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Abstract

We describe our efforts to speed up the computational fluid dynamics (CFD) application code
Strand2D via the parallel multigrid reduction in time (MGRIT) software library XBraid. The need
for parallel-in-time approaches, such as MGRIT, is being driven by current trends in computer ar-
chitectures where performance improvements are coming from greater parallelism, not faster clock
speeds. This leads to a bottleneck for sequential time integration methods, such as those used in
Strand2D, because they lack parallelism in the time dimension. Thus, the ability to apply parallel-
in-time approaches to CFD codes is of interest, and MGRIT is particularly well suited given its
non-intrusiveness, which only requires users to wrap existing time stepping codes in the XBraid
framework. The contributions of this paper are the description of the nonlinear version of MGRIT
and the corresponding software implementation XBraid. We also discuss the steps needed to use
XBraid with Strand2D and present the corresponding results for unsteady laminar flow over a cylin-
der. These results demonstrate a significant speedup when sufficient resources are available.
Keywords: parallel-in-time, multigrid reduction in time, MGRIT, XBraid, compressible Navier-
Stokes, Navier-Stokes, strand grids

1 Introduction

Since single-core clock speeds have stagnated, computer engineers are achieving higher speeds by designing
high performance computer architectures with significantly increased parallelism with millions of cores.
Although most computational fluid dynamics (CFD) codes are able to fully exploit parallelism in the
spatial dimensions, this limits how many processors they can effectively exploit. Moreover, stagnant
clock speeds imply that the time per time step is also stagnant, if spatial parallelism has already been
fully exploited. Thus, for unsteady CFD applications, such as rotorcraft or turbomachinery, where the
number of timesteps required to reach a desired state generally grows proportionately with the spatial
problem size, future simulation wall clock times will grow. Additionally, it is unclear how these CFD
codes will take advantage of massively parallel machines, if they only support parallelism in space. Thus
for such applications it is advantageous to find additional parallelism in time to maximize performance
on these massively parallel architectures.

The question then arises if it is possible to parallelize the time dimension. There have been various
efforts to develop such methods which date back to as far as 1964 [25, 13, 8, 32, 16, 14, 12, 3, 5, 10]. One of
the currently better known algorithms that parallelizes in time is parareal [20], which has been extensively
investigated [23, 22, 24, 28, 6]. It can be interpreted as a two-level multigrid method [11]. However, since
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the coarse level solve is sequential, use of parallelism is limited to the finest level. It is therefore of interest
to investigate multilevel algorithms in time. There are various multigrid methods which parallelize in
both space and time [15, 29, 33]. However, using such methods in an existing application code that
is generally already highly parallel requires major rewriting of often extremely complex codes and is
therefore not desirable.

In this work, we explore a multigrid reduction in time (MGRIT) [9] approach that parallelizes in the
time dimension and is non-intrusive. We describe for the first time the nonlinear version of MGRIT and
its corresponding software implementation XBraid [1]. The XBraid library reflects the non-intrusiveness
of MGRIT and enables users to apply the approach to their existing application code by writing only a
small amount of code. We demonstrate this non-intrusiveness by applying XBraid to the Strand2D CFD
code [19], a compressible Reynolds-Averaged Navier-Stokes (RANS) code that operates on 2-dimensional
strand grids. Last, we present results for unsteady flow over a cylinder that show a significant wall clock
speedup over the original code when sufficient parallel processors are available.

The paper is organized as follows. Section 2 describes the multigrid in time algorithm. Section 3 gives
an overview of the Strand2D code. Section 4 discusses how to apply XBraid to Strand2D. Numerical
results are described in Section 5, and we conclude in Section 6.

2 Multigrid in Time

Consider a system of ordinary differential equations of the form

u′(t) = f(t, u(t)), u(0) = g0, t ∈ [0, T ]. (1)

Let ti = iδt, i = 0, 1, ..., N be a temporal mesh with spacing δt = T/N , and ui be an approximation to
u(ti). A general one-step time discretization is now given by

u0 = g0 (2)

ui = Φi(ui−1) + gi, i = 1, 2, ..., N. (3)

A traditional time stepping scheme solves this system sequentially by first solving for i = 1, followed
by i = 2 and so on. For linear time propagators {Φi}, this can also be expressed as applying a direct
solver (a forward solve) to the following system:

A(u) =




I
−Φ1 I

. . .
. . .

−ΦN I







u0

u1

...
uN


 =




g0

g1

...
gN


 = g. (4)

This O(N) process is optimal, but sequential. We achieve parallelism in time by replacing the sequen-
tial solve with an optimal multigrid iterative method. Our particular approach is called MGRIT [9] and
is based on applying multigrid reduction (MGR) [21] in time. The method coarsens in the time dimension
with factor m > 1 to yield a coarse (time) grid with N∆ = N/m points and time step ∆T = mδt. The
corresponding coarse grid problem,

A∆(u∆) =




I
−Φ∆,1 I

. . .
. . .

−Φ∆,N∆
I







u∆,0

u∆,1

...
u∆,N∆


 =




g∆,0

g∆,1

...
g∆,N∆


 = g∆, (5)

is obtained by defining coarse grid propagators {Φ∆,i} which are at least as cheap to apply as the fine
scale propagators {Φi}. The coarse time grid induces a partition of the fine grid into C-points (associated
with coarse grid points) and F-points, as visualized in Figure 1.

Every multigrid algorithm requires a relaxation method and an approach to transfer values between
grids. Our relaxation scheme alternates between so-called F-relaxation and C-relaxation as illustrated
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Figure 1: Fine and coarse time grids with a coarsening factor m
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Figure 2: F-relaxation (left) updates all F-point intervals in parallel from the current values at C-points.
C-relaxation (right) updates all C-points from the neighboring F-point values.

in Figure 2. F-relaxation updates the F-point values {uj} on interval (Ti, Ti+1) by simply propagating
the C-point value umi across the interval using the time propagators {Φj} in sequence. While this is a
sequential process, each F-point interval update is independent from the others and can be computed
in parallel. Similarly, C-relaxation updates the C-point value umi based on the F-point value umi−1

and these updates can also be computed in parallel. Of particular interest is FCF-relaxation, defined
as F-relaxation followed by C-relaxation followed by F-relaxation. This approach to relaxation can be
thought of as line relaxation in space. Simple injection is used to transfer values between grids. Note that
our combination of injection and F-relaxation together can also be interpreted as harmonic interpolation
[9], but it is easier to implement as an injection algorithm.

In general, f is a nonlinear function, so we apply the Full Approximation Storage (FAS) method
[4, 30], which is a nonlinear version of multigrid. The two-grid FAS algorithm proceeds as follows:

1) Apply FCF-relaxation to A(u) = g.

2) Restrict the fine grid approximation and its residual to the coarse grid

u∆,i ← umi, r∆,i ← gmi −A(u)mi for i = 0, ..., N∆.

3) Solve A∆(v∆) = A∆(u∆) + r∆.

4) Compute the coarse grid error approximation: e∆ = v∆ − u∆.

5) Add the error to the values of u at the C-points: umi = umi + e∆,i.

6) Correct u by applying an F-relaxation sweep.

The method can be turned into a multilevel algorithm by applying this procedure recursively to the
system in Step 3. A variety of standard multigrid cycling strategies may be applied, including V-cycles
and F-cycles as illustrated in Figure 3. We note that this is the first description of the nonlinear version
of MGRIT.

A critical facet of this multigrid reduction method is that the user need only define Φi, i.e., the method
is fairly nonintrusive. The user can continue to use an existing time stepping code, provided it is wrapped
appropriately. See Section 4 for a description of how this is accomplished in our MGRIT library XBraid.
More detailed information on the MGRIT algorithm can be found in [9].
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Figure 3: Illustration of a V- and an F-cycle.

3 Strand2D

Strand2D solves the unsteady Reynolds-averaged Navier-Stokes (RANS) equations in three dimensions.
Turbulence closure is accomplished with the Spalart-Allmaras (SA) model[27]. The RANS-SA equations
may be expressed as

∂Q

∂t
+
∂Fj
∂xj
−
∂F vj
∂xj

= S, (6)

where the conserved variables, Q, inviscid fluxes, Fj , viscous fluxes, F vj , and source term, S, are defined
as

Q =




ρ
ρui
ρe
ρν̃


 , Fj =




ρuj
ρuiuj + pδij

ρhuj
ρν̃uj


 , F vj =




0
σij

σijui − qj
η
σ
∂ν̃
∂xj


 , S =




0
0
0

P −D + Cb2ρ
∂ν̃
∂xk

∂ν̃
∂xk


 . (7)

Here, ρ is the density, ui is the Cartesian velocity vector, e is the total energy per unit mass, ν̃ is the
turbulence working variable, p is the pressure, h is the total enthalpy per unit mass, σij is the deviatoric
stress tensor, qj is the heat flux vector, and η/σ is the turbulent diffusion coefficient. The turbulent
source term consists of a production term, P, and a destruction term D. The stress tensor is defined as

σij = 2(µ+ µT )sij , (8)

where µ is the dynamic viscosity, µT is the turbulent viscosity, and sij is the rate of strain tensor, defined
as

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3

∂uk
∂xk

δij . (9)

The heat flux vector is obtained with Fourier’s Law,

qj = −Cp
(
µ

Pr
+

µT
PrT

)
∂T

∂xj
, (10)

where Cp is the specific heat, Pr is the Prandtl number, PrT is the turbulent Prandtl number, and T is
the temperature. The ideal gas equation of state, p = ρRT is used to close the equations.

The spatial discretization is based on a cell-centered approach where the primary unknowns are located
at the centroid of the prisms formed by adjacent strands. The solver accommodates both quadrilateral
and triangular prisms depending on the surface topology. However, control volumes are composed entirely
of triangular facets by triangulating any non-planar quadrilateral faces. This is important for second-
order accuracy on general prismatic grids with no assumption of underlying smoothness [17]. Linear
reconstruction is employed to obtain second-order accuracy through first obtaining consistent nodal values
of the conserved variables from surrounding cell-center values. A projection method is used to obtain
these nodal values via least squares interpolation in a regression plane through the three-dimensional
stencil of cells surrounding a strand [17]. Once the nodal values have been obtained, a Green-Gauss
surface integration procedure is performed to obtain cell gradients in each control volume.
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Inviscid fluxes rely on a reconstruction upwind formula for the numerical flux based on the approximate
Riemann solver of Roe [26],

F̂ =
1

2
(F(QR) + F(QL))− 1

2
|A(QR, QL)| (QR −QL) , (11)

where F = Fjnj is the directed flux at a face with normal nj , and A = ∂F/∂Q is the directed flux
Jacobian. The viscous terms are computed using values of Q and ∇Q determined at each face,

Fv = Fv(Qf ,∇Qf ), (12)

where f refers to the face reconstructed values. These face values are easily obtained once nodal values
have been reconstructed using the projection method described above. This method is similar to the node
averaging schemes outlined by Diskin, et al. [7]. Both the inviscid and viscous discretization methods
described herein have been verified to be second-order accurate for arbitrary prismatic meshes under a
variety of conditions using the method of manufactured solutions [17].

The standard SA model is used when the turbulent working variable is positive. Details of the positive
model, including the well-known definitions of the production and destruction terms, may be found in
the original work by Spalart and Allmaras [27]. Modifications to the model to accommodate negative
values of the turbulence working variable have been suggested recently by Allmaras [2] and are employed
in this work. In the case of negative values of ν̃, the following turbulence equation replaces the standard
model:

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= Cb1(1− Ct3)Ων̃ + Cw1

(
ν̃

d

)2

+
1

σ

[
∂

∂xj

(
(ν + ν̃fn)

∂ν̃

∂xj

)
+ Cb2

∂ν̃

∂xk

∂ν̃

∂xk

]
, (13)

where,

fn =
Cn1 + χ3

Cn1 − χ3
, (Cn1 = 16).

Here, Ω is the vorticity magnitude, d is the distance to the nearest wall, and χ = ν̃/ν is the ratio of the
turbulent working variable to the kinematic viscosity of the fluid. All other constants in Equation 13
take the values found in the standard model.

The result of the spatial discretization of the viscous and inviscid fluxes is a coupled set of non-linear
equations. In this work, we adopt a pseudo-time framework to march the steady or unsteady discretized
equations to steady-state,

V
∂Q

∂τk
+R(Q) = 0. (14)

Here, V is the cell volume, and τk is the pseudo-time variable. The residual, R(Q), contains the inviscid
and viscous flux balances at each cell based on the cell-center discretization schemes described above. In
order to reach a pseudo-steady state using an implicit scheme, the residual is linearized, leading to the
following linear system to be solved at each pseudo-time step:

[
V

∆τk
I +

∂Rk

∂Q

] (
Qk+1 −Qk

)
= −R(Qk). (15)

Here, ∂Rk/∂Q is the Jacobian of the residual. The linear system in Equation 14 in general is large and
sparse, rendering direct inversion impractical. Iterative line Gauss-Seidel (GS) methods are employed
to solve this system, where contributions along strands are collected to form a tridiagonal system. To
facilitate the line GS iterations and to increase robustness, we introduce an additional “linear time”
variable, τl,

V
∂Q

∂τl
+

[
V

∆τk
I +

∂Rk

∂Q

] (
Qk+1 −Qk

)
= −R(Qk). (16)

The linear time is introduced to improve the diagonal dominance of the line GS procedure in order to
increase robustness. Rearranging Equation 16 in terms of solution updates in linear time results in

[(
1

∆τk
+

1

∆τl

)
V I +

∂Rk

∂Q

] (
Ql+1 −Ql

)
= −R(Qk)−

[
V

∆τk
I +

∂Rk

∂Q

] (
Ql −Qk

)
. (17)
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Technical approach: parallel decomposition 

Figure 4: Parallel decomposition using sequential time stepping (left) and parallelizing in time also (right).
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Figure 5: Overlapping communication and computation.

Upon convergence of the linear iterations in l, the linear system of Equation 15 is satisfied. At that point,
the next pseudo-time step in k proceeds. When the pseudo-time iterations converge, then the residual
equation R(Q) is satisfied for a given physical time station. All Jacobian terms in this work are first order
and retain only nearest neighbor contributions. Further details of the implicit solution method may be
found in earlier references[18].

4 Use of XBraid with Strand2D

The XBraid library is an implementation of the algorithm described in Section 2. It only parallelizes
in time and leaves any spatial parallelization to the user. Figure 4 shows the parallel decomposition of
a sequential time stepping algorithm on the left. Here one proceeds sequentially in time and only one
time step is stored. On the right is the decomposition for multigrid in time. Parallelism is significantly
increased, but now several time steps need to be stored, requiring more memory. Multigrid in time is more
expensive than sequential time stepping in terms of increased memory cost as well as total operation count.
Therefore it is expected that the method will be slower if only a few processors are available. However
due to its increased parallelism, when more processors are used, it is able to utilize them to the fullest
and eventually reaches a crossover point, beyond which ever larger speedups are realized. We note that
the description of XBraid is a specific contribution of this paper.

XBraid employs two strategies to address the increased memory costs. First, one need not solve the
whole problem at once. Instead, the problem can be divided it into several time slabs that would fit in
the available memory. Second, XBraid only stores the C-points (see Figure 1). Since coarsening in time
is typically aggressive (e.g., a factor of 5, 10 or 20), this greatly reduces the number of time points in
storage.

In the implementation of XBraid, efforts have been made to overlap communication and computation.
The main computational kernel of XBraid is one relaxation sweep touching all the CF intervals. At the
start of a relaxation sweep if a process owns several C-points including their intervals, it first posts a
non-blocking receive on its left-most C-point. It then carries out F-relaxation in each interval, starting
with the right-most interval to send the data to the neighboring process as soon as possible. This is
illustrated in Figure 5.

As mentioned in Section 2, XBraid is a non-intrusive code with a flexible framework, i.e. users write
simple wrappers for their time stepping code to provide XBraid with the time stepping routine Φi. The
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user needs to define two data structures: Vector and App. Vector defines a state vector at a certain time
value, but can also contain additional information related to the vector, such as mesh information that
is needed to evolve the vector to the next time step. The strand2D wrapper for XBraid’s Vector object
is given as follows:

class BraidVector

{

public:

// Empty Constructor

BraidVector() { }

// State vector

Array3D<double> vec;

};

App is available to every wrapper function, either as a parameter in C, or as the parent object of the
wrapper function in C++. App needs to hold everything the user needs to evaluate a time step. In the
case of Strand2D it can be defined as follows, where StrandBraidApp inherits from the provided abstract
base class BraidApp.

class StrandBraidApp : public BraidApp

{

public:

// Abstract base class BraidApp already defines

// tstart global start time

// tstop global stop time

// ntime number of time steps

// comm_t temporal communicator

string in_file; // File holding Strand2D input values

double dt; // Finest-level time step size

int noutput; // Print solution every noutput steps

int buff_size; // Size in bytes of the send/recv xbraid buffer

int state_vec_size; // Size in bytes of the state vector

int nSurfNode, nStrandNode, nq; // Dimensions of the Strand2D state vector

BraidVector *q_init; // Initial condition for state vector

Strand2dFCManager *manager; // Strand2D manager drives simulation

// and takes time steps

};

The user needs to also write several wrapper routines, which are member functions of the StrandBraidApp
class. The core user routine Phi defines how to advance the vector u from time tstart to tstop. Using
the terminology of Chapter 2 it needs to define how to generate ui from Φi(ui−1). Generally this code
already exists in an application and needs to only be wrapped. For Strand2D, Phi can be defined as
follows. Note that the status information about current time values is available through pstatus and
that because Phi is a member function of StrandBraidApp, it has access to all of that object’s data
members.

virtual int Phi(braid_Vector _u,

BraidPhiStatus &pstatus)

{

// Initialize, using pstatus to obtain state information

BraidVector *u = (BraidVector*) _u;

double tstart, tstop;

pstatus.GetTstartTstop(&tstart, &tstop);

7



double dt = tstop - tstart;

int step = round(tstop / dt);

// Reset strand with new time step size and state vector

manager->resetQ(u->vec);

manager->resetDtUnsteady(dt);

// Carry out one time step (via many pseudo steps)

int nPseudoSteps = manager->getNPseudoSteps();

bool converged = false;

for (int pseudoStep=0; pseudoStep<nPseudoSteps; pseudoStep++)

{

manager->takePseudoStep(step, pseudoStep, converged);

if (converged)

break;

}

// Save state vector from Strand2D

manager->getQ(u->vec);

// No temporal refinement

pstatus.SetRFactor(1);

return 0;

}

The user should also define the following additional wrapper routines:

• Init defines how to initialize a vector at a specified time.

• Clone defines how to clone a vector into a new vector.

• Free defines how to free a vector.

• Sum defines how to sum two vectors.

• Dot defines a dot product of two vectors.

• Write defines how to write a vector at time t to a user defined output (screen, file, etc...).

• Bufsize, BufPack, BufUnpack define how to pack and unpack an MPI buffer containing one
BraidVector. No user-written MPI calls are needed.

• Coarsen, Restrict are optional routines that allow to additionally define how to coarsen in space
while coarsening in time.

Overall, applying XBraid to Strand2D, which has about 13,500 lines, required adding 129 lines to
Strand2D, 20 of which were needed to facilitate file output in parallel. The remaining lines were needed
to enable restarting of the code at a new time for a new state vector. Many application codes already
allow restarting of the codes, and in this case the application of XBraid requires less changes to the
code. The XBraid wrapper code required writing about 475 lines, most of which included command line
parsing. The core functionality of the wrapper code is much shorter.
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Figure 6: 96× 32 strand grid.

Number of Number of Iterations Run Time Run Time Speedup
time steps processes XBraid XBraid Serial

1280 256 19 58 min 37 min 0.64
5120 1024 15 62 min 163 min 2.63
20480 4096 14 87 min 655 min 7.53

Table 1: Weak scaling study.

5 Numerical Results

The new parallel in time version of Strand2D, enabled by XBraid, is evaluated for computing the unsteady
flow over a cylinder at M = 0.2 and Re = 100. We use an implicit time stepping scheme, backward
Euler, and a 3rd order finite differencing scheme on strand grids. The CFD grid used for the calculations,
pictured in Figure 6, contains 32 points in the normal direction and 96 points in the circumferential
direction. Figure 7 shows snapshots of the velocity at different time steps exhibiting unsteady vortex
shedding. The Strouhal number is a measure of the vortex shedding frequency and is used to validate
the code accuracy.

In XBraid, we coarsen by a factor 5 and use F-cycles with FCF-relaxation. While we originally
used a relative residual stopping criteria of 10−8 when solving the system (4), we found that sufficient
accuracy could be achieved using a larger factor of 10−5, which also led to shorter run times. The salient
information such as the Strouhal number is already well-resolved at this level of accuracy. The maximum
coarse time-grid size is 50 time steps. After the coarse time-grid reaches this size, temporal coarsening
stops.

To evaluate the convergence of the method, we perform a weak scaling study. The final time is fixed at
2.56s and then refined in time to get problems of varying size. We consider three cases, using 1280, 5120
and 20480 time steps. We choose the 1280 time step case because it barely resolves the unsteady behavior.
The corresponding time step sizes are 0.0005s, 0.000125s, and 0.00003125s. Figure 8 gives snapshots for
the u velocity magnitude at the final time step for the 5120 time step case at different XBraid iterations.
While during the initial iterations the solution at tfinal is inaccurate, by iteration 13, the solution has
been resolved at tfinal. Note that XBraid converges to the same solution as the original code Strand2D
running standard sequential time-stepping to within the specified tolerance. Consequently, one achieves
exactly the same Strouhal numbers that Strand2D would achieve.

Table 1 shows our weak scaling results. The reported speedups are computed by dividing the runtime
of the original sequential Strand2D code by the runtime obtained using XBraid wrapped around Strand2D.
As previously mentioned for a small problem, sequential time stepping is faster than multigrid in time,
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Figure 7: Snapshots of the velocity at various time steps.

Figure 8: Snapshots of the velocity magnitude from different XBraid iterations at final time.
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however already for the second case we achieve a speedup over the sequential code and observe even better
speedup for the largest case. While our algorithm requires significantly more resources, it is almost 8
times faster, and can be solved in 87 minutes, a time that would have been impossible to achieve for this
problem with the original code.

Since we also want to test the effect of a larger tfinal on the convergence, we next hold the time step
δt constant and quadruple the number of timesteps for some of our test cases, leading to tfinal = 10.24s
instead of tfinal = 2.56s. The first case of 1280 time steps and 19 iterations now takes 58 iterations, and
the 5280 time step case of 15 iterations now takes 45 iterations. For a domain that is 4 times larger, we
see an increase in iterations by about a factor of 3. In other words, XBraid is able to leverage coarse time
grids to converge more quickly than the factor of 4 increase in the time domain would suggest.

The first and second cases have run times of 227 minutes and 268 minutes, respectively. This new
runtime of 227 minutes is roughly predicted by the runtime in Table 1 for 5120 time steps, i.e., (58/15)62 ≈
239. Similarly, the new runtime of 268 minutes is roughly predicted by (45/14)87 ≈ 279. This indicates
that the time per iteration of XBraid is similar, regardless of tfinal. This is due to the fact that the
underlying Strand2D code has a fixed nonlinear time step cost (25 pseudotime steps are always taken for
each nonlinear time step). The speedup for these two cases is 0.71 and 2.38, respectively. It is critical
to note that similar speedups to Table 1 can be realized with this longer time domain, but with the
requirement that roughly 4 times as many processors be used.

While for this particular problem the chosen tfinal is sufficient to capture the correct Strouhal number,
we nonetheless believe that having a more constant XBraid iteration count, regardless of tfinal is desirable.
However, the problem domain increases with larger tfinal and the algorithm takes longer to resolve the new
physical behavior associated with the larger time domain. Nonetheless, slowing the growth in iterations
as tfinal increases is a topic of ongoing research. In particular, we are interested in leveraging the periodic
part of the solution to better inform the initial guess at later time steps.

5.1 Parallel Scaling

For the scaling study, we consider 5 data layouts, 80 time points (tpts) per core, 40 tpts per core, 20 tpts
per core, 10 tpts per core and 5 tpts per core, for 5 problem sizes, 1280, 2560, 5120, 10240 and 20480
time steps. This generates 25 data points that can be used for both a weak and a strong scaling study.
This is depicted by the log-log plot in Figure 9, where the strong scaling lines are dotted and correspond
to a fixed global problem size. The weak scaling lines are solid and correspond to a fixed problem size (in
time points or “tpts”) per core. Overall, the weak scaling improves with more time points per core (i.e.,
more computation relative to communication). For the worst case at 5 time points per core, the time to
solution increases about 50% from 256 to 4096 cores and for the best case at 80 time points per core, the
time to solution actually decreases when going from 16 to 256 cores.

The next log-log plot in Figure 10 depicts the same information, but in terms of speedup relative to
sequential single processor runs of Strand2D. The “Perfect Slope” line depicts the slope of perfect weak
scaling and this line makes it apparent that our approach scales well in a weak sense. The Strouhal
numbers (“St”) represent the shedding frequency and are a quantity of interest for this problem. They
are shown to argue that the larger problem sizes are useful because the Strouhal number does not show
convergence until the second largest problem size and the careful user may even run the largest problem
size to be certain that the Strouhal number has converged 1.

The crossover point where XBraid begins to offer a speedup over sequential time stepping is between
64 and 128 cores for both 40 and 80 time points per core. If one estimates the actual crossover point,
it is less than 100 cores for the 80 time points per core case. The maximum speedup is a factor of 7.53
at 4096 cores and 5 time points per core. While for small problems, sequential time stepping is faster
than multigrid in time, these experiments show that even modest resources on today’s machines allow
multigrid in time to show a benefit. Additionally, Figure 10 makes it apparent that this approach can
scale to fit the availability of resources, allowing for a much greater degree of parallelism. We also note

1As mentioned, XBraid coupled to Strand2D solves the same problem, to within a tolerance, that sequential Strand2D
solves. Thus, this Strouhal value of 0.141 corresponds to the top-right entry of 0.141 in Table 4 of [19].

11



16 32 64 128 256 512 1024 2048 4096
Cores

50

75

100

125

150

175

200

225

M
in

u
te

s

5 tpts
core

10 tpts
core

20 tpts
core

40 tpts
core

80 tpts
core

Scaling: XBraid-Strand2D

Weak

Strong

Figure 9: Strong-weak scaling study, showing actual run times of XBraid. The strong scaling lines are
dotted and correspond to a fixed global problem size, while the weak scaling lines are solid and correspond
to a fixed problem size (in time points or “tpts”) per core.

that further optimizations to the code would allow for even better speedups, e.g., constructing coarse
spatial meshes for the coarse time-grids.

6 Conclusions and Future Work

Since standard CFD codes only parallelize in the spatial dimensions, the motivation of this work is to
investigate both parallelism in the time-domain and how to effectively utilize massively parallel computers
for unsteady CFD applications. To this end, we presented for the first time the nonlinear version of
the parallel-in-time method MGRIT and the corresponding software implementation XBraid. We also
applied MGRIT to an unsteady RANS CFD application by integrating the XBraid software library with
the Strand2D unsteady RANS solver [19].

Parallel in time capability was added to Strand2D with relative ease. It was simply plugged into
XBraid with approximately 129 new lines added to Strand2D and 475 wrapper lines needed to accomplish
the integration (see Section 4 for more details). The integrated code was tested for a model problem to
compute the unsteady vortex shedding over a circular cylinder. The original Strand2D code had no
parallelism (because it is two-dimensional, there is little parallel performance gain from decomposing in
space). However, the MGRIT-enabled version was run up to 4096 processors, with a speedup factor of
7.53 over the original sequential time stepping code. The computed answers are identical to within the
specified tolerance.

This work revealed that it is possible to introduce time-parallelism to an existing CFD code, and
achieve reasonable parallel speedups with little coding effort. Future work should extend the current
effort by applying MGRIT to 3D unsteady production CFD codes [31] which already have a parallel
spatial decomposition. The resulting combined time-space parallel decomposition is expected to enable
the effective application of such CFD codes to massively parallel computer systems.
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