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Abstract. We apply a multigrid reduction-in-time (MGRIT) algorithm to hyperbolic partial6
differential equations in one spatial dimension. This study is motivated by the observation that7
sequential time-stepping is a computational bottleneck when attempting to implement highly con-8
current algorithms, thus parallel-in-time methods are desirable. MGRIT adds parallelism by using9
a hierarchy of successively coarser temporal levels to accelerate the solution on the finest level. In10
the case of explicit time-stepping, spatial coarsening is a suitable approach to ensure that stability11
conditions are satisfied on all levels, and it may be useful for implicit time-stepping by producing12
cheaper multigrid cycles. Unfortunately, uniform spatial coarsening results in extremely slow con-13
vergence when the wave speed is near zero, even if only locally. We present an adaptive spatial14
coarsening strategy that addresses this issue for the variable coefficient linear advection equation15
and the inviscid Burgers equation using first-order explicit or implicit time-stepping methods. Serial16
numerical results show this method offers significant improvements over uniform coarsening and is17
convergent for the inviscid Burgers equation with and without shocks. Parallel scaling tests on up18
to 128K cores indicate that run-time improvements over serial time-stepping strategies are possible19
when spatial parallelism alone saturates, and that scalability is robust for oscillatory solutions which20
change on the scale of the grid spacing.21
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1. Introduction. Due to stagnating processor speeds and increasing core counts,25
the current paradigm of high performance computing is to achieve shorter computing26
times by increasing the concurrency of computations. Time integration represents an27
obvious bottleneck for achieving greater speedup due to the sequential nature of many28
time integration schemes. While temporal parallelism may seem counter-intuitive,29
the development of parallel-in-time methods is an active area of research, with a30
history spanning several decades [15]. Variants include direct methods and iterative31
methods based on deferred corrections [10], domain decomposition [17], multigrid32
[18], multiple shooting [5], and waveform relaxation [27] approaches. These methods33
have had significant success in providing further speedup in the solution of parabolic34
equations, or equations with significant diffusivity, but have had markedly less success35
with hyperbolic or advection dominated problems [24].36

For example, one of the most influential parallel-in-time methods is parareal [22],37
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an iterative predictor-corrector method (that is equivalent to a two-level multigrid38
scheme [16]) which combines the use of a coarse time integrator in serial and a fine time39
integrator in parallel. Parareal has been shown to have stability issues for the constant40
coefficient linear advection equation [16]. A number of variants and modifications41
have been proposed, and analysis has identified that issues arise when solutions lack42
regularity [8] due to phase errors in the coarse propagator [24]. A number of variants43
have been proposed to stabilize and improve the convergence of parareal for such44
problems [6, 8, 14, 25], but with increased memory requirements or other restrictions.45
As a result, parallel-in-time methods which can be effectively applied to hyperbolic46
or advection dominated problems are still highly sought after.47

In this paper, we discuss the multigrid reduction-in-time (MGRIT) method [11]48
and use XBraid [2], an open-source implementation of MGRIT. A strength of the49
MGRIT framework is its non-intrusive nature, which allows existing time-stepping50
routines to be used within the MGRIT implementation. Thus far, MGRIT has been51
successfully implemented using time-stepping routines for linear [11] and nonlinear [13]52
parabolic partial differential equations (PDEs) in multiple dimensions, the Navier-53
Stokes equations [12], and power system models [20]. We now consider applying54
MGRIT to hyperbolic PDEs.55

As a multigrid method, MGRIT primarily involves temporal coarsening, but spa-56
tial coarsening is a suitable approach for explicit time integration to ensure that57
stability conditions are satisfied on all levels of the grid hierarchy. Spatial coarsening58
may also be used with implicit time integration to produce smaller coarse-grid prob-59
lems and, hence, cheaper multigrid cycles. However, small local Courant numbers –60
resulting from small local wave speeds – induce a sort of anisotropy in the discrete61
equations, meaning that the nodal connections in space are small compared to those in62
time. These so-called weak connections prevent pointwise relaxation from smoothing63
the error in space, thus inhibiting the effectiveness of spatial coarsening and leading64
to slow convergence. In this paper we present an adaptive spatial coarsening strategy65
that resolves this problem for the conservative hyperbolic PDE66

(1) ∂tu+ ∂x(f(u, x, t)) = 0,67

by locally preventing coarsening in regions with near zero Courant numbers. In par-68
ticular, we consider the variable coefficient linear advection equation, f(u, x, t) =69
a(x, t)u, and the inviscid Burgers equation, f(u, x, t) = 1

2u
2.70

The remainder of this paper is as follows. In §2, we describe the MGRIT algorithm71
and the discretization of (1). In §3, we present our adaptive coarsening approach,72
providing algorithms for grid coarsening and transferring solutions between different73
spatial grids. In §4, we provide serial numerical results illustrating the efficacy of74
the adaptive coarsening strategy. In §5, we provide parallel scaling results comparing75
MGRIT with adaptive coarsening and different combinations of space-time parallelism76
to sequential time-stepping with spatial parallelism, illustrating the robustness of77
the approach for large problem sizes and its potential to achieve run-time speedups78
when spatial parallelism alone saturates. In §6, we summarize our results and briefly79
describe related current and future work.80

2. MGRIT Formulation and Discretization. Consider a system of ordinary
differential equations (ODEs) of the form

u′(t) = f(t,u(t)), u(0) = u0, t ∈ [0, T ],
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which can represent a system obtained from a method-of-lines discretization of (1).
This system is discretized on a uniform temporal mesh ti = iδt, i = 0, 1 . . . , Nt,
δt = T/Nt, with ui ≈ u(ti). A general one-step iteration for computing the discrete
solution is

ui = Φi,δt(ui−1) + gi, i = 1, 2, . . . , Nt,

where Φi,δt is a time-stepping function depending on ti and δt, and gi contains so-81
lution-independent terms. We write this as the equivalent matrix equation (abusing82
notation in the nonlinear case)83

(2) Au ≡


I

−Φ1,δt I
. . . . . .

−ΦNt,δt I




u0

u1

...
uNt

 =


g0

g1

...
gNt

 ≡ g,84

where g0 = u0. Here forward substitution corresponds to sequential time-stepping.85

2.1. MGRIT. To solve (2) by MGRIT, we require a coarse-grid problem, a86
relaxation scheme, and restriction and prolongation operators. We set a temporal87
coarsening factor m and define a coarse time grid Tic = ic∆T , ic = 0, 1, . . . , NT =88
Nt/m, ∆T = mδt, as pictured in Figure 1 [11, original]. The Tic present on both89
fine and coarse grids are C-points and the remaining ti are F-points. We define a90
coarse time stepper Φic,∆T by rediscretizing on the coarse-in-time grid. In two-level91
MGRIT, this coarse-grid problem is solved exactly, whereas multilevel MGRIT applies92
this process recursively.93

t0 t1 t2 t3 · · · tm

T0 T1 · · ·

tNt

∆T = mδt

δt

Fig. 1. Fine and coarse temporal grids.

Two fundamental types of temporal relaxation are used in MGRIT: F-relax-94
ation and C-relaxation. F-relaxation updates the F-point values ui in the interval95
(Tic , Tic+1) by starting with the C-point value umic and then applying each Φi,δt in96
sequence. Since each interval is updated independently, the intervals can be processed97
in parallel. Similarly, C-relaxation updates C-point values umic based on current F-98
point values umic−1, which can also be done in parallel. These relaxation strategies99
are illustrated in Figure 2 [11, original]. In particular, note that two-level MGRIT100
with F-relaxation is equivalent to parareal [11, 16]. These sweeps can also be com-101
bined into FCF-relaxation: F-relaxation followed by C-relaxation followed by a second102
F-relaxation. Ideal restriction and prolongation (“ideal” as they generate the Schur103
complement as the Petrov-Galerkin coarse-grid operator) are equivalent to particular104
combinations of injection and F-relaxation: ideal restriction is injection preceded by105
an F-relaxation, and ideal prolongation is injection followed by an F-relaxation [11].106

MGRIT uses the Full Approximation Storage (FAS) framework [3] for solving both107
linear and nonlinear problems, which involves computing the coarse-grid correction108
by solving a coarsened version of the residual equation A(u + e) − A(u) = r, where109
A is the (potentially nonlinear) operator to be inverted. The two-grid MGRIT FAS110
algorithm first appeared in [12], though we instead reproduce here the variant from111
[13] which accounts for the possibility of spatial coarsening, see Algorithm 1. We112
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Φ Φ Φ

g g g

Φ Φ Φ

g g g

F-Relaxation

Φ Φ

g g g

C-Relaxation

Fig. 2. Illustration of F- and C-relaxation on a 9-point temporal grid with coarsening factor 4.

denote injection-based temporal restriction by RI, ideal temporal prolongation by P,113
spatial restriction by Rs, and spatial prolongation by Ps. The multigrid variant is114
obtained by replacing line 5 with a recursive call. In the case of A being a matrix A115
this reduces to the standard multigrid algorithm.116

Algorithm 1 FAS-MGRIT
1: procedure FAS-MGRIT(A,u,g)
2: Apply F- or FCF-relaxation to A(u) = g
3: Inject the fine-grid approximation and residual to the coarse grid

u∆ = RI(u), r∆ = RI(g −A(u))
4: If using spatial coarsening then:

u∆ = Rs(u∆), r∆ = Rs(r∆)
5: Solve A∆(v∆) = A∆(u∆) + r∆

6: Compute the coarse-grid error approximation: e∆ = v∆ − u∆

7: If using spatial coarsening then: e∆ = Ps(e∆)
8: Correct using ideal interpolation: u = u + P(e∆)
9: end procedure

2.2. Discretization. We consider the numerical solution of (1) on a finite spa-
tial interval [a, b] and assume periodic boundary conditions in all that follows. We use
the vertex-centered approach to construct spatial grids [19, § III.4]: a grid is defined
by points {xj}N−1

j=0 and has cells Ωj = [xj−1/2, xj+1/2], where xj±1/2 = 1
2 (xj + xj±1);

i.e., the vertices (boundaries/cell interfaces) are centered between xj and xj±1. When
performing spatial coarsening, the vertex-centered approach allows us to use a subset
of {xj}N−1

j=0 to describe the grid on each level: no new reference points are required.
Dividing [a, b] into Nx cells of equal width, the fine-grid points {xj} are

xj = a+ 1
Nx

(b− a)
(

1
2 + j

)
, j = 0, 1, . . . , Nx − 1,

Defining δxj = 1
2 (xj+1 − xj−1), (1) is semi-discretized in space as [19]117

(3) ∂tuj + 1
δxj

(
f∗j+1/2(t)− f∗j−1/2(t)

)
= 0,118

where f∗j+1/2(t) is chosen as the local Lax-Friedrichs flux approximation:119

(4)
f∗j+1/2(t) =

f(uj+1(t), xj+1/2, t) + f(uj(t), xj+1/2, t)

2

− 1

2

|∂uf(uj+1(t), xj+1/2, t)|+ |∂uf(uj(t), xj+1/2, t)|
2

(uj+1(t)− uj(t)).
120

For variable coefficient linear advection, this reduces to121

(5) f∗j+1/2(t) = 1
2

[
a(xj+1/2, t) (uj+1(t) + uj(t))− |a(xj+1/2, t)| (uj+1(t)− uj(t))

]
,122
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and for Burgers’ equation123

(6) f∗j+1/2(t) = 1
4

[
(uj+1(t))2 + (uj(t))

2 − (|uj+1(t)|+ |uj(t)|) (uj+1(t)− uj(t))
]
.124

This conservative discretization was chosen to make our approach applicable to non-125
linear conservation laws ∂tu+∂xf(u) = 0, where (4) guarantees correct shock speeds.126
In this paper we consider the forward and backward Euler time discretizations, which127
result in the fully discrete equations (space index j, time index i)128

(7)

(
aij−1/2 +

∣∣∣aij−1/2

∣∣∣) δt

2δxj
uij−1 −

(
aij+1/2 −

∣∣∣aij+1/2

∣∣∣) δt

2δxj
uij+1

+

[
1−

(
aij+1/2 − aij−1/2 +

∣∣∣aij+1/2

∣∣∣+
∣∣∣aij−1/2

∣∣∣) δt

2δxj

]
uij = ui+1

j

129

and130

(8)
−
(
ai+1
j−1/2 +

∣∣∣ai+1
j−1/2

∣∣∣) δt

2δxj
ui+1
j−1 +

(
ai+1
j+1/2 −

∣∣∣ai+1
j+1/2

∣∣∣) δt

2δxj
ui+1
j+1

+

[
1 +

(
ai+1
j+1/2 − ai+1

j−1/2 +
∣∣∣ai+1
j+1/2

∣∣∣+
∣∣∣ai+1
j−1/2

∣∣∣) δt

2δxj

]
ui+1
j = uij

131

for linear advection, and the fully discrete equations132

(9)

(
uij−1 +

∣∣uij∣∣+
∣∣uij−1

∣∣) δt

4δxj
uij−1 −

(
uij+1 −

∣∣uij+1

∣∣− ∣∣uij∣∣) δt

4δxj
uij+1

+

[
1−

(∣∣uij+1

∣∣+ 2
∣∣uij∣∣+

∣∣uij−1

∣∣) δt

4δxj

]
uij = ui+1

j

133

and134

(10)
−
(
ui+1
j−1 +

∣∣ui+1
j

∣∣+
∣∣ui+1
j−1

∣∣) δt

4δxj
ui+1
j−1 +

(
ui+1
j+1 −

∣∣ui+1
j+1

∣∣− ∣∣ui+1
j

∣∣) δt

4δxj
ui+1
j+1

+

[
1 +

(∣∣ui+1
j+1

∣∣+ 2
∣∣ui+1
j

∣∣+
∣∣ui+1
j−1

∣∣) δt

4δxj

]
ui+1
j = uij

135

for Burgers’ equation.136

2.3. Coarse-Grid Time Steppers. For temporal coarsening, the coarse-grid137
time stepper Φic,∆T is obtained by using ∆T in place of δt in (7–10). For spatial138
coarsening we handle the explicit and implicit cases in different ways. For explicit139
time-stepping we simply use (7/9) on the coarse spatial grid, but for implicit time-140
stepping we use a Galerkin definition involving Φic,∆T . Galerkin-type discretizations141
lead to optimal results in the A-norm for SPD problems [4], and they have also been142
used for nonsymmetric matrices, for example, in [26]. We use a Galerkin approach143
in this paper for implicit timestepping, because we find it leads to better results144
than rediscretization. To describe this method, we first note that the MGRIT matrix145
equation described in (2) typically corresponds to cases where Φ is a sparse matrix,146
such as that defined by (7/9). If Φ is the inverse of a sparse matrix, we may instead147
write −I on the first block subdiagonal and Φ−1

i,δt on the block main diagonal. In this148

case, applying Φi,δt is a linear solve and Φ−1
i,δt is the matrix defined by (8/10).149

Working with the sparse Φ−1 MGRIT matrix in the implicit case and assuming
spatial restriction Rs,i and prolongation Ps,i correspond to time ti, we write the
coarse-grid block equation as

−Rs,iPs,i−1uc,i−1 + Rs,iΦ
−1
i,∆TPs,iuc,i = Rs,igi,
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and thus we compute150

(11) uc,i =
(
Rs,iΦ

−1
i,∆TPs,i

)−1

[Rs,iPs,i−1uc,i−1 + Rs,igi] .151

For linear advection the matrix Rs,iΦ
−1
i,∆TPs,i is computed as the product of the three152

sparse matrices Rs,i, Φ−1
i,∆T , and Ps,i, which is then factored and stored for future153

use. In the nonlinear case we first prolong the coarse-grid vector to the previous154
intermediate grid (coarse-in-time, fine-in-space), evaluate and compute the Jacobian155
for Φ−1

i,∆T (Ps,iuc,i)−Ps,i−1uc,i−1− gi = 0, then restrict both and solve the resulting156
coarse-grid linear system. Compared to rediscretization we find this definition results157
in cheaper overall algorithms in the linear case, both in terms of iterations required158
and overall time to solution, and comparable results in the nonlinear case.159

We do not consider defining an explicit time-stepping coarse-grid operator in this160
way for two reasons. First, it would result in a stricter stability condition when161
compared to the rediscretized coarse-grid operator. Second, compared to the implicit162
case, where this definition adds a matrix-vector product to the computational cost of163
the iteration, in the explicit case the Galerkin definition adds a linear system solve164
(computing the product as above for the explicit formulation results in a matrix165
Rs,iPs,i multiplying ui that will need to be inverted), which is not as parallelizable166
as the initial matrix-vector product required, becoming a significant bottleneck as167
spatial parallelism is added.168

3. Adaptive Spatial Coarsening. The main contribution of this paper is a169
set of algorithms used to implement adaptive spatial coarsening such that local wave170
speeds near zero do not cause extremely slow MGRIT convergence. The wave speed171
for a hyperbolic PDE is the derivative of the flux function: λ(u, x, t) := ∂uf(u, x, t),172
the characteristic speed with which small-amplitude perturbations propagate. For173
linear advection we have λ(u, x, t) = a(x, t), and for the inviscid Burgers equation174
λ(u, x, t) = u.175

In § 3.1, we provide some motivating examples which illustrate both why spatial176
coarsening may be desirable, and why adaptive spatial coarsening is necessary in177
certain cases. In § 3.2, we propose a criterion for determining if spatial coarsening178
should occur, and provide some examples of the meshes generated by following it. In179
§ 3.3, we describe the cell selection strategies used with explicit and implicit time-180
stepping, and in § 3.4, we outline a method for moving vectors representing solutions181
or residuals between grids, which is required for restriction, prolongation, and time-182
stepping on spatial grids which vary in time.183

3.1. Motivating Examples. To illustrate the need for adaptive coarsening we184
solve the linear advection equation for (x, t) ∈ [−2, 2]×[0, 4] using explicit and implicit185
schemes with MGRIT, using FCF-relaxation, factor-two temporal coarsening, and186
either no spatial coarsening (No SC) or uniform factor-two spatial coarsening (SC-187
2), which employs full weighting restriction and linear interpolation. The stopping188
condition is based on the size of the `2 norm of the residual vector, which uses a189
halting tolerance of 10−10 scaled by the domain size: tol = (2.5× 10−11)

√
NtNx.190

We impose the initial condition u0(x) = sin(0.5πx) and consider the constant191
wave speeds192

A1. a(x, t) = 1.0, and193
A2. a(x, t) = 0.1,194

for which (7) and (8) reduce to simple upwinding. The results for these tests are195
presented in Table 1, which records iteration count, time to solution, and time per196
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Explicit

Nx ×Nt 27 × 28 28 × 29 29 × 210 210 × 211 211 × 212

Case A1

No SC
2-level It 50 92 100* 100* 100*

Time (TPI) 0.20 (.004) 0.97 (.01) 3.69 (.03) 16.57 (.16) 59.62 (.59)

F-cycle It 100* 100* 100* 100* 100*
Time (TPI) 1.19 (.012) 4.39 (.04) 14.23 (.14) 51.49 (.51) 327.21 (3.27)

SC-2
2-level It 30 30 31 31 31

Time (TPI) 0.13 (.004) 0.42 (.01) 1.53 (.04) 6.30 (.20) 22.18 (.71)

F-cycle It 34 37 41 47 54
Time (TPI) 0.30 (.009) 0.96 (.02) 3.77 (.09) 14.73 (.31) 63.31 (1.17)

Case A2

No SC
2-level It 7 7 7 7 7

Time (TPI) 0.08 (.011) 0.25 (.03) 0.86 (.12) 3.24 (.46) 11.19 (1.59)

F-cycle It 8 9 34 100* 100*
Time (TPI) 0.15 (.019) 0.49 (.05) 5.48 (.16) 53.44 (.53) 199.39 (1.99)

SC-2
2-level It 100* 100* 100* 100* 100*

Time (TPI) 0.34 (.003) 1.17 (.01) 4.72 (.04) 16.15 (.16) 54.83 (.54)

F-cycle It 100* 100* 100* 100* 100*
Time (TPI) 0.77 (.008) 2.27 (.02) 7.38 (.07) 25.62 (.25) 95.90 (.95)

Implicit

Nx ×Nt 27 × 27 28 × 28 29 × 29 210 × 210 211 × 211

Case A1

No SC
2-level It 14 14 15 15 15

Time (TPI) 0.12 (.009) 0.35 (.02) 1.31 (.08) 5.16 (.34) 26.99 (1.79)

F-cycle It 14 15 17 20 22
Time (TPI) 0.23 (.016) 0.91 (.06) 4.04 (.23) 19.90 (.99) 91.15 (4.14)

SC-2
2-level It 15 15 15 16 16

Time (TPI) 0.09 (.006) 0.32 (.02) 1.18 (.07) 5.01 (.31) 23.72 (1.48)

F-cycle It 15 17 20 24 28
Time (TPI) 0.15 (.010) 0.58 (.03) 2.40 (.12) 10.56 (.44) 56.84 (2.03)

Case A2

No SC
2-level It 8 8 8 8 8

Time (TPI) 0.06 (.008) 0.23 (.02) 0.90 (.11) 3.44 (.43) 13.54 (1.69)

F-cycle It 8 8 9 9 10
Time (TPI) 0.15 (.019) 0.51 (.06) 2.14 (.23) 8.51 (.94) 37.73 (3.77)

SC-2
2-level It 64 90 92 92 92

Time (TPI) 0.21 (.003) 1.05 (.01) 4.09 (.04) 16.26 (.17) 61.18 (.66)

F-cycle It 64 92 94 95 95
Time (TPI) 0.53 (.008) 2.12 (.02) 7.88 (.08) 30.70 (.32) 114.37 (1.20)

Table 1
Linear advection results for Cases A1 and A2. No SC: no spatial coarsening; SC-2: factor-

two uniform spatial coarsening. For each problem, the fastest F-cycle results are shown in bold.
Asterisks denote tests which failed to converge due to instability (Explicit - No SC) or exceeded 100
iterations.

iteration (TPI). For explicit time-stepping we see the importance of maintaining sta-197
bility on all levels of the grid hierarchy. For Case A1 the Courant number λδt/δx198
for SC-2 is 0.5 on all levels, with temporal coarsening terminating when further spa-199
tial coarsening is impossible. Thus, time-stepping is stable on all levels and MGRIT200
terminates successfully. In contrast, the Courant number for No SC is 2`−1 on level201
`, where ` = 0 is the finest grid, indicating that time-stepping will be unstable on202
all coarse levels, hence the majority of 2-level and F-cycle tests failing to converge.203
However, blindly applying spatial coarsening is not the answer, as illustrated by Case204
A2 which features a small wave speed that causes weak spatial connections in (7) and205
(8). Here the Courant number for SC-2 remains fixed at 0.05, hence time-stepping206
is certainly stable on all levels, but the convergence is extremely poor due to the207
weak connections. The Courant number for No SC is 0.05(2`), hence time-stepping208
is stable on the first four coarse grids, and thus while the F-cycles become worse as209
the problem size grows, the two-level method works well.210

For implicit time-stepping the No SC and SC-2 methods produce similar results211
for Case A1 in terms of iteration count, and there can be substantial savings of212
approximately 30% in terms of time to solution by using spatial coarsening. For Case213
A2, however, both the iteration count and time to solution for SC-2 are many times214
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larger than the corresponding values for No SC, making uniform spatial coarsening a215
non-starter due to the small wave speed.216

We observe similar behaviour when solving the inviscid Burgers equation via217
MGRIT, though in this case the convergence of MGRIT with spatial coarsening de-218
pends on the choice of initial condition. If u0(x) is bounded sufficiently far away from219
zero we observe results for SC-2 similar to those for Case A1, and if u0(x) is suffi-220
ciently close or equal to zero on part of the domain, we observe convergence issues for221
MGRIT with spatial coarsening similar to those in Case A2.222

Combined, these results indicate why spatial coarsening may be desirable for223
implicit MGRIT and necessary for explicit MGRIT. For explicit MGRIT, No SC224
will break down once the coarse-grid time step becomes sufficiently large, though it225
can work for grid hierarchies with few levels where the maximum wave speed is small226
enough to ensure stability throughout. In contrast, SC-2 ensures stability on all levels.227
For both explicit and implicit MGRIT, uniform spatial coarsening (SC-2) can work228
well when the wave speed is bounded away from zero, but can exhibit extremely poor229
convergence when the wave speed is small due to the weak spatial connections. This230
is analogous to the case of multigrid using Gauss-Seidel or weighted Jacobi applied to231
strongly anisotropic elliptic problems [4]. For implicit time stepping, SC-2 beats No232
SC in total time-to-solution when the wave speed is bounded away from zero due to233
the lower work per cycle.234

3.2. Adaptive Coarsening Criteria. The 1D factor-two restriction strategy235
for a periodic domain is illustrated for four levels and sixteen cells in Figure 3. The236
numerical labels on each level serve as global cell indices, recording which fine-grid237
reference points are used on coarser levels. Rather than aggregating pairs of adjacent238
cells when moving from level ` to ` + 1, we instead remove every second cell, with239
remaining cells expanding to cover the removed cells’ portion of the domain.240

` = 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1515 0

` = 1
0 2 4 6 8 10 12 14 0

` = 2
0 4 8 12 0

` = 3
0 8 0

Fig. 3. Factor-two coarsening in 1D with periodic BCs. The )( symbols represent cell boundaries.

Considering the discretizations (7-10) and the results of the previous section, we241
see that a wave speed λ(u, x, t) near zero can result in weak couplings in the spatial242
direction, meaning high frequency errors are not reduced effectively by relaxation.243
Thus, the error after relaxation cannot be represented properly on coarse spatial grids,244
drastically reducing the efficiency of a multigrid iteration. Thus, if the wave speed245
within cell Ωj is relatively small, we wish to retain Ωj for the next level, as coarsening246
in this region will not benefit the solution process. Experiments (not included here)247
suggest that it is unnecessary to fix the width of Ωj ; it is sufficient to ensure Ωj is248
not removed. To determine if Ωj is to be kept, we propose the following condition:249

(12) Advection: If min
x∈Ωj

|λ(u, x, t)| δt
δxj

< tol∗: keep Ωj ; else: coarsen normally.250

Since λ(u, x, t)δt/δxj appears in the coefficients of the equations (7-10), this is an251
appropriate measure to identify small matrix elements that indicate weak coupling252
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and may lead to degraded multigrid performance if spatial coarsening is used. This253
approach has similarities to algebraic multigrid [23], where coarsening is operator254
dependent, based on the strength of different nodal connections. To implement this255
in XBraid, we create a grid_info structure that contains256

1. int *fidx: array of global cell indices.257
2. double *xref: array of cell reference points xj .258

The values in fidx are global cell indices: for example, level 2 in Figure 4 contains259
6 cells, which have local indices {0, . . . , 5} and global indices {0, 3, 4, 8, 9, 12}. An260
array of grid_info structures serves as a grid hierarchy for a given time point ti.261
Descriptions of the cell selection strategies employed for implicit and explicit time-262
stepping are described in the following subsections.263

` = 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1515 0

` = 1
0 2 3 4 6 8 9 10 12 14 0

` = 2
0 3 4 8 9 12 0

` = 3
0 3 8 9 0

Fig. 4. Adaptive coarsening in 1D with periodic BCs.
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Fig. 5. Linear advection, a(x, t) = − sin2(π(x−t)) (Case A4): space-time meshes obtained from
adaptive spatial coarsening over 4 levels, starting with Nx = Nt = 64. The color map indicates the
value of a(x, t). Temporal coarsening in MGRIT proceeds in a uniform way, but spatial coarsening
is inhibited where |a| is small.

An example of this coarsening process is shown in Figure 4 for the same fine grid264
as in Figure 3 at a fixed time point, where (12) happened to be satisfied on all levels in265
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Fig. 6. Linear advection, a(x, t) = − sin(2.5πt) sin(πx) (Case A5): space-time meshes obtained
from adaptive spatial coarsening over 4 levels, starting with Nx = Nt = 64. The color map indi-
cates the value of a(x, t). Temporal coarsening in MGRIT proceeds in a uniform way, but spatial
coarsening is inhibited where |a| is small.

cells 3 and 9. The labeled reference points are used to compute cell boundaries as per266
the definition of vertex-centered grids. It is worth noting that this strategy is easily267
adapted to non-periodic spatial domains by ensuring that the final cell is retained on268
all levels. An easy way of doing so is to take Nx = 2k + 1 for some k ∈ N, which269
ensures that the final cell is always part of the uniformly coarsened grid, and hence270
will also always be part of the adaptively coarsened grid.271

In Figures 5–7 we show adaptive grid hierarchies generated by three rounds of272
coarsening, starting from a fine 64 × 64 space-time grid. In all three cases the black273
vertices indicate reference points for cells only present on level 0, red dots indicate274
reference points for cells present on levels 0 through 1, blue dots indicate cells present275
on levels 0 through 2, and green dots indicate cells present on levels 0 through 3. It276
will be shown in § 4 that these grids lead to good MGRIT convergence, and thus277
adaptive coarsening solves the problem of small local wave speeds.278

The first two grids are based on solving the linear advection equation with implicit279
time-stepping over [−2, 2] × [0, 4] for a(x, t) = − sin2(π(x − t)) and a(x, t) = 1

2 (1 −280
sin(2πt)) sin(πx), respectively (these are Cases A4 and A5 defined in § 4.1). Due to281
the periodicity of a(x, t) the grid in each quadrant is identical, so we may restrict282
our discussion to the bottom-right quadrant of each grid, corresponding to (x, t) ∈283
[0, 2]× [0, 2]. In Figure 5 we see that adaptation results in additional cells being kept284
along the lines t = x + b for b ∈ Z, corresponding to the solution of a(x, t) = 0.285
Similarly, in Figure 6 we see adaptivity keeping cells along vertical lines defined by286
integer values of x and horizontal lines defined by multiples of 0.4 for t. Further, we287
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Fig. 7. Burgers’ equation, u0(x) = 0.25−0.75 sin(πx/16) (Case B1): space-time mesh obtained
from adaptive spatial coarsening over 4 levels, starting with Nx = Nt = 64. The color map indi-
cates the value of u(x, t). Temporal coarsening in MGRIT proceeds in a uniform way, but spatial
coarsening is inhibited where |a| is small.

see that by coarsening in time we can eliminate the lines near t = 0.4 and t = 1.6288
where no coarsening has taken place, resulting in cheaper coarse-grid problems with289
no significant deterioration in the convergence of MGRIT.290

The grid in Figure 7 is based on the solution of Burgers’ equation over the domain291
(x, t) ∈ [−4, 4]× [0, 8] with the initial condition292

B1. u0(x) = 0.25− sin(πx/16).293
Due to the initial lack of periodicity in the local wave speed (which is the solution294
u(x, t), pictured in Figure 8) we show the grid for the entire domain. Once more we295
see that adaptivity results in more grid cells being retained in regions where the wave296
speed is near zero, and the location and size of these regions change in response to297
the evolution of the solution.298

3.3. Cell Selection Strategies. The following algorithms are intended as proof299
of concept for first-order time-stepping routines applied to the linear advection equa-300
tion and Burgers’ equation: further modifications may be required to handle other301
equations or time-stepping routines. For linear PDEs such as variable coefficient linear302
advection, the adaptive grid hierarchies generated will not change between MGRIT303
iterations, so the grids and associated transfer operators need only be computed once304
and then stored for reuse. In contrast, for nonlinear PDEs such as Burgers’ equation305
the grids can change as the solution approximation is refined, and hence the adaptive306
grid hierarchy and the transfer operators will need to be recomputed until a certain307
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MGRIT residual tolerance is reached.308

3.3.1. Implicit Time-stepping. In our adaptive coarsening strategy we begin309
with the grid hierarchy generated by uniform factor-two coarsening, meaning that310
on level ` all cells with global indices that are multiples of 2` are retained. For311
implicit time-stepping we then use condition (12) to identify other cells which should312
be retained due to small local Courant numbers. Note that, for implicit time-stepping,313
we do not need to worry about violating a stability constraint when retaining spatial314
cells while increasing δt. Thus when restricting from level ` to `+ 1, we keep Ω`j if315

(i) fidx[j] mod 2` = 0, or316
(ii) (12) holds.317

For implicit time-stepping we specify the tolerance in the second condition to be318
tol∗ = 0.25. This cell selection strategy is local in scope, so it can be used in both319
serial and parallel implementations.320

3.3.2. Explicit Time-stepping – Linear Advection. To use explicit time-321
stepping when solving the linear advection equation we must ensure |a(x, t)|δt/δxj < 1322
for numerical stability, which necessitates computing the local Courant number for all323
cells not part of the uniform coarsening grid hierarchy on each level. We need to find324
the right balance between removing cells as required for stability, and keeping cells325
to maintain good multigrid convergence corresponding to (12). If we consider each326
cell independently, we may inadvertently end up deleting more cells than necessary327
for stability, leading to poorer MGRIT convergence. Instead, we collectively consider328
all cells between each subsequent pair of cells that belong to the uniform grid on the329
current level and decide which of these non-uniform grid cells must be removed for330
stability and which should be kept for better convergence.331

If there is only one cell between two uniform grid cells, we compute

test− =
|a(xj−1/2, t)|δt

δxj−1/2
and test+ =

|a(xj+1/2, t)|δt
δxj+1/2

and keep the cell if doing so is beneficial for convergence and is not detrimental for
stability:

min(test−, test+) < tol∗ and max(test−, test+) < max∗,

where we use max∗ = 0.95 and set tol∗ to be 0.25 if ` = 0, 0.4 if ` = 1, and 0.49
for ` ≥ 2. The values for tol∗ were tuned by repeated experimentation and are based
on the observation that we can afford, from a computational cost perspective, to
keep more spatial cells on coarser grids. Otherwise, for each of the cell interfaces we
compute

test[j] =
|a(xj+1/2, t)|δt

δxj+1/2

and based on the value of test[j] the interface is labeled as K (keep), N (neutral), or332
D (delete). Specifically, if test[j] < tol∗ we label this as K, if test[j] < max∗ we label333
this as N, and otherwise we label it as D. If the sequence of labels is:334

(i) X–D–D–· · · –D–X: delete every second cell between D-interfaces (X = K or N)335
(ii) N–D–N: delete both cells.336
(iii) K–D–N: delete the right cell.337
(iv) N–D–K: delete the left cell.338
(v) K–D–K: further consideration is required.339
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In the last case we compute

test− =
|a(0.5(xj+1 + xj−1), t)|δt

δxj
and test+ =

|a(0.5(xj + xj+2), t)|δt
δxj+1

which are the coarse-grid local Courant numbers which would result from deleting340
the left or right cells, respectively. We then perform a sequence of comparisons which341
is designed to remove both cells if the predicted coarse-grid values are both greater342
than max∗, delete the opposite cell if only one of the test values is greater than max∗,343
and otherwise keep the cell with the largest Courant value to maintain good MGRIT344
convergence.345

(i) if min(test−, test+) > max∗346
Delete both cells347

(ii) else if test− > max∗348
Delete right cell349

(iii) else if test+ > max∗350
Delete left cell351

(iv) else if min(test−, test+) > tol∗ and test− > test+352
Delete right cell353

(v) else if min(test−, test+) > tol∗ and test− ≤ test+354
Delete left cell355

(vi) else if test− > tol∗ and test+ < tol∗356
Delete right cell357

(vii) else if test− < tol∗ and test+ > tol∗358
Delete left cell359

(viii) else if max(test−, test+) < tol∗ and test− > test+360
Delete right cell361

(ix) else if max(test−, test+) < tol∗ and test− ≤ test+362
Delete left cell363

This process is repeated until no D-labeled interfaces remain. If there are multiple364
adjacent N-interfaces, we next delete every second cell defined by these interfaces. At365
the end of this process we are left with the cells that are to be kept to ensure effective366
MGRIT coarse-grid corrections while maintaining stability.367

To adapt this process to allow spatial parallelism we only have to make adjust-368
ments to account for how the grid is partitioned over the set of processors. If the369
first (respectively, last) cell on a given processor is not part of the uniform coarsening370
grid, then we assume that the final cell on the previous processor (respectively, first371
cell on the next processor) belongs to the uniform coarsening grid, and perform the372
previously described sequence of tests.373

3.3.3. Explicit Time-stepping – Burgers’ Equation. For Burgers’ equation374
we use a more stringent version of the strategy for linear advection because of the375
greater likelihood of stability related issues arising in the nonlinear case. As before we376
keep all cells which are part of the uniform grid, and make use of (12) to determine377
which of the remaining cells will be retained to improve convergence.378

If there is only one cell between two uniform grid cells, we compute

test− =
max(|uj−1|, |uj |)δt

δxj−1/2
and test+ =

max(|uj |, |uj+1|)δt
δxj+1/2

and keep the cell if
max(test−, test+) < tol∗,
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where we set tol∗ to be 0.25 if ` = 0, 0.35 if ` = 1, and 0.45 for ` ≥ 2. Otherwise, for
each of the cell interfaces we compute

test[j] =
|uj |∆t

∆xj+1/2

and if test[ j ] < tol∗ we label this as K, otherwise labeling it as D. If there are multiple
adjacent D-interfaces we delete every second cell that they define, and for isolated D-
interfaces we compute

test+ =
|uj+1|δt
δxj+1

and test− =
|uj |δt
δxj

and perform the following sequence of tests.379
(i) if min(test−, test+) > tol∗380

Delete both cells381
(ii) else if test− > tol∗ and test+ < tol∗382

Delete right cell383
(iii) else if test− < tol∗ and test+ > tol∗384

Delete left cell385
(iv) else if max(test−, test+) < tol∗ and test− > test+386

Delete right cell387
(v) else if max(test−, test+) < tol∗ and test− ≤ test+388

Delete left cell389
This process is repeated until no D-labeled interfaces remain, at which point the390
remaining cells are those to be kept to ensure effective MGRIT coarse-grid corrections.391

3.4. Movement Between Grids. In addition to restriction and prolongation392
of solutions between levels, we also need to transfer solution approximations between393
time points on a fixed level. For adaptive grid refinement, the grid on a given level394
may vary with time. This means that a representation of ui must be computed on395
the spatial grid for time ti+1 before ui+1 can be computed by time marching.396

To map an arbitrary vector v from grid A to grid B we use the following strategy.
For each cell ΩBj on grid B, we first identify the cells on grid A that contain its left
boundary (ΩAα ) and right boundary (ΩAω ). We compute the cell average vBj on ΩBj as
a weighted average of the cell values from α to ω, scaled by the width of ΩBj :

vBj =
1

|ΩBj |

ω∑
k=α

|ΩBj ∩ ΩAk |vAk

For periodic boundary conditions, the first cell on both source and target grids may397
appear as a pair of disconnected intervals: one at the start and one at the end of the398
domain. To simplify this case, we treat the disconnected portions as separate cells399
before merging their results.400

For factor-two coarsening, this reduces to full weighting restriction and linear401
interpolation prolongation, which were our initial choices; and if no spatial coarsening402
is carried out this reduces to v`+1

j = v`j . In all cases this approach is conservative.403

4. Serial Numerical Results. Numerical results within this section were gen-404
erated using the XBraid parallel-in-time software package [2], and the CHOLMOD [7]405
and UMFPACK [9] packages from SuiteSparse for sparse matrix multiplication and406
factorization, respectively.407
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Nx ×Nt 27 × 27 28 × 28 29 × 29 210 × 210 211 × 211

Case A3

No SC
2-level It 12 14 14 14 14

Time (TPI) 0.03 (.003) 0.13 (.009) 0.49 (.03) 2.26 (.16) 8.18 (.58)

F-cycle It 12 14 16 18 20
Time (TPI) 0.11 (.009) 0.49 (.035) 2.48 (.15) 12.46 (.69) 56.12 (2.80)

SC-2
2-level It 64 78 83 84 85

Time (TPI) 0.15 (.002) 0.70 (.002) 2.82 (.03) 11.54 (.13) 46.31 (.54)

F-cycle It 64 80 85 86 87
Time (TPI) 0.38 (.006) 1.53 (.019) 6.42 (.07) 25.94 (.30) 95.85 (1.10)

SC-A
2-level It 26 27 28 29 29

Time (TPI) 0.06 (.002) 0.25 (.009) 0.99 (.03) 4.17 (.14) 16.51 (.56)

F-cycle It 27 27 28 29 30
Time (TPI) 0.19 (.007) 0.60 (.022) 2.35 (.08) 9.45 (.32) 37.52 (1.25)

Case A4

No SC
2-level It 12 12 13 13 13

Time (TPI) 0.06 (.005) 0.23 (.019) 0.94 (.07) 3.82 (.29) 15.07 (1.15)

F-cycle It 12 13 15 16 18
Time (TPI) 0.14 (.012) 0.62 (.048) 2.94 (.19) 13.05 (.81) 60.88 (3.38)

SC-A
2-level It 16 15 17 19 22

Time (TPI) 0.08 (.005) 0.26 (.017) 1.13 (.06) 4.70 (.24) 20.16 (.91)

F-cycle It 16 18 20 23 28
Time (TPI) 0.16 (.010) 0.64 (.036) 2.54 (.12) 11.01 (.47) 51.61 (1.84)

Case A5

No SC
2-level It 13 12 12 12 13

Time (TPI) 0.06 (.005) 0.23 (.019) 0.92 (.07) 3.54 (.29) 15.03 (1.15)

F-cycle It 13 14 14 16 17
Time (TPI) 0.15 (.012) 0.64 (.046) 2.62 (.18) 11.86 (.74) 51.02 (3.00)

SC-A
2-level It 19 19 20 24 26

Time (TPI) 0.09 (.005) 0.31 (.016) 1.23 (.06) 5.31 (.22) 22.98 (.88)

F-cycle It 20 20 22 24 28
Time (TPI) 0.20 (.010) 0.71 (.036) 2.77 (.12) 11.52 (.48) 49.69 (1.77)

Table 2
Linear advection: implicit time-stepping results for Cases A3, A4, and A5. No SC: no spatial

coarsening; SC-2: factor-two uniform spatial coarsening, SC-A: adaptive spatial coarsening. For
each test problem, the fastest F-cycle results are shown in bold.

4.1. Linear Advection. We first revisit the linear advection equation with ini-408
tial condition u0(x) = sin(0.5πx) solved over [−2, 2]×[0, 4] and consider three different409
variable wave speeds:410

A3. a(x) = −(0.1 + 0.9 cos2(0.25π(x+ 2))) (a varies in space only),411
A4. a(x, t) = − sin2(π(x− t)), and412
A5. a(x, t) = − sin(2.5πt) sin(πx).413

We refer to these as Cases A3, A4, and A5, respectively, and note cases A4 and A5414
were previously used to produce the example grids in Figures 5 and 6. We solve these415
problems using MGRIT with factor-two temporal coarsening and one of (i) no spatial416
coarsening, (ii) factor-two spatial coarsening (for Case A3 only), or (iii) adaptive417
spatial coarsening. All tests again use a halting tolerance of tol = (2.5×10−11)

√
NtNx.418

Tables 2 and 3 summarize the results for MGRIT using implicit and explicit time419
integration, respectively.420

For implicit Case A3, we see that small a(x) in part of the domain causes signifi-421
cant deterioration for SC-2, and that the adaptive coarsening scheme SC-A recovers422
good convergence, offering a 33% improvement in total time to solution on the No423
SC F-cycle results in spite of the increased iterations required. For explicit time in-424
tegration applied to Case A3 we see that SC-A is the only method with convergent425
F-cycles, with SC-2 once again failing to converge even for two-level methods. Note426
that, when comparing the entries of Tables 2 and 3, we are not concerned with the427
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Nx ×Nt 27 × 28 28 × 29 29 × 210 210 × 211 211 × 212

Case A3

No SC
2-level It 30 47 100* 100* 100*

Time (TPI) 0.08 (.003) 0.40 (.009) 3.12 (.03) 12.36 (.12) 49.58 (.49)

F-cycle It 100* 100* 100* 100* 100*
Time (TPI) 1.03 (.010) 3.40 (.034) 12.35 (.12) 48.25 (.48) 192.37 (1.92)

SC-2
2-level It 100* 100* 100* 100* 100*

Time (TPI) 0.28 (.003) 0.85 (.009) 3.06 (.03) 11.79 (.11) 46.19 (.46)

F-cycle It 100* 100* 100* 100* 100*
Time (TPI) 0.71 (.007) 1.98 (.020) 6.23 (.06) 22.65 (.22) 82.90 (.82)

SC-A
2-level It 30 30 31 31 32

Time (TPI) 0.09 (.003) 0.30 (.010) 1.12 (.03) 4.20 (.13) 17.27 (.53)

F-cycle It 32 33 35 36 37
Time (TPI) 0.30 (.009) 0.95 (.029) 3.35 (.09) 12.61 (.35) 50.70 (1.37)

Case A4

No SC
2-level It 20 25 31 38 48

Time (TPI) 0.06 (.003) 0.26 (.010) 1.21 (.03) 5.78 (.15) 25.59 (.53)

F-cycle It 100* 100* 100* 100* 100*
Time (TPI) 0.96 (.010) 3.28 (.033) 12.16 (.12) 46.98 (.46) 190.90 (1.90)

SC-A
2-level It 21 23 27 30 30

Time (TPI) 0.09 (.004) 0.33 (.014) 1.39 (.05) 5.79 (.19) 21.01 (.70)

F-cycle It 21 23 28 31 33
Time (TPI) 0.31 (.015) 1.09 (.047) 4.47 (.15) 16.76 (.54) 67.13 (2.03)

Case A5

No SC
2-level It 29 42 70 100* 100*

Time (TPI) 0.08 (.003) 0.38 (.009) 2.33 (.03) 13.19 (.13) 49.91 (.49)

F-cycle It 100* 100* 100* 100* 100*
Time (TPI) 1.02 (.010) 3.50 (.035) 12.76 (.12) 48.36 (.48) 186.78 (1.86)

SC-A
2-level It 26 26 27 29 30

Time (TPI) 0.09 (.004) 0.32 (.012) 1.18 (.04) 4.68 (.16) 18.95 (.63)

F-cycle It 27 27 28 30 31
Time (TPI) 0.36 (.013) 1.21 (.045) 4.02 (.14) 15.61 (.52) 59.36 (1.91)

Table 3
Linear advection: explicit time-stepping results for Cases A3, A4, and A5. No SC: no spatial

coarsening; SC-2: factor-two uniform spatial coarsening, SC-A: adaptive spatial coarsening. For
each test problem, the fastest F-cycle results are shown in bold. Asterisks denote tests which failed
to converge due to instability.

increased serial time to solution for F-cycles over 2-level cycles, because F-cycles par-428
allelize better. We are instead looking for algorithmic scalability of the F-cycles in429
terms of iteration count, which we see for both implicit and explicit discretizations of430
Case A3.431

For Cases A4 and A5, for both types of time integration the additional complexity432
of having grid hierarchies that vary in time results in a more costly set-up phase and433
a greater per-iteration cost when compared to spatial variation only. As in Case A3,434
SC-2 leads to convergence degradation for implicit integration and outright failure435
for explicit integration (not shown). We see a benefit to using SC-A over No SC for436
implicit time-stepping in all test problems once the problem size is large enough. The437
iterations show a moderate increase as a function of problem size. The near scalability438
for both implicit and explicit results are promising for very large parallel machines,439
where gains can be expected over sequential time-stepping due to the vastly increased440
parallelism in MGRIT. Future work will explore eliminating the growth in iteration441
count for SC-A compared to No SC, while maintaining a similar time per iteration,442
thus bringing the iteration counts closer to those for No SC implicit timestepping.443
Such a result would yield significant savings for both implicit and explicit schemes.444

4.2. Burgers’ Equation. We solve Burgers’ equation for Case B1 on the spatial
domain [−4, 4]. As u′0(x) < 0 at some point in the domain, the wave will break and a
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shock will occur. The time at which characteristics cross and a shock forms is called
the breaking time, Tb, and for the inviscid Burgers equation this time is given exactly
as [21]

Tb = − 1

min(u′0(x))
.

For this particular example we see that the breaking time is Tb = 16/π ≈ 5.09, which445
matches the solution for the problem illustrated in Figure 8. Based on this observation446
we solve this problem on both [−4, 4]× [0, 4] and [−4, 4]× [0, 8] to consider solutions447
with and without shock. Test results for the half- and full-domain problems are448
recorded in Tables 4 and 5, respectively.449

Nx ×Nt 27 × 27 28 × 28 29 × 29 210 × 210 211 × 211

Implicit
Case B1

[−4, 4]× [0, 4]
Max fine grid CFL:

(1 + 2
√

2)/4

No SC
2-level It 10 11 11 11 11

Time (TPI) 1.30 (.13) 5.28 (.48) 19.79 (1.79) 76.80 (6.98) 296.21 (26.92)

F-cycle It 11 12 12 14 16
Time (TPI) 4.58 (.41) 21.18 (1.76) 78.39 (6.53) 332.34 (23.73) 1496.17 (93.51)

SC-G
2-level It 25 27 28 28 29

Time (TPI) 3.12 (.12) 12.62 (.46) 46.62 (1.66) 180.30 (6.43) 733.46 (25.29)

F-cycle It 26 27 28 29 31
Time (TPI) 7.88 (.30) 30.73 (1.13) 113.13 (4.04) 426.53 (14.70) 1714.89 (55.31)

Nx ×Nt 27 × 27 28 × 28 29 × 29 210 × 210 211 × 211

Explicit
Case B1

[−4, 4]× [0, 4]
Max fine grid CFL:

(1 + 2
√

2)/8

No SC
2-level It 25 2* 2* 2* 2*

Time (TPI) 0.04 (.0001) 0.01 (.005) 0.06 (.03) 0.23 (.11) 0.90 (.45)

F-cycle It 2* 2* 2* 2* 2*
Time (TPI) 0.01 (.005) 0.05 (.025) 0.20 (.10) 0.80 (.40) 3.17 (1.58)

SC-D
2-level It 29 31 32 32 32

Time (TPI) 0.09 (.003) 0.33 (.011) 1.25 (.03) 4.94 (.15) 19.44 (.60)

F-cycle It 30 34 36 38 42
Time (TPI) 0.24 (.008) 0.95 (.028) 3.71 (.10) 13.96 (.36) 60.56 (1.44)

Nx ×Nt 27 × 28 28 × 29 29 × 210 210 × 211 211 × 212

Explicit
Case B1

[−4, 4]× [0, 4]
Max fine grid CFL:

(1 + 2
√

2)/16

No SC
2-level It 14 15 15 16 16

Time (TPI) 0.05 (.004) 0.20 (.013) 0.80 (.05) 3.35 (.20) 13.56 (.84)

F-cycle It 2* 2* 2* 2* 2*
Time (TPI) 0.02 (.010) 0.09 (.045) 0.39 (.19) 1.62 (.81) 6.50 (3.25)

SC-D
2-level It 19 21 21 22 22

Time (TPI) 0.12 (.006) 0.45 (.021) 1.82 (.08) 7.29 (.33) 28.40 (1.29)

F-cycle It 19 20 21 24 27
Time (TPI) 0.38 (.020) 1.33 (.067) 5.32 (.25) 22.62 (.94) 97.29 (3.60)

Table 4
Burgers’ equation results for Case B1: no shock formation. No SC: no spatial coarsening;

SC-D: adaptive spatial coarsening with rediscretized coarse-grid operator; SC-G: adaptive spatial
coarsening with Galerkin coarse-grid operator. The fastest F-cycle results are shown in bold. Aster-
isks denote tests which failed due to instability.

For MGRIT using implicit time-stepping the adaptive coarsening method fails to450
outperform no spatial coarsening in the short domain results due to approximately451
doubling the iterations required for convergence. Better performance for large grid452
sizes is observed in the long domain results, due to a relative increase in the no453
spatial coarsening iteration count and a better time per iteration for the adaptive454
results (only 46% of the no spatial coarsening time per iteration for the largest test,455
compared to 59% in the short domain case). Furthermore, the current implementation456
of the Galerkin definition requires a return to the previous fine grid for each iteration,457
resulting in an increased time per iteration for adaptive spatial coarsening. This is458
generally an issue in FAS-style algorithms, which we intend to be a focus of future459
research.460

For explicit time-stepping we first note that the results for both the half and full461
domain tests are very similar, with the main difference being that those in Table 5462
correspond to using twice as many time steps as those in 4 (to maintain the same463
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Nx ×Nt 27 × 27 28 × 28 29 × 29 210 × 210 211 × 211

Implicit
Case B1

[−4, 4]× [0, 8]
Max fine grid CFL:

(1 + 2
√

2)/4

No SC
2-level It 12 13 13 14 14

Time (TPI) 1.85 (.15) 7.57 (.58) 28.72 (2.20) 115.34 (8.23) 444.03 (31.71)

F-cycle It 12 14 15 17 20
Time (TPI) 6.40 (.53) 30.87 (2.20) 135.21 (9.01) 606.01 (35.64) 2846.20 (142.31)

SC-G
2-level It 26 27 28 28 29

Time (TPI) 3.86 (.14) 14.98 (.55) 57.18 (2.04) 219.74 (7.84) 905.99 (31.24)

F-cycle It 26 27 28 29 30
Time (TPI) 8.54 (.32) 32.62 (1.20) 133.85 (4.78) 514.33 (17.73) 1961.20 (65.37)

Nx ×Nt 27 × 28 28 × 29 29 × 210 210 × 211 211 × 212

Explicit
Case B1

[−4, 4]× [0, 8]
Max fine grid CFL:

(1 + 2
√

2)/8

No SC
2-level It 35 2* 2* 2* 2*

Time (TPI) 0.11 (.003) 0.02 (.010) 0.11 (.05) 0.44 (.22) 1.74 (.87)

F-cycle It 2* 2* 2* 2* 2*
Time (TPI) 0.02 (.010) 0.10 (.050) 0.40 (.20) 1.56 (.78) 5.99 (2.99)

SC-D
2-level It 31 32 33 33 33

Time (TPI) 0.18 (.006) 0.64 (.020) 2.42 (.07) 9.13 (.27) 36.93 (1.11)

F-cycle It 32 35 37 42 49
Time (TPI) 0.50 (.016) 2.11 (.060) 7.21 (.19) 31.75 (.75) 142.96 (2.91)

Nx ×Nt 27 × 29 28 × 210 29 × 211 210 × 212 211 × 213

Explicit
Case B1

[−4, 4]× [0, 8]
Max fine grid CFL:

(1 + 2
√

2)/16

No SC
2-level It 14 15 16 16 17

Time (TPI) 0.10 (.007) 0.39 (.026) 1.66 (.10) 6.41 (.40) 27.61 (1.62)

F-cycle It 2* 2* 2* 2* 2*
Time (TPI) 0.05 (.025) 0.19 (.095) 0.85 (.42) 2.93 (1.46) 11.54 (5.77)

SC-D
2-level It 20 21 22 22 22

Time (TPI) 0.22 (.011) 0.83 (.040) 3.57 (.16) 14.13 (.64) 52.82 (2.40)

F-cycle It 20 20 21 26 31
Time (TPI) 0.78 (.039) 2.78 (.139) 9.90 (.47) 45.71 (1.75) 217.47 (7.01)

Table 5
Burgers’ equation results for Case B1: with shock formation. No SC: no spatial coarsening;

SC-D: adaptive spatial coarsening with rediscretized coarse-grid operator; SC-G: adaptive spatial
coarsening with Galerkin coarse-grid operator. The fastest F-cycle results are shown in bold. Aster-
isks denote tests which failed due to instability.

Fig. 8. Burgers’ equation, Case B1: numerical solution on [−4, 4]× [0, 8].
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fine-grid ∆t in both cases), which results in times that are approximately doubled.464
Much like in the case of linear advection, spatial coarsening is necessary for conver-465
gence. Adaptive coarsening also greatly improves convergence, but, like in the case of466
linear advection, we observe modest growth in iteration count with problem size and467
number of levels in the multigrid cycle. Yet, these results are significant, as we have468
a convergent method for the inviscid Burgers equation with a shock wave, a difficult469
problem for parallel-in-time methods, and furthermore the presence of the shock does470
not lead to convergence degradation compared to the smooth solution.471

5. Parallel Scaling Results. In this section we present strong and weak parallel472
scaling results for MGRIT applied to the variable coefficient linear advection equation473
for (x, t) ∈ [−2, 2]×[0, 4] and u0(x) = sin(0.5πx) using a(x, t) = − sin2(π(x−t)) (Case474
A4). The results for a(x, t) = − sin(2.5πt) sin(πx) (Case A5) are also similar, hence475
are relegated to Supplementary Material Sections SM3 and SM4. Results for explicit476
time integration are presented in 5.1, followed by results for implicit time integration477
in 5.2. We consider different combinations of spatial and temporal parallelism, with478
spatial parallelism implemented using the software package hypre [1] and temporal479
parallelism implemented using XBraid [2]. These tests were implemented on Vulcan,480
an IBM Blue Gene/Q machine at Lawrence Livermore National Laboratory consisting481
of 24,576 nodes, with sixteen 1.6GHz PowerPC A2 cores per node and a 5D Torus482
interconnect, utilizing up to 217 = 131072 cores across 8192 nodes.483

5.1. Explicit Time-stepping.484

5.1.1. Strong Scaling. For strong scaling tests we use a fine space-time mesh485
specified by (Nx, Nt) = (2n, 2n+1) for n = 14, 15, or 16. The results for these cases486
are presented using figures in the main text, with further details being provided using487
tables in the supplementary materials. We compare MGRIT F-cycles with factor-two488
temporal coarsening, adaptive spatial coarsening (coarsening n− 1 times) and space-489
time parallelism to serial time-stepping with spatial parallelism. Forward Euler time-490
stepping requires a matrix-vector multiplication, which is easily parallelized using491
hypre. For each problem size we set the minimum number of processors in each492
dimension to be (px, pt) = (2a, 2b) for fixed a and b. Processors are allocated to493
spatial and temporal dimensions in two ways:494
(i) (px, pt) = (2a+k, 2b+k) for k = 0, 1, 2, . . .,495
(ii) (px, pt) = (2a, 2b+k) for k = 0, 1, 2, . . ..496

When tabulating results in the supplementary materials we also consider:497
(iii) (px, pt) = (2a+k, 2b) for k = 0, 1, 2, . . .,498
(iv) (px, pt) = (2k, 2P−k) for k = a, a+ 1, . . . , P − b,499
where in case (iv) the total number of processors is fixed at 2P .500

(a, b, n)

(2, 3, 14) (3, 4, 15) (4, 5, 16)

(px, pt)
(2a+k, 2b+k) 2.21 2.31 2.06
(2a, 2b+k) 1.97 2.85 4.15

Table 6
Best speedup achieved for explicit time-stepping strong scaling tests, (Nx, Nt) = (2n, 2n+1).

While algorithms for serial time-stepping with only spatial parallelism could be501
optimized differently from algorithms for MGRIT, we choose to use the same frame-502
work in both cases with the intent to provide fair, representative comparisons that503
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Fig. 9. Comparison of serial time-stepping with spatial parallelism to MGRIT with FCF re-
laxation and different combinations of space-time parallelism for three different problem sizes on up
to 131072 cores, (Nx, Nt) = (2n, 2n+1). These results correspond to Tables SM1–SM4.
#: n = 14, a = 2, b = 3. ×: n = 15, a = 3, b = 4. �: n = 16, a = 4, b = 5.

would remain consistent for more spatial dimensions and increased problem com-504
plexity. Specifically, we use hypre to form and store the sparse matrix used in the505
matrix-vector product representing a time step.506

In Figure 9 we compare serial time-stepping and MGRIT using FCF relaxations507
for three different problem sizes: (Nx, Nt) = (2n, 2n+1) for n = 14, 15, 16. As the508
basis of comparison we use strong scaling results for serial time-stepping with spa-509
tial parallelism. The results for the three different fine grids considered are recorded510
in Table SM1 and are shown as the black curves in Figure 9. For smaller amounts511
of parallelism, doubling the problem size in both dimensions roughly quadruples the512
time to solution, and at the limit of effective parallelism the time to solution ap-513
proximately doubles as the problem size is increased. The results in Figure 9 are514
similar for each problem size, where we see that, given enough resources, we are able515
to improve upon the time-stepping run-times using MGRIT. For a fixed number of516
processors, the best use of resources is to use the majority for temporal parallelism517
(green curve) rather than have proportional amounts of temporal and spatial par-518
allelism (red curve). However, when the green curves begin to flatten out there is519
still potential for more scalability, as indicated by the red curves, suggesting spatial520
parallelism should be increased when temporal parallelism approaches the saturation521
point. The best speed-up observed for the cases of (px, pt) = (2a+k, 2b+k) (red curve)522
and (px, pt) = (2a, 2b+k) (green curve) compared to time-stepping (black curve) are523
recorded in Table 6. Numerical values corresponding to these plots are recorded in524
Tables SM2–SM4. These Tables illustrate that the iteration count increases modestly525
with problem size from 37 to 39 to 44, but we do obtain the largest overall parallel526
speedup for the largest problem size.527
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5.1.2. Weak Scaling. For weak scaling we increase problem size and processor528
count while keeping the ratios Nt : pt and Nx : px fixed at 210 : 1 and the space-time529
domain fixed at [−2, 2] × [0, 4]. In addition to the original initial condition u0(x) =530
sin(πx/2) we also consider the high frequency initial condition u0(x) = sin(2πξx)531
where ξ is chosen so that there are 16 spatial cells per wavelength. Strong scaling532
tests were also considered for this initial condition, but the run-times observed were533
within a few percent of those for the low frequency initial condition, hence are omitted.534

We start with a grid of size (Nx, Nt) = (210, 211) and either double both Nx535
and Nt at each step (Table 7) or double Nt while leaving Nx fixed (Table 8); we536
cannot increase Nx while leaving Nt fixed due to the CFL condition. If Nx and Nt537
are increased simultaneously, while increasing core counts from 2 to 512, and problem538
size from 2M to 512M degrees of freedom, we see only a factor 2 increase in solution539
time, indicating excellent weak parallel scaling of the MGRIT algorithm. If we increase540
Nt while Nx remains fixed, we observe decreases in the iteration count and time to541
solution due to the increasingly weak couplings in space bringing MGRIT closer to542
an exact solver (when a(x, t) = 0 MGRIT with no spatial coarsening converges in one543
iteration, and in this case the adaptive coarsening forces all spatial cells to be kept on544
all levels). It is interesting to observe that the results for the different initial conditions545
are extremely similar, suggesting that the scalability is robust for oscillatory solutions,546
where the solution is changing at the scale of the grid spacing.547

Original Oscillatory
Trial log2(Nx) log2(Nt) log2(px) log2(pt) ξ Iter Time ξ Iter Time
1 10 11 0 1 1/4 31 184.83 16 31 183.20
2 11 12 1 2 1/4 33 234.81 32 33 234.19
3 12 13 2 3 1/4 34 247.17 64 34 246.70
4 13 14 3 4 1/4 36 310.55 128 36 309.92
5 14 15 4 5 1/4 39 359.84 256 39 376.04

Table 7
Weak scaling for explicit MGRIT F-cycles with u0(x) = sin(2πξx) and increasing Nx and Nt.

Original Oscillatory
Trial log2(Nx) log2(Nt) log2(px) log2(pt) ξ Iter Time ξ Iter Time
1 10 11 0 1 1/4 31 184.84 16 31 183.20
2 10 12 0 2 1/4 14 110.47 16 14 109.81
3 10 13 0 3 1/4 11 98.35 16 12 104.09
4 10 14 0 4 1/4 9 88.08 16 10 94.11
5 10 15 0 5 1/4 7 76.70 16 8 82.96
6 10 16 0 6 1/4 6 71.93 16 6 71.68
7 10 17 0 7 1/4 5 68.24 16 5 68.06

Table 8
Weak scaling for explicit MGRIT F-cycles with u0(x) = sin(2πξx) and fixed Nx.

5.2. Implicit Results.548

5.2.1. Strong Scaling. For implicit time-stepping we use a fine space-time mesh549
with equal resolution in both dimensions specified by (Nx, Nt) = (214, 214) and set550
the tolerance in our coarsening condition (12) to be tol∗ = 0.25. Serial time-stepping551
with spatial parallelism is compared to MGRIT F-cycles with factor two temporal552
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coarsening, either no spatial coarsening or adaptive spatial coarsening (coarsening553
n − 1 times), and space-time parallelism. Backward Euler time-stepping requires554
tridiagonal solves which are parallelized by using the hypre 1D cyclic reduction solver.555
Processors are allocated as in § 5.1 for the explicit case, except that we start with556
a = b = 2.557
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Fig. 10. Comparison of serial time-stepping with spatial parallelism to MGRIT using FCF
relaxation with or without spatial coarsening for different combinations of space-time parallelism on
up to 65536 cores. These results correspond to Tables SM5–SM7.

No SC SC

(px, pt)
(2k, 2k) 6.77 3.87
(24, 2k) 5.43 5.08

Table 9
Best speedup achieved for implicit time-stepping strong scaling tests, (Nx, Nt) = (214, 214).

In Figure 10 we compare the results of serial implicit time-stepping to MGRIT558
with FCF temporal relaxation and either with or without spatial coarsening. As the559
basis of comparison we use strong scaling results for serial time-stepping with spatial560
parallelism (black curves), as recorded in Table SM5. Significant improvements on561
the serial time-stepping results are possible once enough temporal parallelism has562
been introduced. Similar to the explicit case, we see that for up to 214 processors the563
best results are obtained by investing the majority into temporal parallelism, though564
further scalability is possible if spatial parallelism is increased as temporal parallelism565
approaches the saturation point, which would offer improved results for 212 or more566
processors. The difference between spatial coarsening and no spatial coarsening is567
most pronounced in the cases where px = pt, with the difference between the SC and568
no SC curves remaining nearly constant as the processor count increases. The best569
speedup for the No SC and SC cases are recorded in Table 9.570
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In Tables SM6 and SM7 we tabulate the results from the previous figure. Compar-571
ing the SC and no SC results, we see that the SC iteration counts are approximately572
1.5 times as large as the iteration counts for no SC (increasing from 26 to 40), indi-573
cating that if this increase can be ameliorated we could see significant improvements574
in the SC time to solution.575

5.2.2. Weak Scaling. For weak scaling tests we again consider the original576
initial condition u0(x) = sin(πx/2) and the high frequency initial condition u0(x) =577
sin(2πξx), keeping the ratios Nt : pt and Nx : px fixed at 210 : 1 while solving over578
the fixed domain [−2, 2] × [0, 4]. We start with a grid of size (Nx, Nt) = (210, 210)579
and (i) double both dimensions at each step, (ii) double Nt, leaving Nx fixed, or580
(iii) double Nx, leaving Nt fixed; results for these cases are recorded in Tables 10,581
11, and 12, respectively. The results for the first two cases are similar to those for582
explicit time-stepping, though the results of Table 10 show a nearly sixfold increase583
in the time-to-solution from the smallest to largest test cases, compared to times584
approximately doubling in the explicit case. This is likely due to the fact that the585
exact cyclic reduction linear solve used in implicit MGRIT has less potential for spatial586
parallelism compared to the matrix-vector product required for explicit MGRIT. The587
third case, unique to the implicit timestepping context, shows that increasing Nx588
while Nt remains fixed results in a nearly constant iteration count and an increasing589
time to solution. Considering the results for all three cases, it appears that the growth590
in iteration count due to increasing problem size is primarily a result of increasing Nt591
while maintaining a fixed ratio for ∆t : ∆x.592

Original Oscillatory
Trial log2(Nx) log2(Nt) log2(px) log2(pt) ξ Iter Time ξ Iter Time
1 10 10 0 0 1/4 21 239.23 16 23 276.81
2 11 11 1 1 1/4 25 554.72 32 25 596.79
3 12 12 2 2 1/4 29 808.77 64 29 859.19
4 13 13 3 3 1/4 37 1167.96 128 37 1245.90
5 14 14 4 4 1/4 45 1401.77 256 46 1489.30

Table 10
Weak scaling for implicit MGRIT F-cycles with u0(x) = sin(2πξx) and increasing Nx and Nt.

Original Oscillatory
Trial log2(Nx) log2(Nt) log2(px) log2(pt) ξ Iter Time ξ Iter Time
1 10 10 0 0 1/4 21 240.45 16 23 276.54
2 10 11 0 1 1/4 25 306.88 16 25 328.86
3 10 12 0 2 1/4 13 208.58 16 15 250.45
4 10 13 0 3 1/4 10 177.35 16 12 217.68
5 10 14 0 4 1/4 9 166.21 16 10 191.35
6 10 15 0 5 1/4 7 139.22 16 8 162.35
7 10 16 0 6 1/4 5 112.63 16 7 148.56
8 10 17 0 7 1/4 5 114.46 16 5 120.30
9 10 18 0 8 1/4 4 103.10 16 4 107.93

Table 11
Weak scaling for implicit MGRIT F-cycles with u0(x) = sin(2πξx) and fixed Nx.
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Original Oscillatory
Trial log2(Nx) log2(Nt) log2(px) log2(pt) ξ Iter Time ξ Iter Time
1 10 10 0 0 1/4 21 258.54 16 23 276.77
2 11 10 1 0 1/4 22 450.75 32 22 451.55
3 12 10 2 0 1/4 24 592.95 64 24 591.35
4 13 10 3 0 1/4 24 640.04 128 24 636.20
5 14 10 4 0 1/4 25 713.46 256 25 709.57
6 15 10 5 0 1/4 25 769.92 512 25 766.19
7 16 10 6 0 1/4 25 827.91 1024 25 823.27
8 17 10 7 0 1/4 24 872.87 2048 24 867.65
9 18 10 8 0 1/4 24 959.04 4096 24 953.32

Table 12
Weak scaling for implicit MGRIT F-cycles with u0(x) = sin(2πξx) and fixed Nt.

6. Conclusions. In this paper we discuss an adaptive spatial coarsening strategy593
for MGRIT applied to hyperbolic PDEs in one spatial dimension. We observe that594
this adaptive coarsening strategy solves one of the two main problems involved in595
implementing spatial coarsening for hyperbolic problems: weak spatial couplings due596
to small wave speeds are no longer an issue. However, while the results are nearly597
scalable as a function of problem size, there is an increase in iterations required for598
MGRIT to converge when spatial coarsening is introduced, compared to no spatial599
coarsening, which is the subject of ongoing research.600

To our best knowledge, we obtain the first convergent parallel-in-time method for601
the inviscid Burgers equation, and solutions with shocks do not exhibit convergence602
deterioration. Parallel results on up to 131072 cores illustrate robustness and scalabil-603
ity of the approach for very large problem sizes, and its potential to achieve run-time604
speedups when spatial parallelism alone saturates. Weak scaling results show that605
the scalability is robust for solutions with oscillations on the scale of the grid spacing.606

One area of future improvement is load balancing, as to ensure that processors607
have approximately equal spatial cell counts on coarse grids as the adaptation pro-608
ceeds. Ongoing research includes mode analysis to understand convergence deteriora-609
tion and aims to improve iteration counts by considering adding waveform relaxation610
on intermediate grids. As the adaptive coarsening strategy is extensible, in principle,611
to 2D and 3D, future plans for solving hyperbolic problems with MGRIT involve im-612
plementing adaptive spatial coarsening for problems in two or more spatial dimensions613
and/or systems of hyperbolic equations.614
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