Skip to content

XinliYue/VQA-Generalization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Revisiting Video Quality Assessment from the Perspective of Generalization

Code for CVPR 2025 submission paper "Revisiting Video Quality Assessment from the Perspective of Generalization".

Environment

  • Python (3.11.5)
  • Pytorch (2.1.2)
  • torchvision (0.16.2)
  • CUDA (12.0)

Content

  • ./fastvqa: Code for FAST-VQA-AWP.
  • ./sama: Code for SAMA-AWP.
  • ./simplevqa: Code for SimpleVQA-AWP.

Run

  • FAST-VQA-wd
cd ./fastvqa
CUDA_VISIBLE_DEVICES='0' python train.py --wd 0.0005
  • FAST-VQA-AuA
cd ./fastvqa
CUDA_VISIBLE_DEVICES='0' python train.py --aua
  • FAST-VQA-RWP
cd ./fastvqa
CUDA_VISIBLE_DEVICES='0' python train.py --rwp --gamma 0.0001
  • FAST-VQA-AWP
cd ./fastvqa
CUDA_VISIBLE_DEVICES='0' python train.py --awp --gamma 0.0001
  • SimpleVQA-AWP
cd ./simplevqa
CUDA_VISIBLE_DEVICES='0' python train_LSVQ.py --awp --gamma 0.0001
  • SAMA-AWP
cd ./sama
CUDA_VISIBLE_DEVICES='0' python train.py --awp --gamma 0.0001

Reference Code

[1] SimpleVQA: https://github.com/sunwei925/SimpleVQA

[2] FAST-VQA: https://github.com/VQAssessment/FAST-VQA-and-FasterVQA

[3] SAMA: https://github.com/Sissuire/SAMA/tree/main

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages