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Abstract. The need for parallelism in the time dimension is being driven by changes in computer
architectures, where performance increases are now provided through greater concurrency, not faster
clock speeds. This creates a bottleneck for sequential time marching schemes because they lack
parallelism in the time dimension. Multigrid Reduction in Time (MGRIT) is an iterative procedure
that allows for temporal parallelism by utilizing multigrid reduction techniques and a multilevel
hierarchy of coarse time grids. MGRIT has been shown to be effective for linear problems, with
speedups of up to 50 times. The goal of this work is the efficient solution of nonlinear problems
with MGRIT, where efficiency is defined as achieving similar performance when compared to an
equivalent linear problem. The benchmark nonlinear problem is the p-Laplacian, where p = 4
corresponds to a well-known nonlinear diffusion equation, and p = 2 corresponds to the standard
linear diffusion operator, our benchmark linear problem. The key difficulty encountered is that
the nonlinear time-step solver becomes progressively more expensive on coarser time levels, as the
time-step size increases. To overcome such difficulties, multigrid research has historically targeted
an accumulated body of experience regarding how to choose an appropriate solver for a specific
problem type. To that end, this paper develops a library of MGRIT optimizations and modifications,
most importantly an alternate initial guess for the nonlinear time-step solver and delayed spatial
coarsening, that will allow many nonlinear parabolic problems to be solved with parallel scaling
behavior comparable to the corresponding linear problem.
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1. Introduction. Previously, increasing clock speeds allowed for the speedup of
sequential time integration simulations of a fixed size, and allowed simulations to be
refined in both space and time without an increase in overall wall-clock time. How-
ever, increases in clock speed have stagnated, leading to a sequential time integration
bottleneck. Future speedups will be available from more concurrency, and hence,
speedups for time marching simulations must also come from increased concurrency.

By allowing for parallelism in time, much greater computational resources can be
brought to bear and overall speedups can be achieved. Because of this, interest in
parallel-in-time methods has grown over the last decade. Perhaps the most well known
parallel-in-time algorithm, Parareal [24], is equivalent [14] to a two-level multigrid
scheme. This work focuses on the multigrid reduction in time (MGRIT) method
[10]. MGRIT is a true multilevel algorithm and has optimal parallel communication
behavior, as opposed to a two-level scheme, where the size of the coarse-level limits
concurrency.

Work on parallel-in-time methods actually goes back at least 50 years [33] and
includes a variety of approaches. Work regarding direct methods includes [32, 36, 27,
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6, 15]. There are iterative approaches, as well, based on multiple shooting, domain
decomposition, waveform relaxation, and multigrid, including [22, 16, 25, 1, 17, 18, 38,
5, 39, 37, 20, 19, 24, 7, 31, 9, 40, 10]. For a gentle introduction to this history, please
see the review paper [12]. This work focuses on multigrid approaches (and MGRIT
in particular) because of multigrid’s optimal algorithmic scaling for both parallel
communication and number of operations. An additional attraction of MGRIT is
its non-intrusive nature, where the user employs an existing sequential time-stepping
routine within the context of the MGRIT implementation. This work uses XBraid
[41], an open source implementation of MGRIT developed at Lawrence Livermore
National Laboratory (LLNL).

MGRIT solves, in parallel, a general first-order, ordinary differential equation
(ODE) and corresponding time discretization:

(1.1) ut = f(u, t), u(0) = u0, t ∈ [0, T ],

(1.2) u(t+ δt) = Φ(u(t), u(t+ δt)) + g(t+ δt),

where Φ is a nonlinear operator that represents the chosen time-stepping routine and
g is a time dependent function that incorporates all the solution independent terms.
In the linear case, the application of Φ is either a matrix vector multiplication, e.g.
forward Euler, or a spatial solve, e.g. backward Euler.

Sequential time marching schemes are optimal in that they move from time t = 0
to t = T using the fewest possible applications of Φ. By applying Φ iteratively, in
comparably expensive but highly parallel multigrid cycles, MGRIT sacrifices addi-
tional computation for temporal concurrency. Both methods are optimal [10], i.e.
O(N) where N is the total number of time-steps, but the constant for MGRIT is
higher. This creates a crossover point wherein the added concurrency overcomes the
extra computational work. Beyond this crossover point MGRIT provides a speedup
over sequential methods.

Application of MGRIT to linear parabolic problems was studied in [10]. Figure 1
shows a strong scaling study of MGRIT for linear diffusion on the machine Vulcan, an
IBM BG/Q machine at LLNL. The problem size was (257)2 × 16385 (space × time).
Three data sets are presented, a standard sequential time-stepping run (square mark-
ers), a time-only parallel run of MGRIT (circle markers), and a space-time parallel
run of MGRIT (triangle markers). The space-time parallel runs used an 8× 8 proces-
sor grid in space, with all additional processors added in time. Both MGRIT curves
represent the use of temporal and spatial coarsening, so that the ratio of δt/h2 is
fixed on coarse time-grids, where h is the spatial mesh width. The maximum speedup
achieved by the blue curve (triangle markers) is approximately 50, and the crossover
point where MGRIT provides a speedup is at about 128 processors in time. Achieving
a similar efficiency for nonlinear parabolic problems is the chief goal of this paper.

When considering the performance of MGRIT, the application of Φ is the domi-
nant process. For a linear problem with implicit time-stepping, each application of Φ
equates to solving one linear system. When an optimal spatial solver such as classical
multigrid in space [28, 4, 34, 21] is used, the work required for a time-step evaluation is
independent of the time-step size. However, for nonlinear problems, each application
of Φ involves an iterative nonlinear solve, and when using a common method such as
Newton’s method, convergence can depend strongly on the initial approximation even
when linear multigrid is used as the inner solver. In particular, the previous time-step
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Fig. 1: Time to solve 2D linear diffusion on a (128)2 × 16385 space-time grid using
sequential time-stepping and two different processor decompositions of MGRIT. [10]

is farther away on coarser grids. To explore the effects of introducing a nonlinearity
that exhibits this key difficulty, a model nonlinear parabolic problem, known as the
p-Laplacian, is considered:

(1.3) ut(x, t)−∇ · (|∇u(x, t)|p−2∇u(x, t)) = b(x, t), x ∈ Ω, t ∈ [0, T ],

subject to the following Neumann boundary and initial conditions:

|∇u(x, t)|p−2∇u(x, t) · n = g(x, t), x ∈ ∂Ω, t ∈ (0, T ],(1.4)

u(x, 0) = u0(x), x ∈ Ω.(1.5)

The p-Laplacian for p = 4 is well-known as a means of modeling soil erosion and
transport [2] and has also found uses in image processing (denoising, segmentation and
inpainting) and machine learning (see [8] for an overview and [23] for an introduction).
In this paper, the model nonlinear problem corresponds to p = 4, while the comparable
linear problem corresponds to p = 2, which is the standard diffusion operator.

Our study will consist of investigating parallel-in-time for Equation (1.3) in the
context of XBraid and MGRIT. We will balance user concerns such as overall time-
to-solution, memory use, and non-intrusiveness.

To begin the study, we consider a naive application of MGRIT to (1.3), where a
large increase in the cost of a nonlinear solve (for Newton’s method) on the coarser
temporal grids is observed. This is caused by the relatively large time-steps (compared
to the finest grid) and the associated poor initial guess to the Newton solver on the
coarse levels. These increases counteract the strength of multigrid, where speedup is
achieved by using cheap coarse grid problems to accelerate convergence on the fine
grid. Therefore, our strategy is to minimize the cost of each nonlinear solve, which
is measured with a cost estimate. The desired result is to achieve similar efficiencies
for the nonlinear and linear versions of (1.3), while also taking into account common
user concerns, such as non-intrusiveness and storage costs. Ultimately, this paper’s
goal is to present a detailed, experimentally backed, library of optimizations and
modifications that can be used to efficiently implement MGRIT for a large range of
nonlinear parabolic problems. Thus, we have carefully chosen our model nonlinear
parabolic problem and we note that multigrid research has historically targeted such
an accumulated body of experience regarding how to choose an appropriate solver for
a specific problem type.
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To reduce the average cost of each Φ evaluation, an improved initial guess for each
time-step is investigated. For sequential time-stepping, a commonly used approach
is to take the previous time-step as the initial guess. However, in the parallel-in-
time setting this approach is flawed because on coarse levels, where the time-step
size is large, this is a poor initial guess. The recent parallel-in-time works of [35,
26, 30] consider another option based on the iterative nature of many parallel-in-
time algorithms, where information from previous parallel-in-time iterations is used
as the initial guess. This increases storage requirements, but incurs no additional
computational cost.

For MGRIT, this entails using as the initial guess the solution from the previous
evaluation of Φ at each time point and on each MGRIT level. With this initial guess,
as MGRIT converges, the cost of a Newton solve on each level goes to zero1. How-
ever, this also creates a tension between memory usage and computational efficiency
because MGRIT need not store the solution from the previous Φ evaluation at all
time points. Using the solution from the previous Φ evaluation as the initial guess
whenever it is available allows a user with memory constraints to reap the benefits of
this improved initial guess, while limiting per-processor storage costs. This reduced
storage result and the importance of improved initial guesses for MGRIT are both
important contributions of this work.

Following this, a spatial coarsening strategy is pursued to limit δt/h2 on coarse
time grids. The goal is to reduce the number of Newton iterations required on coarse
levels by reducing the spatial variability of the nonlinearity while also improving the
condition number of the inner linear problems. Recognizing this specific importance
of spatial coarsening when controlling the cost of nonlinear time-step solvers on coarse
time grids is an important contribution of this work. In addition, the smaller problem
sizes drastically reduce coarse grid compute times and coarse grid storage costs.

Two additional strategies include avoiding unnecessary work on the first MGRIT
cycle and optimizing the number of levels in the MGRIT hierarchy. Further speedups
can be obtained by loosening the Newton solver tolerance during the first three
MGRIT iterations on all levels, where the approximate solution is still poor. Overall,
the most effective strategies are spatial coarsening and the improved initial guess, but
the other strategies combined have a similarly significant impact on runtime. To-
gether, these strategies produce an MGRIT algorithm for nonlinear problems that
has an efficiency similar to that found for a corresponding linear problem.

In Section 2, the general MGRIT framework is discussed. In Section 3, some
implementation details are given. In Section 4, our strategy for improving the perfor-
mance of MGRIT is proposed and justified. In Section 5, this strategy is implemented.
In sections 7.1 and 7.2, weak and strong scaling results are presented.

2. MGRIT overview. First, a brief overview of the MGRIT algorithm for time
independent linear problems is presented. The nonlinear, time dependent, extension
follows in Section 2.1. Define a uniform temporal grid with time-step δt and nodes
tj , j = 0, . . . , Nt (non-uniform grids can easily be accommodated). Further, de-
fine a coarse temporal grid with time-step ∆T = mδt and nodes Tj = j∆T, j =
0, 1, . . . , Nt/m, for some coarsening factor, m. This is depicted in Figure 2. In block

1Assuming the Newton solver measures nonlinear convergence with a fixed absolute tolerance.
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Fig. 2: Fine- and coarse-grid temporal meshes. Fine-grid points (black) are present on
only the fine-grid, whereas coarse-grid points (red) are on both the fine- and coarse-
grid.

triangular form, the time-stepping problem (1.2) is

(2.1) Au =


I
−Φ I

. . .
. . .

−Φ I




u0

u1

...
uNt

 =


g0

g1

...
gNt

 = g.

Sequential time marching is a forward block solve of this system. MGRIT solves
this system iteratively, in parallel, using a coarse-grid correction scheme based on
multigrid reduction. Both are O(N) methods, but MGRIT is highly concurrent.
Multigrid reduction strategies are a variation of cyclic reduction methods and, as
such, successively eliminate unknowns in the system. If the fine points are eliminated,
the system becomes:

(2.2) A∆u∆ =


I
−Φm I

. . .

−Φm I




u∆,0

u∆,1

...
u∆,Nt/m

 = Rg = g∆.

“Ideal” restriction, R, and interpolation, P , are defined as in [10], so that the system
(2.2) can be formed in a multigrid fashion. Let,

R =


I

Φm−1 . . . Φ I
. . .

Φm−1 . . . Φ I

 ,(2.3a)

PT =

I ΦT . . . Φm−1,T

. . .

I ΦT . . . Φm−1,T

 .(2.3b)

The interpolation injects at coarse points before extending those values to fine points,
i.e., it is injection from the coarse- to fine-grid followed by F-relaxation (defined
below).

With this, the “ideal” coarse-grid operator is A∆ = RAP .2 This is referred to as
ideal because the solution of (2.2) yields an exact solution at the coarse points. This

2We note that RAP = RIAP , where RI is injection at the coarse points. Thus for efficiency,
injection is always used to map to the coarse-level (like Parareal). The exception is the spatial
coarsening option where spatial restriction and interpolation functions, Rx() and Px(), are used to
coarsen in space as well as time.
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Fig. 3: F- and C-relaxation for coarsening by factor of 4

coarse grid is essentially a compressed version of the problem. If this is followed by
interpolation, then the exact solution is also available at fine points. The limitation of
this exact reduction method is that the coarse-grid problem is, in general, as expensive
to solve as the original fine-grid problem (because of the Φm evaluations). Multigrid
reduction methods address this by approximating A∆ with B∆, where

(2.4) B∆ =


I
−Φ∆ I

. . .

−Φ∆ I

 ,
and Φ∆ is an approximate coarse-grid time-step operator. One obvious choice for
defining Φ∆ is to re-discretize the problem on the coarse grid so that a coarse-grid
time-step is roughly as expensive as a fine-grid time-step. This paper makes that
choice. For instance, with backward Euler, one simply uses a larger time-step size.
Convergence of MGRIT is governed by the approximation, A∆ ≈ B∆, and this choice
of using a re-discretization of Φ with ∆T = mδt has proved effective [10, 11]. It is
important to note that, while the definition of this algorithm relies upon Φ and Φ∆,
the internals of these functions need not be known. This is the non-intrusive aspect of
MGRIT. The user defines the time-step operator and can wrap existing codes to work
within the MGRIT framework. The coarse grid is used to compute an error correction
based on the residual equation (see Algorithm 1). Relaxation, a local fine-grid process,
is used to resolve fine-scale behavior. Figure 3 shows the actions of F- and C-relaxation
on a temporal grid with m = 4. F-relaxation propagates the solution forward in
time from each coarse point to the neighboring F -points. Overall, relaxation is highly
parallel. Each interval of F -points can be updated independently during F-relaxation.
Every C-point update (during C-relaxation) is similarly independent.

2.1. MGRIT algorithm for nonlinear problems. The linear MGRIT algo-
rithm [10] is easily extended to the nonlinear setting using full approximation storage
(FAS), a nonlinear multigrid scheme [3]. The FAS description of MGRIT first ap-
peared in [11]. Note that the F-relaxation two-grid variant of nonlinear MGRIT is
equivalent to the Parareal algorithm [14].

The nonlinear MGRIT algorithm is presented in Algorithm 1 as a two-level
method, but can be used in a multilevel setting by recursively applying the algo-
rithm at Step 4. Ideal interpolation (2.3) is carried out in two steps (7 and 8) for
simplicity in implementation.
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Fig. 4: Example multigrid V-cycle with space-time coarsening that holds δt/h2 fixed
on the left, and then time-only coarsening on the right.

Prior to running the algorithm, initial values for u at the fine grid C-points must
be set. In general, the C-points are initialized with the best available estimate of
the solution. Alternatively, the initial guess can be obtained using a full multigrid
methodology. In this case, the fine grid C-points are obtained by interpolating a
cheap coarse grid solution to the fine grid (see Section 6.1).

Algorithm 1 MGRIT(A, u, g)

1: Apply F- or FCF-relaxation to A(u) = g.
2: Inject the fine grid approximation and its residual to the coarse grid:
u∆,i ← umi, r∆,i ← gmi − (A(u))mi .

3: If Spatial coarsening, then
u∆,i ← Rx(u∆,i), r∆,i ← Rx(r∆,i).

4: Solve B∆(v∆) = B∆(u∆) + r∆.
5: Compute the coarse grid error approximation: e∆ ' v∆ − u∆.
6: If Spatial coarsening, then
e∆,i ← Px(e∆,i).

7: Correct u at C-points: umi = umi + e∆,i.
8: If converged, then update F -points: apply F-relaxation to A(u) = g.
9: Else go to step 1.

The reader will note that with exact arithmetic, MGRIT with FCF-relaxation
propagates the initial condition two full coarse grid time intervals (2∆T ) each cycle.
Thus, MGRIT is equivalent to a sequential direct solve in Nt/(2m) iterations. With
F-relaxation only, the sequential solution is achieved in Nt/m iterations. The speedup
comes from the fact that MGRIT converges in O(1) iterations, as shown in [10].

A variety of cycling strategies are available in multigrid (e.g., V, W, F). All results
presented here use the standard V-cycle depicted in Figure 4. This corresponds to Al-
gorithm 1 with the “Solve” step turned into a single recursive call. The recursion ends
when a trivially sized grid, of, say, 5 time points, is reached. At this point a sequential
solver is used. On the right in Figure 4, a V-cycle with only temporal coarsening is
shown. Full spatial coarsening, depicted on the left, fixes the “parabolic” ratio, δt/h2,
on all levels, but can degrade the MGRIT convergence rate for the nonlinear problem
considered here. Delayed spatial coarsening, described in Section 5.3, proved to be a
more effective strategy.

The MGRIT algorithm is implemented in XBraid [41], an open source package
developed at LLNL. XBraid conforms to MGRIT’s non-intrusive philosophy and re-
quires the user to wrap an existing time-stepping routine, as well as define a few other
basic operations like a state-vector norm and inner-product. The key computational

7



kernel is the time-stepping (i.e., Φ) routine, but all the specifics are opaque to XBraid
and done in user code. This allows the user to add temporal parallelism to existing
time-stepping codes with minimal modifications. For more details, see [10] and [41].

2.2. Storage Costs. The reader should also note the storage costs associated
with MGRIT. At a minimum, the solution values ui must be stored at each C-point in
the temporal hierarchy (the first term in the storage cost model below). In addition,
some number k of auxiliary vectors must be stored at all points on the coarse levels
(the second term below). Let L be the number of temporal levels, p be the number of
temporal processors, and sl be the cost to store a vector on level l. Then the storage
cost of MGRIT (per temporal processor) is as follows:

(2.5) SC(k) ≈
L−1∑
i=0

⌈
Nt

mi+1p

⌉
si +

L−1∑
i=1

k

⌈
Nt
mip

⌉
si.

By default, MGRIT stores two auxiliary vectors on coarse grids (k = 2): a re-
stricted copy of the fine-grid solution and the right-hand-side for the coarse FAS
system. However, in Section 5.2 we show how storing one additional auxiliary vector,
specifically the most recent solution from the corresponding Φ evaluation, allows the
user to dramatically reduce the overall runtime.

Equation (2.5) will be used to compute a memory multiplier that gives an estimate
of the per processor increase in memory usage when compared to sequential time-
stepping. The memory multiplier used is defined as SC(k)/s0.

3. Model problem implementation. The weak form of equations (1.3)-(1.5)
reads: find u ∈ V h such that

(3.1) 〈ut, vh〉+ 〈|∇u|p−2∇u,∇vh〉 = 〈b, vh〉+ 〈g, vh〉∂Ω, ∀vh ∈ V h,

where V h is an appropriate finite element space. Discretizing in time using a backward
Euler method and the temporal mesh in Figure 2 gives
(3.2)〈
uk+1 − uk

δt
, vh
〉

+ 〈|∇uk+1|p−2∇uk+1,∇vh〉 = 〈bk+1, v
h〉+ 〈gk+1, v

h〉∂Ω, ∀vh ∈ V h,

where k = 0, 1, . . . , Nt − 1, and u0 is the initial condition, given in (1.5), projected
onto the finite element space. Define Ψ(u)(v) and fk(v) to be

Ψ(u)(v) = 〈u, v〉+ δt〈|∇u|p−2∇u,∇v〉,(3.3)

fk(v) = 〈uk + δt bk+1, v〉+ 〈δt gk+1, v〉∂Ω.(3.4)

Then, the final nonlinear weak form is: find uk+1 ∈ V h such that

(3.5) Ψ(uk+1)(vh) = fk(vh), ∀vh ∈ V h, k = 0, 1, 2, . . . , Nt − 1.

Each time-step corresponds to the solution of this nonlinear system (i.e., the inversion
of Ψ). The Fréchet derivative of Ψ(u)(v), Ψ′(u)(v)[w], is

Ψ′(u)(v)[w] = lim
a→0

Ψ(u+ aw)(v)−Ψ(u)(v)

a
,(3.6)

= 〈w, v〉+ δt〈
[
|∇u|p−2 + (p− 2)(∇u)(∇u)T

]
∇w,∇v〉.(3.7)
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Hence, Newtons method for (3.5) is

(3.8) uj+1
k+1 = ujk+1 − δu

j ,

where the subscripts on u are time-steps, the superscripts on u are the Newton iter-
ations, and δuj is the unique element of V h such that

(3.9) Ψ′(ujk+1)(vh)[δuj ] = Ψ(ujk+1)(vh)− fk(vh),

for every vh ∈ V h.

3.1. Numerical parameters. All tests were completed with T = 4 seconds
and Ω = [0, 2]2 on a regular grid. The forcing function, b(x, t), was chosen such that
the exact solution was

u(x, y) = sin(κx) sin(κy) sin(τt),

where κ = π and τ = (2 + 1/6)π. Unless otherwise stated, the p-Laplacian was
used with p = 4. The spatial discretization was computed using standard bi-linear
quadrilateral elements and MFEM [29], a parallel finite element code.

The numerical testing parameters used throughout the paper (unless otherwise
mentioned) were as follows. The Newton tolerance was fixed at 10−7. The spatial
solver for each Newton iteration was BoomerAMG from hypre 2.10.0b [21]. The
BoomerAMG parameters were: HMIS coarsening (coarsen-type 10), one level of ag-
gressive coarsening, symmetric L1 Gauss-Seidel (relax-type 8), extended classical mod-
ified interpolation (interp-type 6), and interpolation truncation equal to 4 nonzeros
per row. The machine used for all numerical tests was Vulcan, an IBM BG/Q machine
at LLNL.

Except for the scaling studies, the test problem size was a (64)2×4096 space-time
grid on the domain [0, 2]2 × [0, 4] using 4 processors in space and 128 processors in
time. V-cycles and FCF-relaxation were employed in every test with a fixed stopping
criteria of 10−9/(

√
δt h). This allowed the same tolerance, relative to the fine-grid

resolution, to be used in all cases. Note that this is an overly tight tolerance with
respect to discretization error, set in large part because of the desire to investigate
the algorithm’s asymptotic convergence properties. The temporal coarsening factor
was m = 4.

4. Establishing baselines. The goal of this paper is to develop experience
with general strategies that one can use to obtain an MGRIT algorithm for nonlinear
problems that is as efficient as those previously seen for linear problems. To that
end, an efficiency metric for computational cost is now presented. Two numerical
baselines, through which all improvements will be measured, are also given.

The MGRIT cost metric used here relies on c
(j)
` , the average cost of a Newton

solve3 on grid level ` during MGRIT iteration j. This is a sensible choice because
the key computational kernel for nonlinear problems is the Newton solve. Section 4.1
provides a detailed discussion of this metric and why it was chosen.

Two baseline tests were completed, the first being the sequential baseline. This
baseline determined the average cost of a Newton solve when using a sequential solver,
on a variety of space-time grids. An efficient implementation of MGRIT for nonlinear

3By Newton solve, we mean the whole cost to take a nonlinear time step with Φ using the Newton
solver, including its multiple inner Newton iterations.
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problems will match (or improve on) these cost estimates. The second baseline test
is called the “naive” MGRIT baseline. For this baseline, MGRIT was applied to the
model nonlinear problem in an “out of the box” fashion. Typically, time-stepping
routines have a hard-coded initial guess equal to the previous time-step and do not
implement spatial coarsening. Hence, the “naive” MGRIT baseline mimics this. Note
that this approach did, given enough temporal processors, provide a small speedup
over the sequential routine (see Section 7.2); however, these speedups were much less
than those seen for linear problems.

4.1. Cost Metric. We define the chosen cost metric, c
(j)
` , as the cost of a New-

ton solve (Φ application) on grid level ` during MGRIT iteration j, averaged over all
time-steps on that level, during that MGRIT iteration, i.e.,

(4.1) c
(j)
` = a

(j)
` w`,

where a
(j)
` is the average number of Newton iterations required to take a nonlinear

time-step on level ` and MGRIT iteration j, and w` is the number of spatial unknowns

on level `. Thus, c
(j)
` is the cost estimate of a single Φ application.

As motivation for this choice, let us examine a simple cost model for the entire
MGRIT algorithm. Restriction from level ` to level ` + 1 has the same cost as a
C-relaxation on level `. Likewise, interpolation from level ` to level `−1 has the same
cost as an F-relaxation on level `. Hence, beyond the coarsest grid when using FCF-
relaxation, each MGRIT level carries out 3 F-relaxations and 2 C-relaxations, for a
total of (2 + (m − 1)/m)Nt` evaluations of Φ, where for simplicity Nt` , the number
of time-steps on level `, is assumed to be an exact multiple of m. Next, consider an
MGRIT V-cycle where level 0 is the finest and level L is the coarsest, and ν is the
number of V-cycles required for MGRIT to converge to within the residual tolerance.
Then, the total cost of the MGRIT algorithm is

(4.2) C(L, ν) ≈
ν∑
k=1

(
NtLc

(k)
L +

L−1∑
`=1

c
(k)
` (2 + (m− 1)/m)Nt`

)
.

Clearly, equation (4.2) implies that minimizing the average cost of a Newton solve
on each level and MGRIT iteration will directly result in a reduction in the overall

cost of the MGRIT cycle, and hence, c
(j)
` can be used to measure the efficiency of the

algorithm. Section 5 examines the two most important strategies for minimizing c
(j)
` ,

an improved initial guess for Newton and spatial coarsening.

While the metric shown here is c
(j)
` , another parallel performance issue is the

variance in the cost of a Newton solve over the temporal domain. On the coarser
grids, where a processor might own a single time-step, synchronization effects imply
that an F- or C-relaxation cannot complete until the slowest processor finishes. This
in turn implies that the difference between the maximum and minimum cost per

Newton solve would indicate synchronization problems. We therefore note that c
(j)
`

also tracks this spread between maximum and minimum for this problem, but since
this fact is problem dependent, we draw the reader’s attention to it.

4.2. Sequential time-stepping baseline. We now establish the sequential
time-stepping baseline. Table 1 shows estimates of the cost of a Newton solve on
all of the space-time grids present in the space-time grid hierarchy when MGRIT is
applied to the model problem outlined in Section 3.1. These estimates, calculated
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δt h a` w` c`

1/1024 1/32 2.13 652 9.00e3
1/256 1/32 2.85 652 1.20e4
1/64 1/32 4.18 652 1.77e4
1/16 1/16 6.52 332 7.10e3
1/4 1/8 10.8 172 3.12e3
1/1 1/4 6.5 92 5.26e2

(a) Delayed spatial coarsening

δt h a` w` c`

1/1024 1/32 2.13 652 9.00e3
1/256 1/32 2.85 652 1.20e4
1/64 1/32 4.18 652 1.77e4
1/16 1/32 7.77 652 3.28e4
1/4 1/32 13.4 652 5.66e4
1/1 1/32 9.0 652 3.80e4

(b) No spatial Coarsening

Table 1: Baseline Newton solver costs for sequential time-stepping.

using Equation (4.1), are the average cost of a Newton solve when using a sequential
solver.

Table 1a depicts baseline estimates for MGRIT using delayed spatial coarsening,
while Table 1b provides baseline estimates for MGRIT with no spatial coarsening. An
efficient implementation of MGRIT will match (or improve on) these cost estimates
across all levels. Table 1 indicates that the average cost of a Newton iteration is
highly dependent on the space-time grid, with there being a considerable advantage
to coarsening simultaneously in space and time. This is because spatial coarsening

reduces both a
(j)
` and w`. The decrease in a

(j)
` is explained by considering a standard

backward Euler time-step,

(4.3)

(
I − δt

h2
G

)
(uk+1) = f(uk),

where G is a nonlinear diffusion operator. As δt/h2 increases, the nonlinear operator
moves away from the identity, becoming more expensive to solve. Coarsening in space
and time bounds this ratio, making the nonlinear solve from Equation (4.3) cheaper
on the coarse grid. A detailed investigation into using spatial coarsening is given in
Section 5.3.

The other important strategy explored here to reduce the cost of Newton is to
improve the initial guess (see Section 5.2). This importance is also evident in Table 1,
where a` continues to increase with δt, even when spatial coarsening is used. This
is because δt is increasing, thus making the initial guess to Newton (the previous
time-step) progressively worse. On the coarse levels, where δt is large, this is clearly
a poor approximation to the solution. In Section 5.2, an alternate initial guess for
Newton, where the initial guess is the solution obtained during a previous evaluation
of Φ at the current time-point, and on the current MGRIT level, is pursued.

4.3. Naive MGRIT baseline. Next, the so called “naive” MGRIT baseline
is presented. The naive implementation is an unmodified, “out of the box” type
implementation that wraps a sequential time-stepping routine without any MGRIT
optimizations. In particular, the previous time-step is used as the initial guess and

spatial coarsening is not implemented. Table 2 depicts the cost estimates, c
(j)
` , for this

setting inside an MGRIT cycle. Each δt (column) value corresponds to a temporal
level, while the rows represent different XBraid iterations.

Due to increasing Newton iteration counts, the cost of a coarse grid Newton solve
is, in some places, 6 times more expensive than a fine grid solve. This can lead to
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Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1

0 2.17e4 2.10e4 2.20e4 3.16e4 5.86e4 4.92e4
1 1.08e4 1.24e4 1.76e4 3.52e4 5.98e4 5.41e4
2 8.81e3 1.19e4 1.70e4 3.35e4 6.06e4 5.73e4
3 8.77e3 1.17e4 1.72e4 3.38e4 5.94e4 5.73e4
4 8.72e3 1.17e4 1.72e4 3.39e4 5.94e4 5.73e4
5 8.72e3 1.17e4 1.72e4 3.39e4 5.98e4 5.73e4

Table 2: Cost estimates, c
(j)
` , for the naive MGRIT baseline (solver 0). The cost

estimates are given in raw, unscaled form across each temporal level and MGRIT
iteration.

Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1 Total

0 1.73e5 4.20e4 4.39e4 6.32e4 1.17e5 9.83e4 5.38e5
1 8.62e4 2.48e4 3.51e4 7.05e4 1.20e5 1.08e5 4.44e5
2 7.05e4 2.38e4 3.41e4 6.71e4 1.21e5 1.15e5 4.31e5
...

...
...

...
...

...
...

...

Table 3: For processes active on each temporal level, estimated average cost to carry
out FCF-relaxation, based on Table 2.

an inefficient method in parallel. Consider the case where each MPI process owns
m points in time on the finest level, i.e., one CF-interval. In [10] it was shown that
this is an efficient decomposition. On coarser levels, each process then owns at most
one point in time. Table 3 gives, for the processes active on each temporal level, the
estimated cost of an FCF-relaxation. On the finest grid, these numbers are 2m times
the cost estimates in Table 2 because FCF-relaxation (for larger m) involves roughly
2m time-step evaluations. Then, on coarser grids, the cost estimate is simply twice
what is in Table 2 because each processor owns at most one point, and all F -points
are relaxed twice.

In this setting, it is immediately clear how expensive Newton solves on coarse
levels can dominate the cost of a V-cycle because the levels must be traversed in
order on each processor (i.e., one can sum each row in Table 3 for a cost estimate
of that V-cycle). Since the dominant cost of a V-cycle is relaxation, this row-sum,
given in the final column, is then a cost estimate for each V-cycle. In contrast, for
the linear setting (when using an optimal spatial solver), the work required would
be independent of time-step size. When targeting an MGRIT efficiency similar to a
linear problem, this will be a key issue.

In conclusion, our goal is to present a library of MGRIT optimizations and mod-
ifications that can be extended to most nonlinear parabolic problems. These opti-
mizations and modifications are developed with the goal of minimizing the average
cost of a Newton solve, focusing on the coarse grids, while addressing common user
concerns of non-intrusiveness and memory usage. Controlling any growth in the cost
of a Newton solve across temporal levels will be key to matching the results seen with
MGRIT for linear problems. By itself, the naive application of MGRIT scales very
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poorly when placed alongside the comparable linear problem (see sections 7.1 and
7.2).

5. Efficient MGRIT for the model nonlinear problem. In this section a
variety of approaches designed to make MGRIT more efficient for the chosen nonlinear
model problem (1.3) are investigated. Improvements are measured by comparing to
the naive MGRIT baseline of Section 4.3.

5.1. Solver ID table. Given the number of options considered, and to make
discussion easier, each solver is given a numerical ID. Table 4 presents each solver
considered and its runtime for the chosen test problem size. Also given is the per
processor “memory multiplier” that gives an estimate of the per processor increase
in memory usage (see Section 2.2), when compared to sequential time-stepping. The
multiplier is given for the number of temporal processors p = 128 and p = 4096, which
is the largest possible p for this test problem size. For p = 128, the multiplier is quite
large, but the addition of more resources can make this number relatively small.

Each solver option is discussed in more detail in the following subsections. How-
ever, a brief description of each solver is presented here for the reader’s convenience.

Solver 0 refers to the naive MGRIT approach from Section 4.3. The column
heading “Spatial Grids” refers to the number of spatial grids used and is the option
introduced in Section 5.3. A value of 1 for “Spatial Grids” indicates no spatial coars-
ening, while 4 means that the finest spatial grid is coarsened 3 times for a total of 4
grids. The finest grid is 64 × 64, so coarsening further in space is not advantageous.
The difference between solvers 1 and 2 is that solver 1 delays spatial coarsening so that
it begins on the fourth temporal grid. Solver 2 begins spatial coarsening immediately
on the first coarse time grid. Remember, for this problem with 4096 time-steps and
m = 4, there are only 6 temporal grids. Given the bad effects on convergence visible
from “no delay” in solver 2, unless otherwise mentioned, spatial coarsening is always
delayed. See Section 5.3 for more details.

Solvers 3, 4, 5 and 6 correspond to the improved initial guess introduced in Sec-
tion 5.2. Here, “IIG” means that the improved initial guess, specifically the solution
from a previous evaluation of Φ, is used as the initial guess for each Newton solve.
This happens either at every point, or at all the coarse grid points and the fine grid
C-points, depending on whether all the points or only the C-points are stored. Re-
garding the memory multiplier, the use of IIG requires an additional vector stored on
coarse levels, hence k = 3 (instead of 2) in Equation 2.5.

Solvers 7, 8, 9 and 10 correspond to turning on the “Skip” option introduced in
Section 6.1. There, the concept of skipping unnecessary work during the first MGRIT
down cycle is introduced.

Solvers 11 and 12 correspond to having “Cheap first three iters” as introduced
in Section 6.2. Here, the Newton tolerance is relaxed during the first three MGRIT
iterations.

Solvers 13, 14, 15 and 16 reduce the number of levels in the hierarchy by setting
a larger “Coarsest grid size” as introduced in Section 6.3. For instance with m = 4,
using a coarsest grid size of 16 instead of 4 removes the coarsest level in the hierarchy.
This can improve the time-to-solution by avoiding cycling between very small grids.

5.2. MGRIT with an improved initial guess for Newton’s method. Sec-

tion 4.2 showed that c
(j)
` increases with the time-step size (and hence MGRIT level)

because using the previous time-step as the initial guess for Newton’s methods be-
comes increasingly inaccurate. Thus, this section explores an improved initial guess
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0 1 Never No No 4 40→ 16 162s 7 1135s
1 4 Never No No 4 31→ 7 101s 7 712s
2 4* Never No No 4 12→ 2 57s 30 1717s

3 1 C points No No 4 53→ 21 91s 7 638s
4 4 C points No No 4 42→ 10 82s 7 579s

5 1 Always No No 4 84→ 21 92s 7 647s
6 4 Always No No 4 73→ 10 84s 7 591s

7 1 C points Yes No 4 53→ 21 64s 7 453s
8 4 C points Yes No 4 42→ 10 58s 7 410s

9 1 Always Yes No 4 84→ 21 61s 7 429s
10 4 Always Yes No 4 73→ 10 55s 7 391s

11 1 Always Yes Yes 4 84→ 21 56s 7 395s
12 4 Always Yes Yes 4 73→ 10 51s 7 360s

13 1 Always Yes Yes 16 80→ 17 58s 7 408s
14 4 Always Yes Yes 16 73→ 10 50s 7 354s

15 1 Always Yes Yes 64 76→ 13 63s 8 506s
16 4 Always Yes Yes 64 73→ 10 47s 8 383s

Table 4: Overall runtimes, storage costs, iteration counts and average time per itera-
tion for the various solver options, with a (64)2× 4096 space-time grid. A * indicates
no delay in spatial coarsening.

(IIG), which uses as the initial guess for Newton’s method at a specific time point
and MGRIT level, the solution from the previous evaluation of Φ at that point and
level. As XBraid converges, this value becomes an ever improving initial guess.

The main drawback of using the IIG is that an extra auxiliary vector must be
stored at each point on every coarse grid4. The extra storage at coarse levels is
required because the FAS solution, already stored there, is not equal to the result of
the previous Φ evaluation.

This creates a tension between memory usage and computational efficiency. To
limit memory usage, one can alternatively choose to store the solution at the fine
grid C-points only. In this case, the IIG is available at all time steps except those
completed during fine grid F-relaxation, where the previous time-step is used. This
approach, referred to as IIG at C-points, is used by solvers 3, 4, 7 and 8.

4The solution from the previous Φ evaluation and the current FAS solution are equivalent on the
fine-grid, so the IIG is already available at stored fine-grid points.
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Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1

0 1.33270 1.20858 1.12873 0.63990 0.21818 0.46833
1 1.61597 1.14191 0.86014 0.36279 0.11507 0.10455
2 1.37209 0.85911 0.59375 0.23077 0.06196 0.04464
3 1.02336 0.58947 0.34524 0.14528 0.04021 0.02679
4 0.64319 0.34491 0.22029 0.09203 0.01724 0.02679
5 0.49765 0.32491 0.20167 0.04976 0.01596 0.01786

Table 5: Relative cost estimates, c
(j)
` /c

(j)
`,naive, for MGRIT with the improved initial

guess at all points (solver 5), across each temporal level and MGRIT iteration. The
solver setup is otherwise identical to that used for Table 2. Cost estimates are scaled

entry-by-entry with c
(j)
`,naive, the naive MGRIT baseline costs from Table 2.

Table 5 shows c
(j)
` over all levels and iterations, scaled entry-by-entry with the

corresponding entry from the naive MGRIT baseline from Table 2. For example,
entry (2,3) in Table 5 has been scaled by entry (2,3) from Table 2. Values less than
one indicate that the cost per Newton solve was reduced by using the improved initial

guess, while values greater than one indicate it increased. A large reduction in c
(j)
` is

seen across most temporal grids and iterations.

The exception to this is on the fine-grid, where costs increase during early itera-
tions when using the IIG. This is not surprising. During the first few iterations the
IIG is either inaccurate or unavailable.5 A consequence of these increased costs is
seen in Table 4, where solver 3, which uses the IIG everywhere except the fine grid
F-Points, was actually slightly faster than when the IIG was used at all points.

Despite the increased costs on the fine grid, solvers 3 and 5, where the IIG is
used as the initial guess to the Newton solver at all points and only at coarse points
(C-points), show large reductions in overall runtime, a direct consequence of the cost
reductions seen in Table 5. Moreover, there is no degradation in MGRIT convergence.
Solvers 4 and 6, where the IIG is used in conjunction with spatial coarsening, are
discussed in Section 5.4.

In conclusion, these results indicate that using the IIG as the initial guess is very
beneficial. Using the IIG only at C-points is an excellent option, in this case reducing
the runtime by 44%, with only a 32% increase in storage costs over the naive approach,
when comparing solvers 0 and 3 in Table 4. Using the IIG as the initial guess at all
points doubled the storage costs of the method, but only reduced the runtime by 43%.

Optionally, a user could opt to experimentally determine which initial guess to use
on each level and iteration. Such a strategy would likely result in further cost savings,
but be highly problem specific. Instead, we will pursue more general strategies that,
when used in conjunction with the improved initial guess, will reduce the cost of those
first three iterations in Section 6.

Either way, the improved initial guess is an effective, non-intrusive strategy that
will provide a large reduction in runtime for most nonlinear parabolic implementa-
tions of MGRIT. This ability to effectively use reduced storage only at C-points and

5 During the first iteration, at C-points, the user supplied initial guess is returned as the solution
from a previous Φ evaluation. The user does not define an initial guess at F -points, so the previous
time-step must be used.
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the overall importance of improved initial guesses for nonlinear MGRIT are both
important contributions of this work.

5.3. MGRIT with spatial coarsening. Motivated by results seen in Sec-
tion 4.2 and Table 1a, spatial coarsening is added to the naive solver from Section 4,
as indicated in Algorithm 1. In general, the user’s code defines the separate spatial
interpolation and restriction functions Px() and Rx(). At first glance spatial coars-
ening seems intrusive, however, MGRIT semi-coarsens in time and is agnostic to the
spatial discretization, thus spatial coarsening is an extra option that can easily be
implemented independently of the time-integration scheme.

Here, the natural finite element spatial restriction operator (and its transpose) is
used to interpolate between regularly refined spatial grids. This operator is provided
by MFEM. Spatial interpolation equals the scaled (by 1/4) transpose of restriction
so that RxPx ≈ I. The choice of spatial interpolation operators is an area of active
research; however, it is not surprising that scaling so that RP resembles an oblique
projection helps MGRIT convergence. A better choice here could lead to improved
results below.

The benefit of spatial coarsening is validated by the improved timings in Table 4.
Here, solvers 0, 1 and 2 apply varying levels of spatial coarsening.

Beginning spatial coarsening on the first coarse grid (solver 2) leads to a degra-
dation in MGRIT convergence. For practical purposes, this solver is unusable as the
convergence degradation continues for larger problems. This is unfortunate given that
this approach has a much smaller runtime per iteration.

It is important to note that this degradation is not restricted to nonlinear prob-
lems. For example, if we replace the nonlinear co-efficient of the p-Laplacian with the
exact, known solution, then the resulting linear problem still suffers from the same
MGRIT degradation due to spatial coarsening. This degradation is still an area of ac-
tive research, however recent analysis suggests that it occurs because the eigenvalues
of the time-integration operators (Φ and Φ∆) are not bounded away from zero.

Our goal is to develop a spatial coarsening strategy that can be applied to all
nonlinear problems. As such, we omit a detailed, problem specific convergence analysis
and instead provide a simple strategy that allows spatial coarsening to be used with
some nonlinear problems that exhibit this phenomenon. A similar strategy was used
in [13] to make use of spatial coarsening inside a full space-time multigrid method.

The strategy, referred to as “delayed” spatial coarsening, is to limit spatial coars-
ening to the coarsest time grids. For example, solver 1 uses four spatial grids with
spatial coarsening delayed until the fourth temporal level. Table 6 presents a cost

analysis of this strategy, scaling each c
(j)
` with the corresponding cost estimates found

using the naive MGRIT baseline in Table 2. To highlight the cost saving benefits of
delayed spatial coarsening, this table shows results that use the previous time-step as
the initial guess for the Newton solve. Section 5.4 discusses the combined effect of
spatial coarsening and the improved initial guess, introduced in Section 5.2.

Delayed spatial coarsening reduced both the number and cost of Newton itera-
tions on the coarse grids, In fact, on the coarsest grid the average cost per Newton
Solve is 100 times smaller than the cost to complete the same solve using the naive
baseline. Recognizing the specific importance of spatial coarsening when controlling
the nonlinear time-step solver iterations on coarse time grids is an important contri-
bution.

The benefit of these dramatic cost reductions is seen in Table 4. Solver 1, where
spatial coarsening is delayed until the fourth temporal level, simultaneously minimized
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Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1

0 1.00000 1.00390 1.00933 0.23705 0.05026 0.01139
1 1.00380 0.99670 0.99534 0.21163 0.04837 0.01036
2 0.99535 0.99656 1.00000 0.21612 0.04814 0.01004
3 1.00000 1.00000 0.99762 0.21459 0.04914 0.01004
4 1.00000 1.00000 1.00000 0.21437 0.04914 0.01004
5 1.00000 1.00000 1.00000 0.21437 0.04880 0.01004

Table 6: Relative cost estimates, c
(j)
` /c

(j)
`,naive, for MGRIT with spatial coarsening

(solver 1), across each temporal level and MGRIT iteration. Spatial coarsening begins
on the fourth time level, δt = 1/16. The previous time-step is used as the initial guess
at all points. The solver setup is otherwise identical to that used for Table 2. Cost

estimates are scaled entry-by-entry with c
(j)
`,naive, the naive MGRIT baseline costs

from Table 2.

Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1

0 1.33270 1.20858 1.12873 0.14734 0.01058 0.00488
1 1.63118 1.15512 0.88112 0.07907 0.00651 0.00118
2 1.37674 0.87629 0.60096 0.04945 0.00387 0.00098
3 1.05140 0.59298 0.34762 0.03269 0.00251 0.00042
4 0.64319 0.35053 0.22768 0.02213 0.00137 0.00042
5 0.50235 0.32421 0.19905 0.01498 0.00107 0.00042

Table 7: Relative cost estimates, c
(j)
` /c

(j)
`,naive, for MGRIT when using spatial coarsen-

ing and the improved initial guess (solver 6), across each temporal level and MGRIT
iteration. The solver setup is otherwise identical to that used for Table 2. Cost esti-

mates are scaled entry-by-entry with c
(j)
`,naive, the naive MGRIT baseline costs from

Table 2. Spatial coarsening again begins on the fourth time level, δt = 1/16.

the MGRIT convergence rate and the coarse grid computational costs, leading to a
37 % reduction in run-time when compared to solver 0. This is the strategy pursued
in this paper and it has proven to be robust in our tests.

5.4. Combining the improved initial guess and spatial coarsening. Sec-
tions 5.2 and 5.3 introduced an improved initial guess and spatial coarsening. Individ-
ually these improvements reduced the overall runtime by 43% and 37%, respectively.

Table 7 gives a cost analysis of the MGRIT algorithm when these strategies are
combined, using 4 levels of spatial coarsening and the IIG at all points. In this table
each cost estimate is again scaled by the corresponding cost estimate calculated using
the naive MGRIT baseline.

Solvers 4 and 6, from Table 4, show the effect of using both of these options.
When compared to the “naive” baseline, solver 4, where the IIG is used only at C-
points, gives a 49% reduction in runtime with only a 5% increase in storage, when
compared to solver 0.

Overall, delayed spatial coarsening, and spatial coarsening in general, is an ef-
fective strategy that can be applied to most, if not all, nonlinear parabolic imple-
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mentations of MGRIT. Clearly, no delay in spatial coarsening is best, however, in
cases where this causes a large degradation in the convergence rate, delayed spatial
coarsening can still be used to balance the computational savings and convergence
degradation. Mitigating this degradation in the convergence rate is an area of active
research.

6. Further Cost Savings. While the improved initial guess and spatial coars-
ening are, by far, the most effective strategies presented, several more strategies for
reducing the cost of MGRIT are now considered. The effect of these strategies is
significantly smaller than that for spatial coarsening and the improved initial guess;
thus we will now normalize the cost analysis tables with respect to the just previously
considered solver configuration. For example, the next table in Section 6.1 is scaled
entry-by-entry by the raw cost estimates corresponding to Table 7 from Section 5.4.
The table after that in Section 6.2 is scaled entry-by-entry by the raw cost estimates
corresponding to the table from Section 6.1, and so on. An entry greater than 1
represents a deterioration relative to the previous solver configuration, while a value
less than 1 represents an improvement.

6.1. Skipping Unnecessary Work. Even with the improvements so far, c
(j)
i

remains large during the first three MGRIT iterations. Consider iteration 0 and the
down-cycle and up-cycle parts of Figure 4. For the model problem, where no prior
knowledge of the solution is available, it is clear that relaxation during the down cycle
of iteration 0 provides no benefit. The first time that global information is propagated
is during the coarse grid solve, and the subsequent up cycle, of iteration 0. Therefore,
all relaxation, and in fact work of any kind, during the down-cycle of iteration 0 can
be omitted. In this setting, the initial condition on the finest-grid is injected to the
coarsest-grid and then serially propagated. Then, the solution is interpolated back to
the finest-grid. Because we have no knowledge of the solution, the previous time step
is used as the initial guess throughout this process. This strategy, similar to those
found in full multigrid methods, is a non-intrusive modification of the basic MGRIT
algorithm.

If some a priori knowledge of the solution is available to initialize the finest-grid
for MGRIT, then this work should not be skipped. In all other cases, this is an
effective, cheap, approach to determining an initial guess at the fine-grid C-points.

Table 8 shows the cost analysis for this approach (solver 8) when it is added to
the solver strategy from Section 5.4 (solver 6), where the IIG is used as the initial
guess, along with four levels of spatial coarsening. The cost analysis is similar if

spatial coarsening is not used. To better discern the improvements, c
(j)
` is scaled by

the corresponding raw cost estimates generated when using solver 6. Skipping work
can actually increase the cost of a Newton solve on some levels during the first few
iterations. However, the corresponding solvers 7 and 8 in Table 4 show that this
strategy reduces the overall runtime with no degradation in MGRIT convergence.
The reduced runtime is due to the fact that the time-stepping routine is called far
fewer times during iteration 0, despite being more expensive when it is called. For
instance, the “-1.0000” denotes the fact that there is no work done on the first level
for iteration 0, by far the most expensive level. On coarse levels, during iteration 0,
only interpolation (F-relaxation) is performed.

6.2. Cheap initial iterates. The initial three iterates are the most expensive,

with c
(j)
` significantly higher on all levels. The solution at this point is still inaccurate,

so another obvious modification is to reduce the Newton tolerance during the first
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Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1

0 −1.0000 0.49677 0.77355 1.43736 4.58678 1.73333
1 0.50583 1.02000 1.15344 1.35294 1.63158 1.62000
2 0.89527 0.86667 0.92000 0.98765 1.03599 0.57143
3 0.81333 0.82840 0.88356 0.98148 1.11492 1.00000
4 0.94891 0.96296 0.96855 1.13643 1.41956 1.00000
5 0.94393 0.97727 0.96163 1.05847 1.00000 0.66667

Table 8: Relative cost estimates, c
(j)
` /c

(j)
`,7, for MGRIT when skipping work during

the down-cycle during iteration 0 (solver 10), across each temporal level and MGRIT
iteration. The solver setup is otherwise identical to that used for Table 7 (solver 6).

Cost estimates are scaled entry-by-entry with c
(j)
`,7, the raw cost estimates used to

generate Table 7.

Iteration δt = 1/1024 1/256 1/64 1/16 1/4 1

0 −1.0000 0.66234 0.72650 0.82569 0.90090 0.88462
1 0.58525 0.66387 0.66514 0.68478 0.68548 0.61728
2 1.01887 1.01357 1.00870 1.01250 1.05263 1.25000
3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
4 1.00000 1.00104 1.00108 1.00000 1.00000 1.00000
5 1.00000 1.00000 1.00000 0.99238 1.00000 1.00000

Table 9: Relative cost estimates, c
(j)
` /c

(j)
`,8, for MGRIT when using the cheap initial

iterate strategy (solver 12) across each temporal level and MGRIT iteration. The
solver setup is otherwise identical to that used for Table 8 (solver 10). Cost estimates

are scaled entry-by-entry with c
(j)
`,8, the raw cost estimates used to generate Table 8.

three iterations on all levels. Our simple strategy here is to use tol = 10−3 (as
opposed to 10−7) as the Newton tolerance during the first three iterations. Thereafter,
tol returns to 10−7. Some tuning of these parameters will be required when applying
this strategy to another nonlinear problem.

Table 9 shows the cost analysis for this approach (solver 12) when it is added to
the previous solver strategy from Section 6.1 (solver 10). The cost analysis is similar if

spatial coarsening is not used. The cost estimates, c
(j)
` , are scaled by the corresponding

raw cost estimates generated using the previous solver 10, so that values less than 1
represent an improvement over Table 8. These scaled values do show the expected
drop in the cost estimate during iterations 0, 1 and 2. This drop is especially large on
the finest grid, where the decrease is by about 40-45%. Table 4 (solvers 11 and 12)
validates this by showing a decreased runtime and no degradation in overall MGRIT
convergence.

Remark 6.1. A similar optimization that works well in the linear setting of [10]
is to fix the number of iterations taken in the coarse-level implicit solves. However,
this was not effective in the nonlinear case, apparently because the coarse Newton
estimates were not accurate enough to maintain good convergence.
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Iteration δt = 1/1024 1/256 1/64 1/16 1/4

0 −1.0000 0.39376 0.61754 0.17001 0.04318
1 0.47909 0.77888 0.67599 0.07355 0.00591
2 1.25581 0.76289 0.54808 0.04792 0.00583
3 0.83645 0.47018 0.28810 0.02939 0.00404
4 0.59624 0.33228 0.21742 0.02503 0.00350
5 0.46667 0.31649 0.19045 0.01486 0.00188

Table 10: Relative cost estimates, c
(j)
` /c

(j)
`,naive, for MGRIT when using the most

effective combination of the suggested improvements (solver 14), across each temporal

level and MGRIT iteration. Cost estimates are scaled entry-by-entry with c
(j)
`,naive,

the raw cost estimates used to generate Table 2.

6.3. Setting the coarsest grid size. The final algorithmic enhancement con-
sidered is the size of the coarsest grid. Given how relatively expensive the Newton
solver is on coarse grids, the question naturally arises whether truncating the number
of levels in the hierarchy can be beneficial. However, this involves a trade-off. When
a level is truncated from the hierarchy, the expensive Newton solves are no longer
done at that level and the communication involved with visiting that level is avoided.
However, the sequential part of the algorithm increases because the coarsest grid size
has now increased. Thus, the best coarsest grid size is naturally problem and machine
dependent. So far, the coarsest grid size has been 4, but here, coarsest grids of size
16 and 64 as now also considered. Since changing the coarsest grid size changes the
cost estimates very little, that data is omitted.

For the case of a coarsest grid size of 16 (solvers 13 and 14) Table 4 shows a small
speedup of 6s when using spatial coarsening, but a slow down of 13s for the case of no
spatial coarsening. This is because spatial coarsening makes the spatial grid on the
coarsest grid much smaller, and hence, the sequential solve required on the coarsest
level is much cheaper. In other words the penalty for a larger coarsest grid size is
much smaller for the case of spatial coarsening.

For the case of a coarsest grid size of 64, (solvers 15 and 16 in Table 4), the extra
work from the larger sequential component of the solve on the coarsest level swamps
any benefit and the run times increase for both solvers 15 and 16. Given that solver
14 is the best overall performing solver, a maximum coarse grid size of 16 is used in
scaling studies below.

6.4. Most effective improvements. Not surprisingly, the largest overall re-
duction in runtime is seen when spatial coarsening and the improved initial guess were
used in conjunction with the three improvements outlined in sections 6.1-6.3.

Table 10 gives a cost analysis of this approach (solver 14). In this table cost
estimates are scaled entry-by-entry with the naive MGRIT baseline from Table 2.

Level 0 of iteration 2 is the only entries for which c
(j)
` increases. Comparing to

Table 7, so that the overall effect of the improvements from sections 6.1-6.3 can be
measured, shows that most of the work saved is on the first two temporal levels (note
that there is one less level in Table 10.) Regarding runtime, Table 4 validates our
strategy. Solver 14 is 3.2 times faster than the naive baseline, a direct consequence of
the across the board cost savings seen in Table 10.
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ID \Grid: 162 × 256 322 × 1024 642 × 4096 1282 × 16384 2562 × 65536

0 7 7 7 6 6
1 7 7 7 7 7
4 7 7 7 7 7
6 7 7 7 7 7
14 8 8 7 8 9

Table 11: Weak scaling study: MGRIT iteration counts.

While many improvements have been outlined, Table 4 makes it clear that two
of the improvements, the improved initial guess and spatial coarsening, are the most
important. This can be seen by comparing solver 0 to solver 5 (to see the impact
of the improved initial guess), which shows a 47% improvement. Then, when solver
5 and solver 6 are compared (to see the impact of spatial coarsening), a further
8% improvement is seen. The other four strategies in concert combine for another
40% improvement (compare solver 6 with solver 14). The subsequent scaling studies,
therefore, focus on solvers 0, 1, 4, 6 and 14.

7. Scaling Studies. Previous sections have focused on producing the most ef-
ficient Newton solver as a proxy for MGRIT efficiency. Here, in an effort to validate
that heuristic, parallel scaling studies are presented.

7.1. Optimal multigrid scaling. In this subsection, to test the optimality of
MGRIT for the chosen model problem, a domain refinement study is presented. This
was completed in a manner similar to the way in which spatial multigrid optimality is
tested experimentally. That is, the space-time domain was fixed ([0, 2]2× [0, 4]) while
the spatial and temporal resolution were scaled up, keeping δt/h2 fixed. For runs using
spatial coarsening, the number of levels of spatial coarsening was increased on each
subsequent test, resulting in 4 levels of spatial coarsening on the largest space-time
grid of 2562×65 536. The solvers considered are 0, 1, 4, 6 and 14 so that (respectively)
the effects of spatial coarsening, the improved initial guess for the Newton solver, and
all the other enhancements, can be examined.

Table 11 shows the number of MGRIT iterations required for each solver to reduce
the MGRIT residual to within the tolerance, across the range of weakly scaled space-
time grids described above. In general, observed iteration counts appear bounded
independently of problem size for all the solver options considered. Unfortunately,
using this experiment for weak scaling timings requires more processors than our
machine provides (131K processors are available). For example, consider a weak
scaling experiment where the smallest problem size involves 8 compute nodes, with
16 processors per node, for a total of 128 processors. A base test case that involves
some off-node communication is needed, hence the choice of 8 compute nodes. To
maintain a constant problem size per node and a constant δt/h2, the number of
time points must quadruple as the spatial problem size is doubled. This corresponds
to increasing the node count by a factor of 16. Thus, to obtain four data points,
128 ∗ 163 = 524 288 processors would be required.

7.2. Strong scaling. Both MGRIT and sequential time-stepping are O(N) op-
timal, but the constant for MGRIT is larger. On the other hand, MGRIT allows for
temporal parallelism. This leads to a crossover point, after which MGRIT is bene-
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ficial. To illustrate this, a strong scaling study of MGRIT, for the space-time grid
of (128)2 × 16384, was completed. Figures 5a and 5b show the results. The plot
for “ID=14, linear problem” corresponds to the comparable linear problem of p = 2
in Equation (1.3). This allows one to compare MGRIT’s scaling for the nonlinear
problem with the scaling for the corresponding linear problem. To generate the data
for “ID=14, linear problem”, we simply set p = 2 in the code and make no other op-
timizations, e.g., the spatial matrix and solver are still built during every application
of Φ, as is required in the nonlinear case, so that the comparison is fair.6

The other plots are for the sequential (“Time-stepping”) time-stepping code and
solver ID’s 0, 1, 4, 6 and 14. This allows for a comparison of naive MGRIT (ID=0)
with the effects of spatial coarsening (ID=1), the improved initial guess (ID’s=4, 6)
and the effects of all the other improvements (ID=14).

Figure 5a depicts the results for m = 16 with 16 processors in space, while
Figure 5b shows the results for 32 processors in space and m = 4. For the sequential
solver, the bottleneck occurs at around 256 spatial processors, although the best wall
clock time of 2737 seconds is at 1024 spatial processors. Two different coarsening
factors, m, and two different spatial processor counts are shown in order to indicate
that these are now important user parameters affecting the speedup. The data points
in each plot end when there are m points in time per processor on the finest-level,
i.e., when using more processors in time provides no benefit. This is because FCF-
relaxation is sequential over each interval of m points.

Observing the results for the m = 16 case, the crossover point at which MGRIT
is beneficial is around 1024 processors, or about 64 processors in time. The maximum
speedup over the sequential solver was a factor of 6.4 at 16384 processors. Note
that delayed spatial coarsening (solver 1) does not show an improvement because
the larger coarsening factor reduces the number of levels in the temporal hierarchy.
For the m = 4 case, the crossover point is at about 2000 processors, or about 500
processors in time. Yet, this smaller coarsening factor allows one to use more of the
machine, and at 130K processors, the speedup over the sequential solver was 21×.

In both cases solvers 4 and 6 scaled identically, this is a key result of this paper.
Storing the solution at fine grid C-points reduces the storage costs of MGRIT without
affecting the overall scaling of the algorithm. Figure 5 highlights another important
aspect of the MGRIT algorithm. Increasing processors in space allows for greater
scaling potential, but, given a fixed number of processors, it is often beneficial to bias
the processor distribution towards temporal processors until m equals the number of
time points per processor.

Compared to the strong scaling for the linear problem presented in Figure 1,
these results are not as good. Optimal scaling would be represented by “straighter”
lines, however, achieving this is difficult. The dataset for the linear heat equation
(“ID=14, linear problem”) is very similar to the experiment in Figure 1. In fact, the
only differences are: (1) bi-linear finite elements on a regular grid were used in space,
as opposed to finite differencing; (2) the BoomerAMG solver in hypre was used, as
opposed to the more efficient geometric-algebraic solver PFMG in hypre; and (3) the
spatial discretization and spatial multigrid solver was built during every time-step.
However, in these tests the data set for the linear heat equation shows less than linear
strong scaling. Improving strong scaling here will require investigating each of the

6The spatial matrix and solver actually only need to be built once as in [10], because p = 2 is a
constant coefficient heat equation. But, this is not done here for the purposes of a fair comparison
between the linear and nonlinear cases.
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Fig. 5: Strong scaling study for a (128)2 × 16385 space-time grid, Left: 16 processors
in space, m = 16, Right: 32 processors in space, m = 4.

three differences described above. Difference (1) can be discounted because it does not
change the sparsity pattern of the spatial operator, nor does it qualitatively change
the convergence rate of the spatial multigrid solver. Thus, the most likely culprits for
the strong scaling degradation are the parallel finite-element matrix assembly and the
BoomerAMG setup-phase, although BoomerAMG is known to be an efficient spatial
multigrid code. This is a topic for future research.

The goal of this paper is develop a library of non-intrusive optimizations and
modifications that make an efficient implementation of the MGRIT algorithm for
nonlinear problems possible. As a measure of that efficiency, the MGRIT algorithm
was compared against a similar implementation of a linear problem. When comparing
to the linear problem in Figure 5, the lines for solver ID’s “14” and “14, linear prob”
are essentially parallel, which is a good result, indicating equivalent scaling. Yet, the
line for “14, linear prob” is noticeably lower, indicating its faster runtime of about
3×. This is not surprising because for the linear problem, the Newton solver need
only iterate once, while for the nonlinear problem, the Newton solver takes on average
2–3 iterations on the finest-level, meaning that the problem is itself 2–3 times more
expensive. The chief strategy under research now is to improve spatial coarsening so
that it can begin on the first coarse grid, which will significantly reduce this effect.

8. Conclusions. The MGRIT algorithm effectively adds temporal parallelism to
existing sequential solvers and has been shown to be effective for linear problems [10].
However, when moving to the nonlinear setting, the relatively large time-step sizes
on coarse grids make the application of MGRIT nontrivial. The proposed measures
allow MGRIT to achieve similar performance to a comparable linear problem.

If a good initial guess is not available for the first MGRIT iteration, the user
should build an FMG-like initial guess by skipping work on the first down cycle and
using the same initial guess as in the corresponding sequential solver. After that, the
IIG should be used during all coarse-grid time steps. The accuracy of the IIG is poor
during the first few MGRIT iterations, but gets better as MGRIT converges. Thus the
best choice for an initial guess on the fine grid will vary with MGRIT iteration. This
behavior is problem specific, hence, we suggest the user run a few small numerical
tests to determine on which MGRIT iteration the fine-grid IIG should be introduced.
If memory usage is a concern, the user can reduce storage costs by not storing the
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finest grid F-points with little to no reduction in the overall runtime. In this scenario
the initial guess from the corresponding sequential solver is used at each fine grid
F-point. This is an important result as memory usage is a common user concern.

Spatial coarsening should also be used whenever possible. For the linear example
in Figure 1, spatial coarsening was implemented on all levels effectively. For the
nonlinear model problem, tests showed that a better strategy was to delay spatial
coarsening until the fourth temporal grid, which dramatically reduced the cost of
coarse Newton solves and limited degradation of the MGRIT convergence rate. This
together with improved initial guesses gave the largest speedup. The other changes,
when combined, also produced a significant speedup.

Weak scaling results showed that MGRIT is a scalable algorithm for the non-
linear parabolic problem considered, with iteration counts bounded independently
of problem size. Strong scaling showed the benefit of MGRIT, with an up to 21
times speedup seen over the corresponding sequential time-stepping routine. Similar
performance was attained when compared to the corresponding linear problem.

In summary, this paper has begun the process of developing a library of effective
and numerically-backed optimizations and modifications that can be applied, with
minimal tuning, to MGRIT for nonlinear parabolic problems.
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[34] J. W. Ruge and K. Stüben, Algebraic multigrid (AMG), in Multigrid Methods, S. F. Mc-
Cormick, ed., Frontiers Appl. Math., SIAM, Philadelphia, 1987, pp. 73–130.

[35] J. B. Schroder, R. D. Falgout, and B. O’Neill, Multigrid reduction in time (MGRIT): A
flexible and non-intrusive method. 4th Workshop on Parallel-in-Time Integration, Dresden,
Germany, archived at Lawrence Livermore as LLNL-PRES-671059, May 2015.

[36] D. Sheen, I.H. Sloan, and V. Thomée, A parallel method for time discretization of parabolic
equations based on Laplace transformation and quadrature, IMA Journal of Numerical
Analysis, 23 (2003), pp. 269–299.

[37] S. Vandewalle and G. Horton, Fourier mode analysis of the multigrid waveform relaxation
and time-parallel multigrid methods, Computing, 54 (1995), pp. 317–330.

[38] S. Vandewalle and R. Piessens, Efficient parallel algorithms for solving initial-boundary
value and time-periodic parabolic partial differential equations, SIAM J. Sci. Statist. Com-
put., 13 (1992), pp. 1330–1346.

[39] S. G. Vandewalle and E. F. Van de Velde, Space-time concurrent multigrid waveform relax-
ation, Ann. Numer. Math., 1 (1994), pp. 347–360. Scientific computation and differential
equations (Auckland, 1993).
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