio of the
time per communication round in ® to the time per floating-
point operation, assuming a model problem with 128 x 128
points in space solved with an explicit time-stepping scheme
over 4096 time steps. For simplicity, no spatial coarsening is
assumed, and the collective communication term é is assumed
to be zero. The number of processes at which a switch to
MGRIT over sequential time-stepping is beneficial, as well
as the expected best number of processes to use in space
and time, depends on the relative costs of communication and
computation. Our prediction scheme is equivalent to finding
where on the plot we are based on the time-stepping routine
(x-axis) and the total process count (y-axis), and then looking
up the process configuration that is expected to result in the
best performance.

30ne omitted complexity, which is not required for good modeling accu-
racy, is communication in the time dimension. This is because the problems
considered here have a large spatial problem size that makes communication
and computation in space dominant. However, it is possible that accounting
for communication in time will be required in the future for problems with a
small spatial dimension.

V. RESULTS

We tested MGRIT and our model-based prediction scheme
on two different problems on three different machines. The
two problems are the 2D heat equation and a 2D advection-
diffusion problem. We chose these problems as opposed to
3D problems with more demands on parallelism in space in
order to free up resources to test a variety of parallel-in-time
process configurations. As mentioned before, the convergence
of MGRIT does not depend on the spatial dimension, so our
approach is also applicable to 3D problems. We chose different
time-stepping schemes and cycle types for each to highlight
the versatility of MGRIT and the predictive performance
model for making decisions on the process distribution in
space and time. For each problem, we used our runs with
sequential time stepping at the tested process counts to provide
the measurements of the time-stepping routine that are needed
by the performance model.

A. Machine Descriptions

Vulcan is an IBM Blue Gene/Q at Lawrence Livermore
National Laboratory, consisting of 24,576 nodes with one 16-
compute core 1.6 GHz processor per node. Experiments were
run on up to 16,384 cores. All experiments use the IBM
compiler, version 12.1, and the MPI implementation is an
IBM-derived version of MPICH2.

Cab is a Linux cluster at Lawrence Livermore National
Laboratory. It consists of 1,296 nodes with two eight-core 2.6
GHz Intel Xeon E5-2670 processors per node. The nodes are
connected by an Infiniband QDR interconnect, organized as a
two-level fat-tree. Experiments were run on up to 4,096 cores.
All experiments use the Intel compiler, version 14.0.3. The
MPI implementation is MVAPICH2.

Eos is a Cray XC30 at Oak Ridge National Laboratory,
consisting of 744 nodes with two eight-core Intel Xeon ES5-
2670 processors per node. Experiments were run on up to
8,192 cores. All experiments use the Intel compiler, version
15.0.2, and the MPI implementation is Cray’s native MPI.

Each machine has the capability to run multiple threads per
core, four in the case of Vulcan and two in the case of Cab
and Eos. For our experiments, we chose to only run one thread
per core.

B. Heat Equation
Our first test problem is the 2D heat equation

Ut = Ugy + Uyy

on the unit square, with homogeneous Dirichlet boundary
conditions, discretized using a 5-point stencil, with a 128 x 128
spatial grid, run for 4,096 time steps. The time-stepping
routine is backward Euler, which necessitates solving a linear
system of equations at each time step. The spatial solver is the
semicoarsening geometric multigrid solver PFMG [12], [13] in
the hypre library [14]. V-cycles were used for the multigrid-in-
time solves, and we tested four different coarsening factors in
time. The number of V-cycles required for MGRIT to converge

TABLE II TABLE III
MGRIT CONFIGURATION PREDICTIONS FOR THE 2D HEAT EQUATION ON MGRIT CONFIGURATION PREDICTIONS FOR THE 2D HEAT EQUATION ON
VULCAN. CAB.
P T Model Best Actual Best p T Model Best Actual Best
seq Px X Pt Ct Tpar Pl- X Pt Ct Tpar sed Px X Pt Ct Tpar Pg; X Pt Ct Tpar
128 53.02 128 x 1 - 53.02 1x 128 4 53.01 128 491 2 X 64 8 4.88 2 X 64 8 4.88
256 49.93 2 x 128 8 41.22 2 x 128 8 41.22 256 6.17 2 x 128 8 3.37 2 x 128 8 3.37
512 48.88 2 X 256 4 31.46 2 X 256 4 31.46 512 6.25 2 X 256 4 2.61 4 x 128 8 2.38
1024 48.37 4 x 256 4 30.46 4 x 256 8 25.14 1024 8.46 4 x 256 4 1.83 4 x 256 4 1.83
2048 47.53 8 x 256 4 21.21 4 x 512 4 20.80 2048 9.22 4 x 512 4 1.56 8 X 256 8 1.50
4096 47.22 8 x 512 4 17.98 8 x 512 4 17.98 4096 11.2 8 x 512 4 1.28 8 X 512 4 1.28
8192 46.63 16 x 512 4 16.77 8 x 1024 4 16.39
1 4 | 46.32 1 1024 4 15.2 1 1024 4 15.2
638 6.3 6 x 10 5.27 6 x 10 5.27 TABLE IV
MGRIT CONFIGURATION PREDICTIONS FOR THE 2D HEAT EQUATION ON
Eos.
was 9 for ¢; = 2, and 8 for the others. Our XBraid convergence
-6 Model Best Actual Best
tolerance was 107°. P Tseq
. . . P, x P Ct Tpar Py x P Ct Tpar
Results for each machine are in Figure 6. We compared 28 | 5.42 2 % 64 S 1 4.96 2 % 64 S 1 4.96
sequential time-stepping with several different MGRIT con- 256 | 743 | 2x128 | 8 | 344 | 4x064 8 | 338
. 512 7.42 2 X 256 4 2.65 4 x 128 8 2.37
ﬁgu.ratlons. Th'e m.odeled b.est anq act'ual best MGRIT config- 1004 | 736 | ax256 | 4 | 179 | ax256 | 4 | 179
urations are highlighted with solid lines. In most cases, the 2048 | 797 | 4x512 | 4 | 154 | 8x256 | 4 | 141
model predicted a good mix of processes in space and time to 4096 | 939 | 8x512 | 4 | 121 | 8x512 | 4 | 121
use, often the best one. Speedups over the fastest time-stepping 8192 | 102 | 8x 1024 | 4 | 112 | 8x 1024 | 4 | 112

solution reached 3x on Vulcan, 3.6x on Cab, and 3.8x on Eos.
In all cases, MGRIT enabled continued scalability well after
the available spatial parallelism was exhausted.

We also utilized the model to predict the best overall config-
uration, treating the coarsening factor in addition to the number
of processes in space and the number of processes in time as
a quantity we needed to find. Finding the right coarsening
factor (see Falgout et al. [1]) can by itself be a resource
and time consuming task. Our predictions, compared with the
actual best configurations, are in Tables II-IV. The first two
columns list the process count and the runtime Ty, when
using sequential time-stepping. The next three show the mix of
parallelism in space and time and temporal coarsening factor
predicted by the model to have the best performance, along
with the runtime 7T}, for that configuration. The last three
show the mix of parallelism in space and time and temporal
coarsening factor that resulted in the best performance in
our experiments, along with the corresponding runtime 77,
The uninteresting cases, where sequential time-stepping results
in the best performance and is predicted to do so by the
model, are omitted. Our model did not find the exact best
configuration every time, but when it did not, it was still able
to find a configuration that did not perform much worse than
the best one. In addition, the configurations it selected resulted
in improved performance compared to both sequential time-
stepping and the configuration selected by the model for the
next smallest number of processes.

C. Advection-Diffusion

For a more sophisticated example, we consider the
advection-diffusion driver, drive-05, from XBraid, which
implements

uy —vAu+b-Vu =0 for u € Q,

where v = 0.2 and b = [1/2/3;4/1/3]. Figure 7 depicts the
initial condition, the 2D hexagonal domain €2 and the periodic

spatial boundary conditions, visible at time-step 2500 as the
solution begins to wrap around the spatial domain. The time
domain is ¢ € [0, 2.0].

To show generality, our implementation wraps the MFEM
package [15] with XBraid, and we choose the fourth-order
Runge-Kutta (RK4) time-stepper and linear discontinuous
Galerkin finite elements in space. The use of an explicit time-
stepping scheme requires simultaneous space-time coarsening
so that the aforementioned CFL limit is not violated on coarse
time grids, which results in an unstable and divergent solution.
The CFL ratio 6t/ h?, where h is the mesh width in space,
must be kept below a fixed value on all time-grids, which for
this discretization and PDE coefficients was experimentally
determined to be around 0.16. For our experiments we used
5t/h? ~ 0.145.

To accomplish this, we used an MGRIT solver with 4 time
levels, where each successively coarser time-grid corresponded
to a uniformly coarsened spatial mesh. That is, the spatial
mesh size h grows by a factor of 2 when going to the next
coarser time-grid, which corresponds to an overall spatial
coarsening factor ¢, = 4. To complement this, we choose
the coarsening factor ¢; = 4 in time, such that §t/ h? remains
roughly fixed on all time-grids. In this sense, explicit methods
place restrictions on the available parameter choices to XBraid.
Another restriction is that MGRIT converges best when the
finest time-grid is close to the CFL limit, which is what we
do here. This is not an obstacle, as running close to the CFL
limit reduces the overall number of time steps and is how
most sequential time-stepping codes operate. We also used full
multigrid cycles for MGRIT as opposed to V-cycles, again for
the purpose of obtaining the best convergence.

We ran drive-05 for 16,384 time steps on each of
the three machines, comparing sequential time-stepping with
several different MGRIT configurations, analogous to the heat

2D Heat Equation on Vulcan, Coarsening Factor 2

90 14 2D Heat Equation on Cab, Coarsening Factor 2 14 2D Heat Equation on Eos, Coarsening Factor 2
80
70+
—~ 601 —_ —_
2 @ 2
CU G) v
£ 50¢ £ £
[= [
40t
30+
20+
0 0
10° 10" 102 103 10* 10° 10" 102 103 10° 10" 102 10°
Processes Processes Processes
20 2D Heat Equation on Vulcan, Coarsening Factor 4 14 2D Heat Equation on Cab, Coarsening Factor 4 14 2D Heat Equation on Eos, Coarsening Factor 4
A Y
80+ 12 vl
70+
~ 60 —_ _
)) @2
1 [3
£ 50¢ £ £
= = [
40}
30+
20+
0
10° 10" 102 10° 10° 10° 10! 10? 10°
Processes Processes Processes
20 2D Heat Equation on Vulcan, Coarsening Factor 8 14 2D Heat Equation on Cab, Coarsening Factor 8 14 2D Heat Equation on Eos, Coarsening Factor 8
80+
70+
—~ 601 —_ —_
) C))
CU GJ v
£ 50¢ £ £
[= [
40t
30+
20+
0 0
10° 10" 102 103 10* 10° 10" 102 103 10° 10" 102 103
Processes Processes Processes
20 2D Heat Equation on Vulcan, Coarsening Factor 16 14 2D Heat Equation on Cab, Coarsening Factor 16 14 2D Heat Equation on Eos, Coarsening Factor 16
B Time Stepping eoe =1 ee® P=1
80} — Best P, 12 << P,=2 12 P,=2
— Model P, mA =4 4
»» P,=8 8
10 4 P16 10
G 8 G 8
g g
(=3 6
4 4
BT Time Stepping B Time Stepping
2r — Best P, 20 — Best P,
— Model P, — Model P,
0 0
10° 10t 102 103 10° 10* 102 10°
Processes Processes Processes

Sequential time-stepping versus MGRIT when solving the 2D heat equation on Vulcan, Cab, and Eos for coarsening factors of 2 through 16.

Time-step 2500 041

Time-step O 1.0

0.24

0.06

Fig. 7. Time-evolution of an advection-diffusion problem in XBraid. Note
how the initial condition both convects and diffuses as time marches on.

TABLE V
MGRIT CONFIGURATION PREDICTIONS FOR THE ADVECTION-DIFFUSION
PROBLEM ON VULCAN.

P Tie Model Best Actual Best
q P, X P, Tpar P, x P, Thar
1024 10.6 1024 x 1 10.6 1024 x 1 10.6
2048 9.52 2048 x 1 9.52 2048 x 1 9.52
4096 7.82 4096 x 1 7.82 4096 x 1 7.82
8192 - 16 x 512 6.71 8 x 1024 6.39
16384 - 16 x 1024 | 4.43 16 x 1024 | 4.43

equation. The é term in the performance model was not
explicitly set to zero. Ten MGRIT cycles were required for the
solver to converge, and again, the XBraid tolerance we used
was 1076, The results are in Figure 8. In almost every case, the
model predicted either the best configuration or one very close
to it. Model-predicted versus actual best configurations are
listed for each machine in Tables V-VII. The first two columns
list the process count and runtime when using sequential time-
stepping. The next four show the mix of parallelism in space
and time and corresponding runtime for the configuration
predicted to have the best performance by the model and
the configuration that resulted in the actual best runtime,
respectively. As before, the uninteresting cases are omitted.
We make special note of the fact that MGRIT enabled the
use of process counts that could not be used with sequential
time-stepping. For these counts, there were too many processes
and too few spatial points for the mesh partitioner to assign
to them, meaning that the simulation did not run. MGRIT,
however, enabled scalability beyond this point. The highest
speedups over the best time-stepping performance were 1.8x
on Vulcan, 4.8x on Cab, and 6.4x on Eos.

VI. FUTURE DIRECTIONS

The performance model we developed can make decisions
on the amount of parallelism to devote to space and the

TABLE VI
MGRIT CONFIGURATION PREDICTIONS FOR THE ADVECTION-DIFFUSION
PROBLEM ON CAB.

P Tie Model Best Actual Best

4 TP x P Tpar Py X Py | Tpar
128 3.96 128 x 1 3.96 256 x 1 3.96
256 4.08 256 x 1 4.08 256 x 1 4.08
512 4.65 2 x 256 3.61 2 x 256 3.61
1024 | 6.55 2 x 512 1.93 4 x 256 1.90
2048 | 8.31 4 x 512 1.11 2 x 1024 1.10
4096 | 9.18 | 4x 1024 | 0.71 | 4x 1024 | 0.71

TABLE VII
MGRIT CONFIGURATION PREDICTIONS FOR THE ADVECTION-DIFFUSION
PROBLEM ON EOS.

p Tie Model Best Actual Best

91 P x P Tpar P, x P Tpar
128 2.89 128 x 1 2.89 128 x 1 2.89
256 3.54 256 x 1 3.54 256 x 1 3.54
512 4.18 512 x 1 4.18 2 X 256 3.34
1024 | 545 2 x 512 1.80 4 x 256 1.76
2048 | 6.18 4 x 512 1.00 4 x 512 1.00
4096 | 7.61 | 4x1024 | 0.59 | 4 x 1024 | 0.59
8192 - 8x 1024 | 045 | 8 x 1024 | 045

amount to devote to time in MGRIT, as well as suggest
coarsening factors that result in superior performance. Still,
there are many avenues for future work to build on our current
foundation.

First, there are optimizations that can be done to get
more performance out of MGRIT, such as reducing the solve
tolerance for implicit time-stepping routines on coarse grids or
adjusting the relaxation routine [1], [16]. Extending the model
to cover them would provide additional helpful guidance to
users to get the best possible performance.

Second, there are also more complicated problems and
time-stepping schemes to consider. Nonlinear problems can
be solved using MGRIT, but then each time step involves a
nonlinear solver such as Newton’s method, and the time taken
by such a solver can vary substantially between time steps.
Modeling this will be very useful, but is also a challenge.
Time-stepping schemes that adjust the step size during a
simulation have the potential to introduce load imbalance into
the parallelism in time. A model that can cover this will help
in tackling the resulting performance issues.

Finally, there is the interaction between MGRIT and the un-
derlying computer architecture. The XBraid implementation of
MGRIT expresses time-parallelism through message passing
alone. Other forms of parallelism are now widely available,
most notably in the form of multicore nodes and accelerators.
Adapting MGRIT to express parallelism in more programming
models than just message passing will become important as
the amount of on-node concurrency increases. Also, there is
the interaction of MGRIT with time-stepping routines that
themselves use other programming models. In this scenario,
it is possible that a mix of parallelism in space and time
other than what would be suggested when only using message
passing would make better use of the machine. Extending the
model to cover both of these cases will be important as the
on-node parallelism of machines continues to increase.

When it comes to modeling all of these additional features
and future directions of MGRIT, there is also the need to
balance detail with the ability to apply such a model in
practice. There are a number of factors involved in doing
so; Gahvari et. al. [17] discusses this in depth for a different
solver. It is important that end users are able to select the
features and mix of space/time parallelism they need for their
particular applications without having to go through a lot
of trial and error to find the right parameters. We designed

20 Advection-Diffusion on Vulcan

Advection-Diffusion on Eos

BT Time Stepping 14

12

15
10

10

Time (s)
Time (s)

L | | A |

O W AN

AN O
N

A\
v

Advection-Diffusion on Cab
9 T

Time (s)

10° 10° 10* 10"

Processes

Fig. 8.

our performance model with this goal in mind, and plan on
adapting it for actual runtime use.

VII. RELATED WORK
A. Parallel-in-time Methods

The field of parallel-in-time goes back at least 50 years [18]
and includes a variety of approaches including direct methods
as well as iterative approaches such as multiple shooting,
domain decomposition, waveform relaxation, and multigrid.
For an introduction to this history, see the review paper by
Gander et al. [19]. Our work focuses on multigrid approaches
(and MGRIT in particular) because of multigrid’s optimal al-
gorithmic scaling for both parallel communication and number
of operations. An additional attraction of MGRIT is its non-
intrusive nature.

Regarding the use of multigrid-in-time methods in the HPC
setting, Carracciuolo et al. [20] propose the use of MGRIT
across nodes and spatial parallelism within nodes, facilitated
by implementing this framework within an existing software
library. However, no results are presented.

B. Setting Application Parameters with Performance Models

The rapid pace of evolution in computer architecture ne-
cessitates software being able to adapt to a changing envi-
ronment. There are frequently tunable parameters that need to
be adjusted to ensure good performance. One very common
example is tiling in linear algebra operations to maximize
the amount of computation performed in registers or fast
memory. Lang [21] gives an overview of existing work in
this area. Much of it involves linear algebra kernels, but
some more substantial applications have also seen benefits.
Examples given are host/accelerator workload distribution in
the conjugate gradient method [22], tree depth in the fast
multipole method [23], tiling in explicit predictor-corrector
Runge-Kutta ODE solvers [24], algorithm and parameter
choice in sorting [25], and load balance and keeping in data in
cache during molecular dynamics visualization [26]. Our work
falls in this same general area, but tackles a more difficult
application in that the time-stepping routine can be arbitrary,
ranging from a simple calculation to an iterative solve, whereas

10° 10°
Processes

10! 10° 10°
Processes

Sequential time-stepping versus MGRIT when solving the advection-diffusion problem on Vulcan, Cab, and Eos.

past work has focused on specific algorithms or choice among
a finite number or specific class of algorithms.

VIII. CONCLUSIONS

We presented a performance model that gives guidance on
what mix of processes to use in space and time for the parallel-
in-time solver MGRIT, and demonstrated the effectiveness
of the model on a simple finite difference problem and a
more complicated finite element problem. The two problems
were solved using two very different time-stepping routines
and cycling strategies. The former used the implicit backward
Euler time-stepper and V-cycle multigrid, and the latter used
the explicit RK4 time-stepper and full multigrid.

Performance models like the one we presented will be key
to making parallel-in-time methods accessible to users. In ad-
dition to MGRIT, there are opportunities for the development
of additional methods as well as methods tailored to emerging
massively parallel machines. With their ability to strong-scale
time-dependent simulations well beyond the capabilities of
sequential time-stepping, parallel-in-time methods will be-
come increasingly important as the parallelism of machines
increases. The range of possible mixes of parallelism in space
and time will be substantial, and features designed to take the
underlying architecture into account will add even more knobs.
Without a performance model to provide guidance, users will
have to invest significant time and resources tuning in order
to get the best performance out of their applications.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Labo-
ratory under contract DE-AC52-07NA27344. It used resources
of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC05-000R22725. LLNL-CONF-701995.

REFERENCES
[1] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B.

Schroder, “Parallel Time Integration with Multigrid,” SIAM Journal on
Scientific Computing, vol. 36, pp. C309-C334, 2014.

[2]

[3]
[4]

[5]
[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

R. D. Falgout, A. Katz, T. Kolev, J. B. Schroder, A. Wissink, and
U. M. Yang, “Parallel time integration with multigrid reduction for a
compressible fluid dynamics application.” Lawrence Livermore National
Laboratory Technical Report, LLNL-JRNL-663416, 2015.

M. Ries, U. Trottenberg, and G. Winter, “A note on MGR methods,”
Linear Algebra Appl., vol. 49, pp. 1-26, 1983.

M. Ries and U. Trottenberg, “MGR-ein blitzschneller elliptischer l6ser,”
Universitdt Bonn, Tech. Rep. Preprint 277 SFB 72, 1979.

“XBraid: Parallel multigrid in time,” http://www.lInl.gov/casc/xbraid.
R. D. Falgout, A. Katz, T. V. Kolev, J. B. Schroder, A. M. Wissink,
and U. M. Yang, “Parallel Time Integration with Multigrid Reduction
for a Compressible Fluid Dynamics Application,” Lawrence Livermore
National Laboratory, Tech. Rep. LLNL-JRNL-663416, October 2014.
V. Dobrev, T. Kolev, N. A. Petersson, and J. Schroder, ‘“Two-level
convergence theory for parallel time integration with multigrid,” SIAM
Journal on Scientific Computing, LLNL-JRNL-692418, 2016 (submitted).
M. J. Gander and S. Vandewalle, “Analysis of the parareal time-
parallel time-integration method.” SIAM Journal on Scientific Comput-
ing, vol. 29, pp. 556-578, 2007.

J.-L. Lions, Y. Maday, and G. Turinici, “Résolution d’EDP par un
schéma en temps “pararéel”,” C. R. Acad. Sci. Paris Sér. 1 Math., vol.
332, no. 7, pp. 661-668, 2001.

R. Courant, K. Friedrichs, and H. Lewy, “On the Partial Difference
Equations of Mathematical Physics,” IBM Journal of Research and
Development, vol. 11, pp. 215-234, 1967.

A. Brandt, “Multi-level adaptive computations in fluid dynamics,” 1979,
technical Report ATAA-79-1455, ATAA, Williamsburg, VA.

S. F. Ashby and R. D. Falgout, “A Parallel Multigrid Preconditioned
Conjugate Gradient Algorithm for Groundwater Flow Simulations,”
Nuclear Science and Engineering, vol. 124, pp. 145-159, 1996.

R. D. Falgout and J. E. Jones, “Multigrid on Massively Parallel Archi-
tectures,” in Lecture Notes in Computational Science and Engineering
volume 14. Multigrid Methods VI: Proceedings of the Sixth European
Multigrid Conference Held in Gent, Belgium, September 27-30, 1999.
Springer, 2000, pp. 101-107.

“hypre: High performance preconditioners,” http://www.lInl.gov/CASC/
hypre/.

“MFEM: Modular finite element methods,” www.mfem.org.

[16]

(17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

R. Falgout, S. Friedhoff, T. Kolev, S. MacLachlan, J. Schroder, and
S. Vandewalle, “Multigrid Methods with Space-Time Comcurrency,”
SIAM Journal on Scientific Computing, LLNL-JRNL-678572, 2015 (sub-
mitted).

H. Gahvari, “Improving the Performance and Scalability of Algebraic
Multigrid Solvers through Applied Performance Modeling,” Ph.D. dis-
sertation, University of Illinois at Urbana-Champaign, 2014.

J. Nievergelt, “Parallel methods for integrating ordinary differential
equations,” Comm. ACM, vol. 7, pp. 731-733, 1964.

M. J. Gander, 50 years of Time Parallel Time Integration, ser. Multiple
Shooting and Time Domain Decomposition. Springer, 2015, in press.
L. Carracciuolo, L. D’Amore, and V. Mele, “Toward a fully parallel
Multigrid in Time algorithm in PETSc environment: a case study in
ocean models,” in 2nd International Workshop on High Performance
Computing for Weather, Climate, and Solid Earth Sciences (HPC-WCES
2015), 2015.

J. Lang, “Data-aware tuning of scientific applications with model-based
autotuning,” Concurrency and Computation: Practice and Experience,
To appear.

J. Lang and G. Riinger, “An execution time and energy model for an
energy-aware execution of a conjugate gradient method with cpu/gpu
collaboration,” Journal of Parallel and Distributed Computing, vol. 74,
pp. 2884-2897, 2014.

H. Dachsel, M. Hofmann, J. Lang, and G. Riinger, “Automatic Tuning of
the Fast Multipole Method Based on Integrated Performance Prediction,”
in 14th International Conference on High Performance Computing and
Communications, 2012, pp. 617-624.

N. Kalinnik, M. Korch, and T. Rauber, “Online auto-tuning for the
time-step-based parallel solution of ODEs on shared-memory systems,”
Journal of Parallel and Distributed Computing, vol. T4, pp. 2722-2744,
2014.

X. Li, M. J. Garzardn, and D. Padua, “A Dynamically Tuned Sorting
Library,” in 2004 International Symposium on Code Generation and
Optimization, 2004.

Y. L. Nelson, B. Bansal, M. Hall, A. Nakano, and K. Lerman, “Model-
Guided Performance Tuning of Parameter Values: A Case Study with
Molecular Dynamics Visualization,” in 22nd IEEE International Parallel
and Distributed Processing Symposium, 2008.

