SUPPLEMENTARY MATERIALS: PARALLEL-IN-TIME MULTIGRID WITH ADAPTIVE SPATIAL COARSENING FOR THE LINEAR ADVECTION AND INVISCID BURGERS EQUATIONS*

HANS DE STERCK[†], ROBERT D. FALGOUT[‡], ALEXANDER J.M. HOWSE[§], SCOTT P. MACLACHLAN[¶], AND JACOB B. SCHRODER[‡]

SM1. Explicit Time-stepping for Case A4.

	$(\log_2$	$(N_x), \log_2$	$(N_t))$
$\log_2(p_x)$	(14, 15)	(15, 16)	(16, 17)
2	831.35		_
3	434.53	1670.53	
4	227.82	864.64	3353.94
5	125.45	448.79	1738.12
6	74.32	253.04	910.10
7	50.15	149.25	511.78
8	39.59	102.02	305.50
9	34.83	83.72	218.12
10	34.23	74.67	178.47
11	35.82	73.98	161.25
12	38.04	77.72	162.20
	TABLE	\sim SM1	

Strong scaling for serial explicit time-stepping with increasing amounts of spatial parallelism for fixed problem size.

$\log_2(\text{pt})$	$\log_2(px)$	2	3	4	5	6	7	8
2	iter	37	37	37	37	37	37	37
5	time	2698.98	1878.07	1343.52	1050.28	847.13	745.30	685.69
4	iter	37	37		_		37	
	time	1353.76	943.93				378.78	
5	iter	37	_	37	_	37		
	time	678.54		356.30		219.17		
C	iter	37			37	_		
0	time	350.12			136.98		_	
-	iter	37		37	—	37		—
(time	177.02		93.50	_	57.69		
	iter	37	37		_	_	37	_
0	time	105.31	88.72		_		27.56	
0	iter	37			_	_	_	37
9	time	58.28	_	—	—	_	_	15.49
			TAI	ble SM2				

Original Size: Strong scaling for explicit MGRIT F-cycles, $(N_x, N_t) = (2^{14}, 2^{15})$.

^{*}Submitted to the editors August 25, 2017.

Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-737050). The work of SPM was partially supported by an NSERC Discovery Grant. The work of HDS and AJMH was partially supported by an ARC discovery project.

[†]School of Mathematical Sciences, Monash University, Melbourne, VIC hans.desterck@monash.edu.

[‡]Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA (rfalgout@llnl.gov, schroder2@llnl.gov).

[§]Department of Applied Mathematics, University of Waterloo, Waterloo, ON (ahowse@uwaterloo.ca).

[¶]Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL (smaclachlan@mun.ca).

SM2DE STERCK, FALGOUT, HOWSE, MACLACHLAN, AND SCHRODER

$\log_2(\text{pt})$	$\log_2(px)$	3	4	5	6	7	8	9
4	iter	39	39	39	39	39	39	39
4	time	3374.07	2271.85	1496.64	1151.49	932.99	822.80	758.01
5	iter	39	39	_	_		39	
	time	1784.16	1135.81	—	—	_	417.14	_
6	iter	39		39	_	39	_	
	time	909.66	_	395.43	_	240.30		_
7	iter	39		_	39	_	_	
1	time	458.25	_		150.03			_
0	iter	39		39	_	39		
0	time	237.21	_	104.18	_	63.86		_
0	iter	39	39		_		39	
9	time	123.08	81.64	_			31.99	_
10	iter	39	_	_	_	_	_	_
10	time	66.88	_	—	—			—

TABLE SM3 **Doubled Size:** Strong scaling for explicit MGRIT F-cycles, $(N_x, N_t) = (2^{15}, 2^{16})$.

$\log_2(\text{pt})$	$\log_2(px)$	4	5	6	7	8	9
5	iter	44	44	44	44	44	44
5	time	4395.27	2702.93	1838.73	1362.48	1098.43	983.13
6	iter	44	44	_	_	44	_
0	time	2243.41	1359.52			569.38	_
7	iter	44		44	44	_	
1	time	1148.06		464.86	349.17		
0	iter	44		44	44	_	
0	time	578.08		237.94	177.53		_
0	iter	44	44		_	44	_
9	time	295.32	184.29	—	—	78.33	—
10	iter	44			_	_	_
10	time	156.64	_				

TABLE SM4 Quadrupled Size: Strong scaling for explicit MGRIT F-cycles, $(N_x, N_t) = (2^{16}, 2^{17}).$

SM2. Implicit Time-stepping for Case A4.

	$(\log_2(N_x), \log_2(N_t))$
$\log_2(p_x)$	(14, 14)
2	782.02
3	518.83
4	394.58
5	357.26
6	336.55
7	348.35
8	359.36
	Table SM5

Results for serial implicit time-stepping with increasing spatial parallelism, $(N_x, N_t) = (2^{14}, 2^{14})$.

$\log_2(pt)$	$\log_2(px)$	2	3	4	5	6	7	8
0	iter	46	46	46	46	46	46	46
2	time	8230.19	6686.69	5728.51	5202.09	4745.97	4498.12	4386.64
3	iter	46	46			_	46	
	time	4106.38	3342.14				2260.45	
4	iter	46	_	46	_	46	_	_
4	time	2071.04	_	1496.78		1203.23		
-	iter	46	_		46	_		
9	time	1075.52	_		669.24	_		
6	iter	46	_	46		46	_	
0	time	546.51	_	398.02		313.18		
7	iter	46	46	_		_	46	
1	time	312.58	277.75			_	157.05	
0	iter	46	_			_		46
8	time	180.42	_			_		86.90
			T	able SN	16			

Spatial Coarsening: Strong scaling for implicit MGRIT F-cycles, $(N_x, N_t) = (2^{14}, 2^{14})$.

1 (t)	1	0		4	~	C	7	0
$\log_2(\text{pt})$	$\log_2(px)$	2	3	4	5	6	1	8
2	iter	30	30	30	230	30	29	30
-	time	6531.90	4547.23	3524.90	3104.28	2833.67	2599.01	2596.10
3	iter	30	30				30	
	time	3261.04	2274.50	_		_	1348.17	
4	iter	30		29		30		
	time	1638.08	_	888.57		716.87	_	
F	iter	30			30			
5	time	844.48	_	_	400.95	_	_	—
6	iter	30	_	30		30	_	
0	time	436.60		241.86		186.06		—
7	iter	30	30	_		_	30	
1	time	244.24	176.49			_	93.29	_
	iter	30	_	_	_	_	_	29
8	time	145.93	_				_	49.69

TABLE SM7

No Spatial Coarsening: Strong scaling for implicit MGRIT F-cycles, $(N_x, N_t) = (2^{14}, 2^{14})$.

SM3. Explicit Time-stepping for Case A5.

FIG. SM1. Comparison of serial time-stepping with spatial parallelism to MGRIT with FCF relaxation and different combinations of space-time parallelism for three different problem sizes on up to 131072 cores, $(N_x, N_t) = (2^n, 2^{n+1})$. These results correspond to Tables SM9–SM12. \bigcirc : n = 14, a = 2, b = 3. \times : n = 15, a = 3, b = 4. \Box : n = 16, a = 4, b = 5.

			(a,b,n)	
		(2,3,14)	(3, 4, 15)	(4, 5, 16)
(n n)	$(2^{a+k}, 2^{b+k})$	2.30	2.15	1.78
(p_x, p_t)	$(2^a, 2^{b+k})$	1.17	1.75	2.55
		TABLE SM8		

Best speedup achieved for explicit time-stepping strong scaling tests, $(N_x, N_t) = (2^n, 2^{n+1})$.

	$(\log_2$	$(N_x), \log_2$	$(N_t))$
$\log_2(p_x)$	(14, 15)	(15, 16)	(16, 17)
2	846.33		—
3	441.81	1699.65	_
4	232.14	880.60	3419.02
5	127.19	456.45	1769.27
6	75.44	257.11	926.55
7	50.81	151.31	519.89
8	40.13	103.31	309.69
9	35.19	84.62	220.80
10	34.63	75.39	180.07
11	36.10	74.48	162.61
12	38.36	78.33	163.74
	Table	E SM9	

Strong scaling for explicit time-stepping with increasing amounts of spatial parallelism and no temporal parallelism for $a(x,t) = -\sin(2.5\pi t)\sin(\pi x)$ and fixed problem size.

$\log_2(\text{pt})$	$\log_2(px)$	2	3	4	5	6	7	8
2	iter	36	36	36	36	36	36	36
0	time	2836.37	1691.60	1207.62	986.34	809.76	714.02	647.39
	iter	36	36		_		36	_
4	time	1484.32	880.73		_		365.42	_
5	iter	36	_	36	_	36		_
0	time	818.17		336.45		210.60	_	_
6	iter	36	_	_	36	_	_	_
0	time	440.94	—	—	132.10	—	—	—
7	iter	36		36	_	36		
'	time	231.56	—	91.40	—	55.70	—	—
	iter	36	36		_	_	36	_
0	time	137.10	90.40	_	_	—	26.92	—
0	iter	36	_	_	_	_	_	36
9	time	78.75	_	_				15.08

Table SM10

Original Size: Strong scaling for explicit MGRIT F-cycles, $(N_x, N_t) = (2^{14}, 2^{15})$.

$\log_2(\text{pt})$	$\log_2(px)$	3	4	5	6	7	8	9
4	iter	42	41	41	42	41	42	41
4	time	3455.59	2216.87	1493.09	1209.49	973.17	875.18	784.65
	iter	41	41		_	_	41	_
5	time	1860.44	1150.40	_			438.65	
0	iter	41		42	_	42	_	_
0	time	976.22		417.92		258.22	_	
7	iter	42			41	_	_	_
(⁽	time	515.44			159.37	_		_
0	iter	41		41	_	41		_
0	time	272.32		110.88		67.64	_	
	iter	42	42		_		42	_
9	time	151.43	91.31	_	_		34.59	
10	iter	41	_	_	_	_	_	_
10	time	86.61	_	_	_	_		_
			Tae	ble SM1	1			

Doubled Size: Strong scaling for explicit MGRIT F-cycles, $(N_x, N_t) = (2^{15}, 2^{16})$.

$\log_2(\text{pt})$	$\log_2(px)$	4	5	6	7	8	9
5	iter	51	52	50	51	50	50
5	time	4846.38	3999.70	3592.11	3410.69	3301.74	3500.35
6	iter	50	51			51	
0	time	2811.06	1526.86			1735.72	
7	iter	50	_	50	51		
1	time	1271.31		526.61	409.13		
0	iter	51	_	51	51		
0	time	666.09		278.37	211.18		
0	iter	51	51	_		50	
9	time	350.51	215.74			90.34	
10	iter	50					
10	time	191.07	_	_	_	_	
			TIDID	CM10			

TABLE SM12 Quadrupled Size: Strong scaling for explicit MGRIT F-cycles, $(N_x, N_t) = (2^{16}, 2^{17}).$

					Original			Oscillatory		
Trial	$\log_2(N_x)$	$\log_2(N_t)$	$\log_2(p_x)$	$\log_2(p_t)$	ξ	Iter	Time	ξ	Iter	Time
1	10	11	0	1	$^{1/4}$	30	184.86	16	30	184.98
2	11	12	1	2	1/4	31	223.12	32	31	222.95
3	12	13	2	3	1/4	33	245.39	64	33	245.68
4	13	14	3	4	1/4	35	291.70	128	35	291.61
5	14	15	4	5	$^{1/4}$	36	339.98	256	36	339.53

TABLE SM13 Weak scaling for explicit MGRIT F-cycles with $u_0(x) = \sin(2\pi\xi x)$ and increasing N_x and N_t .

					Original			Oscillatory			
Trial	$\log_2(N_x)$	$\log_2(N_t)$	$\log_2(p_x)$	$\log_2(p_t)$	ξ	Iter	Time	ξ	Iter	Time	
1	10	11	0	1	1/4	30	184.63	16	30	185.09	
2	10	12	0	2	1/4	14	111.16	16	15	117.20	
3	10	13	0	3	1/4	13	110.60	16	14	116.89	
4	10	14	0	4	1/4	10	94.61	16	11	101.02	
5	10	15	0	5	1/4	8	83.49	16	9	90.12	
6	10	16	0	6	1/4	6	72.14	16	6	72.20	
7	10	17	0	7	1/4	$\overline{7}$	82.17	16	7	82.09	

 $\label{eq:TABLE SM14} \ensuremath{\text{TABLE SM14}} \ensuremath{\text{Weak scaling for explicit MGRIT F-cycles with }} u_0(x) = \sin(2\pi\xi x) \ensuremath{\text{ and fixed }} N_x.$

FIG. SM2. Comparison of serial time-stepping with spatial parallelism to MGRIT using FCF relaxation with or without spatial coarsening for different combinations of space-time parallelism on up to 65536 cores. These results correspond to Tables SM16-SM18.

		No SC	\mathbf{SC}
(n n)	$(2^k, 2^k)$	7.48	4.62
(p_x, p_t)	$(2^4, 2^k)$	6.27	4.75
	TABLE S	M15	

Best speedup achieved for implicit time-stepping strong scaling tests, $(N_x, N_t) = (2^{14}, 2^{14})$.

	$(\log_2(N_x), \log_2(N_t))$
$\log_2(p_x)$	(14, 14)
2	801.46
3	536.29
4	415.51
5	371.04
6	350.20
7	353.65
8	369.76
	TABLE SM16

Results for serial implicit time-stepping with increasing spatial parallelism, $(N_x, N_t) = (2^{14}, 2^{14})$.

$\log_2(\text{pt})$	$\log_2(px)$	2	3	4	5	6	7	8
0	iter	27	26	27	27	27	26	27
4	time	5937.06	3991.70	3210.82	2825.08	2578.00	2357.61	2364.47
9	iter	27	26	_	_	_	26	_
3	time	2964.59	1997.37				1184.73	
4	iter	27		27		26		
4	time	1488.67		832.33		629.40		
F	iter	27	_	_	27	_	_	_
5	time	767.72	—	—	364.10	_	_	—
6	iter	26	_	26	_	27	_	
0	time	382.61		211.93		169.23		
7	iter	27	27				27	
1	time	221.78	160.31	_	_	_	84.93	—
0	iter	27	_	_	_	_	_	$\overline{27}$
8	time	132.43	_					46.83
			TA	BLE SM	17			

No Spatial Coarsening: Strong scaling for implicit MGRIT F-cycles, $(N_x, N_t) = (2^{14}, 2^{14})$.

$\log_2(\text{pt})$	$\log_2(px)$	2	3	4	5	6	7	8
0	iter	40	40	41	40	40	40	40
2	time	7329.11	5463.71	4666.86	4374.57	4068.72	3883.04	3824.27
9	iter	40	40	_	_	_	40	_
3	time	3740.71	2786.03			_	1964.83	
4	iter	41		40		40		
4	time	1996.01	_	1297.06	_	1054.42	_	
F	iter	40	_	_	40	_	_	_
5	time	1129.15	_		591.32		_	
6	iter	40		40		40		
0	time	634.29		354.25		276.62		
7	iter	40	40				40	
1	time	361.17	264.02			_	138.59	
0	iter	40	_	_	_	_	_	40
8	time	206.53	_				_	75.87
			TA	BLE SM	18			

Spatial Coarsening: Strong scaling for implicit MGRIT F-cycles, $(N_x, N_t) = (2^{14}, 2^{14})$.

					Original			Oscillatory		
Trial	$\log_2(N_x)$	$\log_2(N_t)$	$\log_2(p_x)$	$\log_2(p_t)$	ξ	Iter	Time	ξ	Iter	Time
1	10	10	0	0	1/4	24	295.32	16	24	296.61
2	11	11	1	1	$^{1/4}$	26	626.30	32	26	624.78
3	12	12	2	2	1/4	29	871.47	64	29	869.50
4	13	13	3	3	$^{1/4}$	34	1124.93	128	33	1091.52
5	14	14	4	4	1/4	41	1309.98	256	41	1295.42

Table SM19

Weak scaling for implicit MGRIT F-cycles with $u_0(x) = \sin(2\pi\xi x)$ and increasing N_x and N_t .

SUPPLEMENTARY MATERIALS: PARALLEL-IN-TIME MULTIGRID 5MS	SUPPLEMENTARY MATE	RIALS: PARALLEL-IN-TIME	MULTIGRID	SM9
---	--------------------	-------------------------	-----------	-----

					Original			Oscillatory		
Trial	$\log_2(N_x)$	$\log_2(N_t)$	$\log_2(p_x)$	$\log_2(p_t)$	ξ	Iter	Time	ξ	Iter	Time
1	10	10	0	0	1/4	24	297.03	16	24	296.59
2	10	11	0	1	1/4	27	367.88	16	27	367.27
3	10	12	0	2	$^{1/4}$	13	224.39	16	14	238.11
4	10	13	0	3	1/4	11	203.74	16	11	203.43
5	10	14	0	4	$^{1/4}$	9	176.65	16	9	176.33
6	10	15	0	5	1/4	8	162.44	16	8	162.16
7	10	16	0	6	$^{1/4}$	6	133.52	16	7	148.48
8	10	17	0	7	$^{1/4}$	5	120.45	16	5	120.26
9	10	18	0	8	$^{1/4}$	4	107.93	16	4	107.84

TABLE	SM ₂ (
-------	-------------------

 $\label{eq:TABLE SM20} \ensuremath{\text{TABLE SM20}} \ensuremath{\text{Weak scaling for implicit MGRIT F-cycles with }} u_0(x) = \sin(2\pi\xi x) \ensuremath{\text{ and fixed }} N_x.$

					Original			Oscillatory		
Trial	$\log_2(N_x)$	$\log_2(N_t)$	$\log_2(p_x)$	$\log_2(p_t)$	ξ	Iter	Time	ξ	Iter	Time
1	10	10	0	0	1/4	24	297.05	16	24	294.81
2	11	10	1	0	1/4	23	465.06	32	23	465.20
3	12	10	2	0	1/4	23	559.13	64	23	558.23
4	13	10	3	0	1/4	23	594.61	128	23	593.32
5	14	10	4	0	1/4	23	642.39	256	23	641.37
6	15	10	5	0	1/4	23	682.46	512	23	679.69
7	16	10	6	0	1/4	22	696.81	1024	23	721.51
8	17	10	7	0	1/4	22	750.16	2048	23	775.58
9	18	10	8	0	$^{1/4}$	22	816.76	4096	22	812.83

TABLE SM21 Weak scaling for implicit MGRIT F-cycles with $u_0(x) = \sin(2\pi\xi x)$ and fixed N_t .