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Abstract. We apply a multigrid reduction-in-time algorithm to hyperbolic partial differential5
equations. This study is motivated by the observation that sequential time stepping is an obvious6
computational bottleneck when attempting to implement highly concurrent algorithms, thus parallel-7
in-time methods are particularly desirable. In the case of explicit time stepping, spatial coarsening8
may be necessary to ensure that stability conditions are satisfied on all levels, and it may be useful9
for implicit time stepping by producing cheaper multigrid cycles. Unfortunately, classical spatial10
coarsening results in extremely slow convergence when the wave speed is near zero, even if only locally.11
We present an adaptive spatial coarsening strategy that addresses this issue for 1D linear advection12
and implicit time stepping. Numerical results show that this offers significant improvements over13
classical coarsening. Future improvements and extensions to explicit time stepping are discussed.14
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1. Introduction. Due to stagnating processor speeds and increasing core counts,17
the current paradigm of high performance computing is to achieve shorter computing18
times by increasing the concurrency of computations. Time integration represents19
an obvious bottleneck for achieving greater speedup due to the sequential nature of20
many numerical integration schemes. While temporal parallelism may seem counter-21
intuitive, the development of parallel-in-time methods is an active area of research,22
with a history spanning several decades [9]. Variants include direct methods and itera-23
tive methods based on deferred corrections [5], domain decomposition [11], multigrid24
[12], multiple shooting [2], and waveform relaxation [16] approaches. For instance,25
one of the most prominent parallel-in-time methods, parareal [15], is equivalent to a26
two-level multigrid scheme [10].27

In this paper, we discuss the multigrid reduction-in-time (MGRIT) method [7]28
and use XBraid [1], an open-source implementation of MGRIT. A strength of the29
MGRIT framework is its non-intrusive nature, which allows existing time-stepping30
routines to be used within the MGRIT implementation. Thus far, MGRIT has been31
successfully implemented using time stepping routines for linear [7] and nonlinear [8]32
parabolic partial differential equations (PDEs) in multiple dimensions, computational33
fluid dynamics problems [6], and power system models [14]. We now consider applying34
MGRIT to hyperbolic PDEs.35

As a multigrid method, MGRIT primarily involves temporal coarsening, but spa-36
tial coarsening may be necessary for explicit time integration to ensure that stability37
conditions are satisfied on all levels of the grid hierarchy. Spatial coarsening may38
also be used with implicit time integration to produce smaller coarse grid problems39
and, hence, cheaper multigrid cycles. However, small local Courant numbers induce40
a sort of anisotropy in the discrete equations, meaning that the nodal connections in41
space are small compared to those in time. These so-called weak connections prevent42
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pointwise relaxation from smoothing the error in space, thus inhibiting the effective-43
ness of spatial coarsening and leading to slow convergence. In this paper, we present44
an adaptive spatial coarsening strategy for implicit time stepping that resolves this45
problem for the conservative variable coefficient linear advection equation,46

(1) ∂tu+ ∂x(a(x, t)u) = 0,47

by locally preventing coarsening in regions with near zero Courant numbers.48
The remainder of this paper is as follows. In §2, we describe the MGRIT al-49

gorithm and discuss results for classical spatial coarsening. In §3, we present our50
adaptive coarsening approach: providing algorithms for restriction and interpolation,51
and transferring solutions between spatial grids at different time points. In §4, we52
provide numerical results illustrating the efficacy of the adaptive coarsening strategy.53
In §5, we summarize our results and briefly describe related current and future work.54

2. Background Information. Consider a system of ordinary differential equa-
tions (ODEs) of the form

u′(t) = f(t,u(t)), u(0) = u0, t ∈ [0, T ],

which can represent the system obtained from a method-of-lines discretization of (1).
This system is discretized on a uniform temporal mesh ti = iδt, i = 0, 1 . . . , Nt,
δt = T/Nt, with ui ≈ u(ti). A general one-step iteration for this discretization is

ui = Φi,δt(ui−1) + gi, i = 1, 2, . . . , Nt,

where Φi,δt is a time stepping function depending on ti and δt, and gi contains55
solution-independent terms. We write this as the equivalent matrix equation (abusing56
notation in the nonlinear case)57

(2) Au ≡


I

−Φ1,δt I
. . . . . .

−ΦNt,δt I




u0

u1

...
uNt

 =


g0

g1

...
gNt

 ≡ g,58

where g0 = u0. Note that forward substitution corresponds to sequential time step-59
ping.60

2.1. MGRIT. To solve (2) by MGRIT, we require a coarse-grid problem, a61
relaxation scheme, and restriction and prolongation operators. Set a temporal coars-62
ening factor m and define a coarse time grid Tic = ic∆T , ic = 0, 1, . . . , NT = Nt/m,63
∆T = mδt, as pictured in Figure 1 [7, original]. The Tic present on both fine and64
coarse grids are C-points and the remaining ti are F-points. On the coarse grid, define65
a coarse time stepper Φic,∆T . In two-level MGRIT, this coarse-grid problem is solved66
exactly, whereas multilevel MGRIT applies this process recursively.67

t0 t1 t2 t3 · · · tm

T0 T1 · · ·

tNt

∆T = mδt

δt

Fig. 1. Fine and coarse temporal grids.
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MGRIT WITH ADAPTIVE SPATIAL COARSENING FOR LINEAR ADVECTION 3

Two fundamental types of temporal relaxation are used in MGRIT: F-relaxation68
and C-relaxation. F-relaxation updates in parallel the F-point values ui in interval69
(Tic , Tic+1) by propagating the current C-point value umic across the interval using70
each Φi,δt in sequence. Since each interval is updated independently, the intervals can71
be processed in parallel. Similarly, C-relaxation updates C-point values umic based on72
current F-point values umic−1, which can also be done in parallel. These relaxation73
strategies are illustrated in Figure 2 [7, original]. In particular, note that two-level74
MGRIT with F-relaxation is equivalent to parareal [7, 10]. These sweeps can also be75
combined into FCF-relaxation: F-relaxation followed by C-relaxation followed by a76
second F-relaxation. Ideal restriction and prolongation (“ideal” as they correspond to77
a Schur complement coarse grid) are equivalent to particular combinations of injection78
and F-relaxation: ideal restriction is injection preceded by an F-relaxation, and ideal79
prolongation is injection followed by an F-relaxation [7].80

Φ Φ Φ

g g g

Φ Φ Φ

g g g

F-Relaxation

Φ Φ

g g g

C-Relaxation

Fig. 2. Illustration of F- and C-relaxation on a 9-point temporal grid with coarsening factor 4.

2.2. Discretization. We consider the numerical solution of (1) on a finite spa-
tial interval [a, b] and assume periodic boundary conditions in all that follows. We use
the vertex-centered approach to construct spatial grids [13, § III.4]: a grid is defined
by points {xj}N−1

j=0 and has cells Ωj = [xj−1/2, xj+1/2], where xj±1/2 = 1
2 (xj + xj±1);

i.e., the vertices (boundaries/cell interfaces) are centered between xj and xj±1. When
performing spatial coarsening, the vertex-centered approach allows us to use a subset
of {xj}N−1

j=0 to describe the grid on each level: no new reference points are required.
Dividing [a, b] into Nx cells of equal width, the fine-grid points {xj} are

xj = a+ 1
Nx

(b− a)
(

1
2 + j

)
, j = 0, 1, . . . , Nx − 1,

Defining δxj = 1
2 (xj+1 − xj−1), (1) is semi-discretized in space as [13]81

(3) ∂tuj + 1
δxj

(
f∗j+1/2(t)− f∗j−1/2(t)

)
= 0,82

where f∗j+1/2(t) is chosen as the local Lax-Friedrichs flux approximation:83

(4) f∗j+1/2(t) = 1
2

[
a(xj+1/2, t) (uj+1(t) + uj(t))− |a(xj+1/2, t)| (uj+1(t)− uj(t))

]
.84

This conservative discretization was chosen to make our approach applicable to general85
nonlinear conservation laws ∂tu + ∂xf(u) = 0, where (4) guarantees correct shock86
speeds. In fact, numerical results for the 1D Burgers’ equation similar to the ones87
reported in this paper have already been obtained, but are omitted due to space88
constraints. For simplicity and to avoid the need to ensure that the CFL condition89
is satisfied on all grid levels, we focus in this paper on the backward Euler time90
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discretization, resulting in the fully discrete equation (space index j, time index i)91

(5)

(
ai+1
j−1/2 +

∣∣∣ai+1
j−1/2

∣∣∣) δt

2δxj
ui+1
j−1 −

(
ai+1
j+1/2 −

∣∣∣ai+1
j+1/2

∣∣∣) δt

2δxj
ui+1
j+1

+

[
1 +

(
ai+1
j+1/2 − ai+1

j−1/2 +
∣∣∣ai+1
j+1/2

∣∣∣+
∣∣∣ai+1
j−1/2

∣∣∣) δt

2δxj

]
ui+1
j = uij .

92

The MGRIT matrix equation described in (2) typically corresponds to cases where93
Φ is a sparse matrix. If Φ is the inverse of a sparse matrix, we may instead write94
−I on the first block subdiagonal and Φ−1

i,δt on the block main diagonal. In this case,95

applying Φi,δt is a linear solve and Φ−1
i,δt is the matrix defined by (5).96

For temporal coarsening, the coarse-grid time stepper Φic,∆T is obtained by using
∆T in place of δt in (5). For spatial coarsening, we use a Galerkin definition involving
Φic,∆T on the fine spatial grid, which we find results in cheaper overall algorithms
compared to using (5) on the coarse spatial grid, both in terms of iterations required
and overall time to solution. Working with the sparse Φ−1 MGRIT matrix and
assuming spatial restriction Ri and prolongation Pi correspond to time ti, we write
the coarse-grid block equation as

−RiPi−1ui−1 + RiΦ
−1
i,∆TPiui = gi,

and so
ui =

(
RiΦ

−1
i,∆TPi

)−1

[RiPi−1ui−1 + gi] .

Nx ×Nt 27 × 27 28 × 28 29 × 29 210 × 210 211 × 211

a(x, t) = 1.0

No SC
2-level It 14 14 15 15 15

Time (TPI) 0.11 (0) 0.39 (.02) 1.52 (.10) 5.88 (.39) 28.98 (1.93)

F-cycle It 14 15 17 20 22
Time (TPI) 0.24 (.01) 0.95 (.06) 4.20 (.24) 21.00 (1.05) 90.07 (4.09)

SC-2
2-level It 15 15 15 16 16

Time (TPI) 0.11 (0) 0.40 (.02) 1.49 (.09) 5.81 (.36) 27.84 (1.74)

F-cycle It 15 17 20 24 28
Time (TPI) 0.18 (.01) 0.69 (.04) 2.79 (.13) 12.31 (.51) 64.41 (2.30)

a(x, t) = 0.1

No SC
2-level It 8 8 8 8 8

Time (TPI) 0.09 (.01) 0.32 (.04) 1.17 (.14) 4.40 (.55) 20.06 (2.50)

F-cycle It 8 8 9 9 10
Time (TPI) 0.16 (.02) 0.61 (.07) 2.48 (.27) 10.90 (1.21) 45.61 (4.56)

SC-2
2-level It 64 90 92 92 92

Time (TPI) 0.25 (0) 1.15 (.01) 4.50 (.04) 16.91 (.18) 68.14 (.74)

F-cycle It 64 92 94 95 95
Time (TPI) 0.52 (0) 2.36 (.02) 9.44 (.10) 35.74 (.37) 135.25 (1.42)

Table 1
No SC: no spatial coarsening; SC-2: factor-two spatial coarsening. For each problem, the

fastest F-cycle results are shown in bold.

To illustrate the need for adaptive coarsening ,we solve (1) for (x, t) ∈ [−2, 2] ×97
[0, 4], using either a(x, t) = 1.0 or a(x, t) = 0.1, and u0(x) = sin(0.5πx), in which case98
(5) reduces to simple upwinding. We use factor-two temporal and spatial coarsening99
and a halting tolerance for the residual vector 2-norm of 10−10 scaled by the domain100
size: tol = (2.5× 10−11)

√
NtNx. Results for two -level MGRIT with FCF-relaxation101

and either no spatial coarsening (No SC) or both temporal coarsening and factor-102
two spatial coarsening (SC-2) (full weighting restriction, linear interpolation, and103
a Galerkin coarse-grid operator) are presented in Table 1, which records iteration104
count, time to solution, and time per iteration (TPI). When a(x, t) = 1.0, the results105
are quite similar in terms of iteration count and there can be substantial savings106
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of approximately 30% in terms of time to solution for spatial coarsening, indicating107
why it is desirable for implicit time stepping, in addition to it being necessary in the108
case of explicit time stepping. For a(x, t) = 0.1, however, including spatial coarsening109
increases both iteration count and time to solution many times over due to the induced110
anisotropy, making it a non-starter in such cases.111

3. Adaptive Spatial Coarsening Strategy. The main contribution of this112
paper is a set of algorithms used to implement adaptive spatial coarsening such that113
local wave speeds near zero do not cause extremely slow MGRIT convergence. These114
algorithms are intended as proof of concept for implicit time stepping routines: modifi-115
cations that are not described here are required to handle other equations and explicit116
time stepping. As a note on implementing these algorithms: in the case of variable117
coefficient linear advection, the grid hierarchies determined will not change from one118
MGRIT iteration to the next, so the grids and associated transfer operators need only119
be computed once and then stored for reuse on later iterations.120

3.1. Restriction. The 1D factor-two restriction strategy for a periodic domain121
is illustrated for four levels and sixteen cells in Figure 3. The numerical labels on each122
level serve as global cell indices, recording which fine-grid reference points are used123
in defining the coarser levels. Rather than aggregating pairs of adjacent cells when124
moving from level ` to `+1, we instead remove every second cell, with remaining cells125
expanding to cover the removed cells’ portion of the domain.126

` = 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1616 1

` = 1
1 3 5 7 9 11 13 15 1

` = 2
1 5 9 13 1

` = 3
1 9 1

Fig. 3. Factor-two coarsening in 1D with periodic BCs. The )( symbols represent cell boundaries.

Considering the discretization (5) and the results of the previous section, we see127
that a(x, t) near zero can result in weak couplings in the spatial direction, meaning128
high frequency errors are not reduced effectively by relaxation, and thus the error129
cannot be represented properly on coarse spatial grids, drastically reducing the effi-130
ciency of a multigrid iteration. Thus, if a(x, t) within cell Ωj is relatively small, we131
wish to retain Ωj for the next level, as coarsening in this region will not benefit the132
solution process. Experiments (not included here) suggest that it is unnecessary to133
fix the width of Ωj ; it is sufficient to ensure Ωj is not removed. To determine if Ωj is134
to be kept, we propose the following condition:135

(6) If min
x∈Ωj

|a(x, t)| δt
δxj

< tol∗: keep Ωj ; else: coarsen normally.136

Since a(x, t)δt/δxj appears in the coefficients of (5), this is the appropriate measure137
to identify small matrix elements that indicate weak coupling and may lead to de-138
graded multigrid performance if spatial coarsening is used. To minimize |a(x, t)| in139
the discrete setting, we take the smaller of the two values |a(xj±1/2, t)|.140

The result of this coarsening process is shown in Figure 4 for the same fine grid141
as in Figure 3 at a fixed time point, now with the arbitrary assumption that (6) is142
satisfied on all levels in cells 4 and 10. The labeled global indices are used to compute143
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` = 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1616 1

` = 1
1 3 4 5 7 9 10 11 13 15 1

` = 2
1 4 5 9 10 13 1

` = 3
1 4 9 10 1

Fig. 4. Adaptive coarsening in 1D with periodic BCs.

cell boundaries as per the definition of vertex-centered grids. In Figure 5, we show144
resulting adaptive grid hierarchies for [−2, 2] × [0, 4] discretized as a 64 × 64 space-145
time grid, with a(x, t) = − sin2(π(x − t)) (top) or a(x, t) = 1

2 (1 − sin(2πt)) sin(πx)146
(bottom). Black vertices indicate reference points for cells only present on level 0,147
red dots indicate reference points for cells present on levels 0 through 1, blue dots148
indicate cells present on levels 0 through 2, and green dots indicate cells present on149
levels 0 through 3.150

The value uij approximates the cell average of u(x, ti) over Ωj . We want u(x, t)151
to be conserved by restriction, so we compute coarse-grid cell averages that ensure152
the total area below the curve remains constant. If cell Ωj is retained from level ` to153
` + 1, it may stay the same, or one or both of its boundaries may expand outwards,154
increasing its size. If Ωj remains the same size, uij is unchanged from level ` to `+ 1.155

If Ωj expands, we recompute uij as a volume-weighted average based on information156
from the neighboring cells that were removed. Suppose that Θ(·) maps the local157
indices of cells being retained on level ` to the corresponding local indices on level158
`+ 1. When cell j is kept, then Ω`j is the fine-grid cell associated with the coarse-grid159

cell Ω`+1
Θ(j). To compute u`+1

Θ(j) (omitting the time superscript i for clarity), we require160

u`j−1, u`j , u`j+1, x`j±1, and x
`+1
Θ(j)±1. The restriction formula for u`+1

Θ(j) is161

u`+1
Θ(j) =

(x`j+1/2 − x`j−1/2)u
`
j + (x`+1

Θ(j)+1/2 − x`j+1/2)u
`
j+1 + (x`j−1/2 − x`+1

Θ(j)−1/2)u
`
j−1

(x`j+1/2 − x`j−1/2) + (x`+1
Θ(j)+1/2 − x`j+1/2) + (x`j−1/2 − x`+1

Θ(j)−1/2)
162

=

1
2 (x`j+1 − x`j−1)u`j + 1

2 (x`+1
Θ(j)+1 − x`j+1)u`j+1 + 1

2 (x`j−1 − x`+1
Θ(j)−1)u`j−1

1
2 (x`+1

Θ(j)+1 − x`+1
Θ(j)−1)

163

=
(x`j+1 − x`j−1)u`j + (x`+1

Θ(j)+1 − x`j+1)u`j+1 + (x`j−1 − x`+1
Θ(j)−1)u`j−1

x`+1
Θ(j)+1 − x`+1

Θ(j)−1

.(7)164

165

For factor-two coarsening, this reduces to the full weighting formula, and if no spatial166
coarsening is carried out (i.e., Θ(·) is the identity), this reduces to u`+1

j = u`j .167
To implement this in XBraid, we create a grid_info structure that contains168
1. int *fidx: array of global cell indices.169
2. double *xref: array of cell reference points xj .170
3. int *indicator: array of indicators used by the restriction algorithm.171

The values in fidx are global cell indices: for example, level 2 in Figure 4 contains172
6 cells, which have local indices {0, . . . , 5} and global indices {1, 4, 5, 9, 10, 13}. The173
values in xref are required by (7). The values in indicator record which cells are to174
be kept for the next level, and can store information from prior levels. An array of175
grid_info structures serves as a grid hierarchy for a given time point ti.176

The restriction algorithm requires two loops over the elements of the fine input177

This manuscript is for review purposes only.



MGRIT WITH ADAPTIVE SPATIAL COARSENING FOR LINEAR ADVECTION 7

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5. Space-time meshes obtained from adaptive spatial coarsening over 4 levels, starting
with Nx = Nt = 64. Top: a(x, t) = − sin2(π(x − t)), bottom: a(x, t) = − sin(2.5πt) sin(πx). The
background color indicates the size of a(x, t). Spatial coarsening is inhibited in regions where |a| is
small.
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vector. The first is used to determine the total number of coarse cells and their global178
indices. When restricting from level ` to ` + 1, we keep Ω`j if any of the following179
conditions are satisfied:180
(a) indicator[j] shows cell with fidx[j] satisfied condition (c) on prior level.181
(b) fidx[j] ∈ {0, 2`+1, 2 · 2`+1, 3 · 2`+1, 4 · 2`+1, . . .} ⇔ fidx[j] mod 2`+1 = 0.182
(c) Ω`j satisfies condition (6).183

Condition (a) ensures that if the cell with global index fidx[j] is kept on level `, it184
will be kept for level ` + 1, which allows us to use (7) to compute coarse-grid cell185
averages. If all cells are flagged to be kept (i.e., further coarsening is impossible),186
then we return the input vector as the coarsened vector.187

The second loop copies information to the grid_info structure for the next level188
and computes new cell averages. To compute u`+1

Θ(j), we must identify the closest coarse189

cell on either side of Ω`j . Given the stated assumptions, coarse cells are separated190
by at most one fine cell (factor-two coarsening), so either Θ(j) − 1 = Θ(j − 1) or191
Θ(j)− 1 = Θ(j − 2); likewise, either Θ(j) + 1 = Θ(j + 1) or Θ(j) + 1 = Θ(j + 2).192

3.2. Prolongation. Because the grid hierarchy was recorded during the restric-193
tion process, prolongation is simply a matter of computing fine-grid cell averages. If194
Ωj was part of the coarse grid, the cell average remains unchanged. If Ωj was not part195
of the coarse grid, its average is computed as a conservative weighted combination of196
the cell averages of its nearest neighbors. To simplify expressions, we change notation,197
now using subscripts to indicate global instead of local indices. Suppose cell Ω`−1

j is198

introduced between preexisting cells Ω`−1
j−α and Ω`−1

j+β , where α, β ∈ N. Then199

u`−1
j =

(
x`−1
j+β/2 − x`j+(β−α)/2

)
u`j+β +

(
x`j+(β−α)/2 − x`−1

j−α/2

)
u`j−α

x`−1
j+β/2 − x`−1

j−α/2
200

=

(
x`−1
j + x`−1

j+β − x`j−α − x`j+β
)
u`j+β +

(
x`j−α + x`j+β − x`−1

j−α − x`−1
j

)
u`j−α

x`−1
j + x`−1

j+β − x`−1
j−α − x`−1

j

201

=

(
x`−1
j − x`−1

j−α
)
u`j+β +

(
x`−1
j+β − x`−1

j

)
u`j−α

x`−1
j+β − x`−1

j−α
.(8)202

203

The final simplification follows from the fact that reference points do not change204
position between levels: x`−1

j+β = x`j+β and x`−1
j−α = x`j−α. This is simply a convex205

combination of u`j−α and u`j+β with weights depending on the location of x`−1
j ∈206

[x`−1
j−α, x

`−1
j+β ], and is standard linear interpolation when factor-two coarsening is used.207

3.3. Movement Between Grids. In addition to the restriction and prolon-208
gation of solutions between levels, we also need to transfer solution approximations209
between time points on a fixed level. For adaptive grid refinement, the hierarchy of210
grids created may vary with time. This means that a representation of ui must be211
computed on the spatial grid at time ti+1 before ui+1 can be computed in the time212
marching.213

To map u from grid A to grid B, we use the grid_info structures corresponding214
to these grids. For each cell ΩBj on grid B, identify the cells on grid A that contain215

its left boundary (ΩAα ) and right boundary (ΩAω ). Computing a weighted average of216
the cell values from α to ω, scaled by the width of ΩBj , gives the cell average uBj on217

ΩBj . For periodic boundary conditions, the first cell on both source and target grids218
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may appear as a pair of disconnected intervals: one at the start and one at the end219
of the domain. To simplify this case, we treat the disconnected portions as separate220
cells before merging their results.221

4. Numerical Results. Numerical results were generated using the XBraid222
parallel-in-time software package [1], and the CHOLMOD [3] and UMFPACK [4]223
packages from SuiteSparse for sparse matrix storage, multiplication, and factorization.224

We again solve (1) with u0(x) = sin(0.5πx) on [−2, 2] × [0, 4], starting with a225
Nx ×Nt fine space-time grid, now with three different variable wave speeds:226

1. a(x) = −(0.1 + cos2(0.25π(x+ 2))) (a varies in space only),227
2. a(x, t) = − sin2(π(x− t)), and228
3. a(x, t) = − sin(2.5πt) sin(πx).229

The two a(x, t) examples were previously used to produce the sample grids in Figure230
5. We use MGRIT with factor-two temporal coarsening and a halting tolerance of231
tol = (2.5× 10−11)

√
NtNx.232

Nx ×Nt 27 × 27 28 × 28 29 × 29 210 × 210 211 × 211

a(x) = −(0.1 + cos2(0.25π(x+ 2)))

No SC
2-level It 12 14 14 14 15

Time (TPI) 0.06 (0) 0.19 (.01) 0.72 (.05) 2.92 (.20) 12.22 (.81)

F-cycle It 12 15 16 18 20
Time (TPI) 0.12 (.01) 0.59 (.03) 2.54 (.15) 14.77 (.82) 59.01 (2.95)

SC-2
2-level It 64 78 83 84 85

Time (TPI) 0.18 (0) 0.73 (0) 2.91 (.03) 12.25 (.14) 48.49 (.57)

F-cycle It 64 79 85 86 87
Time (TPI) 0.39 (0) 1.67 (.02) 6.09 (.07) 25.42 (.29) 98.49 (1.13)

SC-A
2-level It 25 27 28 29 29

Time (TPI) 0.09 (0) 0.30 (.01) 1.17 (.04) 4.83 (.16) 19.68 (.67)

F-cycle It 26 27 28 29 30
Time (TPI) 0.21 (0) 0.72 (.02) 2.76 (.09) 11.09 (.38) 45.37 (1.51)

a(x, t) = − sin2(π(x− t))

No SC
2-level It 12 12 13 13 13

Time (TPI) 0.08 (0) 0.29 (.02) 1.15 (.08) 4.28 (.32) 18.48 (1.42)

F-cycle It 12 13 15 16 18
Time (TPI) 0.17 (.01) 0.69 (.05) 3.04 (.20) 13.46 (.84) 61.51 (3.41)

SC-A
2-level It 17 16 17 19 22

Time (TPI) 0.10 (0) 0.35 (.02) 1.36 (.08) 5.59 (.29) 23.74 (1.07)

F-cycle It 18 17 19 21 25
Time (TPI) 0.21 (.01) 0.74 (.04) 3.11 (.16) 12.74 (.60) 57.65 (2.30)

a(x, t) = − sin(2.5πt) sin(πx)

No SC
2-level It 13 12 12 12 13

Time (TPI) 0.09 (0) 0.27 (.02) 1.06 (.08) 4.12 (.34) 17.88 (1.37)

F-cycle It 13 14 14 16 17
Time (TPI) 0.17 (.01) 0.70 (.05) 2.74 (.19) 12.27 (.76) 54.07 (3.18)

SC-A
2-level It 19 19 20 24 26

Time (TPI) 0.10 (0) 0.37 (.01) 1.48 (.07) 6.26 (.26) 25.20 (.96)

F-cycle It 19 20 20 24 26
Time (TPI) 0.24 (.01) 0.86 (.04) 3.23 (.16) 14.11 (.58) 58.43 (2.24)

Table 2
No SC: no spatial coarsening; SC-2: factor-two coarsening, SC-A: adaptive coarsening. For

each test problem, the fastest F-cycle results are shown in bold.

For case 1, we see that small a(x) in part of the domain causes significant de-233
terioration for SC-2, and that the adaptive coarsening scheme SC-A recovers good234
convergence, offering a moderate improvement in total time to solution on the No SC235
F-cycle results in spite of the increased iterations required. Note that, when com-236
paring the entries of Table 2, we are not concerned with the increased serial time to237
solution for F-cycles over 2-level cycles, because F-cycles parallelize better. We are238
instead looking for algorithmic scalability of the F-cycles in terms of iteration count.239

For cases 2 and 3, the additional complexity of having grid hierarchies that vary240
in time results in a more costly set-up phase and a greater per iteration cost when241
compared to spatial variation only. As in case 1, SC-2 leads to convergence degra-242
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dation (not shown). While we do not yet see a benefit to using SC-A over No SC243
for implicit time stepping for all test problems, these results are promising for the244
explicit case on very large parallel machines, where spatial coarsening is required for245
MGRIT, and gains can be expected over sequential time stepping due to the vastly246
increased parallelism in MGRIT. If we can, in future work, further reduce or eliminate247
the growth in iteration count for spatial coarsening without increasing the time per248
iteration, spatial coarsening should result in significant savings in the implicit case.249

5. Conclusions. In this paper, we discussed an MGRIT adaptive spatial coars-250
ening strategy for the conservative linear advection equation and implicit time step-251
ping. We observed that this adaptive coarsening strategy solves one of the two main252
problems involved in implementing spatial coarsening for hyperbolic problems: weak253
spatial couplings due to small wave speeds are no longer an issue. However, there254
remains the problem of the increase in iterations required for MGRIT to converge255
when spatial coarsening is introduced, which is the subject of active research.256

As mentioned previously, the algorithm described is only intended to serve as257
proof of concept, with several improvements and extensions currently being developed.258
Ongoing research explores mode analysis to understand convergence deterioration and259
aims to improve MGRIT iteration counts by considering exact reduction schemes that260
may inspire improved restriction, interpolation, and coarse-grid operators. Future261
plans for solving hyperbolic problems with MGRIT involve implementing adaptive262
spatial coarsening for the 1D Burgers’ equation, and then extending these ideas to263
two or more spatial dimensions and/or systems of hyperbolic equations.264
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