-
Notifications
You must be signed in to change notification settings - Fork 10
/
train_mw.py
268 lines (226 loc) · 10.1 KB
/
train_mw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import warnings
warnings.filterwarnings('ignore', category=DeprecationWarning)
import os
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
os.environ['MUJOCO_GL'] = 'egl'
from pathlib import Path
import hydra
import numpy as np
import utils
import torch
from dm_env import specs
import metaworld_env as mw
from logger import Logger
from replay_buffer import ReplayBufferStorage, make_replay_loader
from video import TrainVideoRecorder, VideoRecorder
import wandb
import math
import re
torch.backends.cudnn.benchmark = True
def make_agent(obs_spec, action_spec, cfg):
cfg.obs_shape = obs_spec.shape
cfg.action_shape = action_spec.shape
return hydra.utils.instantiate(cfg)
class Workspace:
def __init__(self, cfg):
self.work_dir = Path.cwd()
print(f'workspace: {self.work_dir}')
self.cfg = cfg
if self.cfg.use_wandb:
exp_name = '_'.join([cfg.task_name, str(cfg.seed)])
group_name = re.search(r'\.(.+)\.', cfg.agent._target_).group(1)
wandb.init(project="DrM",
group=group_name,
name=exp_name,
config=cfg)
utils.set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
self._discount = cfg.discount
self._discount_alpha = cfg.discount_alpha
self._discount_alpha_temp = cfg.discount_alpha_temp
self._discount_beta = cfg.discount_beta
self._discount_beta_temp = cfg.discount_beta_temp
self._nstep = cfg.nstep
self._nstep_alpha = cfg.nstep_alpha
self._nstep_alpha_temp = cfg.nstep_alpha_temp
self.setup()
self.agent = make_agent(self.train_env.observation_spec(),
self.train_env.action_spec(), self.cfg.agent)
self.timer = utils.Timer()
self._global_step = 0
self._global_episode = 0
def setup(self):
# create logger
self.logger = Logger(self.work_dir,
use_tb=self.cfg.use_tb,
use_wandb=self.cfg.use_wandb)
# create envs
self.train_env = mw.make(self.cfg.task_name, self.cfg.frame_stack,
self.cfg.action_repeat, self.cfg.seed)
self.eval_env = mw.make(self.cfg.task_name, self.cfg.frame_stack,
self.cfg.action_repeat, self.cfg.seed)
# create replay buffer
data_specs = (self.train_env.observation_spec(),
self.train_env.action_spec(),
specs.Array((1, ), np.float32, 'reward'),
specs.Array((1, ), np.float32, 'discount'))
self.replay_storage = ReplayBufferStorage(data_specs,
self.work_dir / 'buffer')
self.replay_loader, self.buffer = make_replay_loader(
self.work_dir / 'buffer', self.cfg.replay_buffer_size,
self.cfg.batch_size,
self.cfg.replay_buffer_num_workers, self.cfg.save_snapshot,
math.floor(self._nstep + self._nstep_alpha),
self._discount - self._discount_alpha - self._discount_beta)
self._replay_iter = None
#self.video_recorder = VideoRecorder(
#self.work_dir if self.cfg.save_video else None)
#self.train_video_recorder = TrainVideoRecorder(
#self.work_dir if self.cfg.save_train_video else None)
@property
def global_step(self):
return self._global_step
@property
def global_episode(self):
return self._global_episode
@property
def global_frame(self):
return self.global_step * self.cfg.action_repeat
@property
def replay_iter(self):
if self._replay_iter is None:
self._replay_iter = iter(self.replay_loader)
return self._replay_iter
@property
def discount(self):
return self._discount - self._discount_alpha * math.exp(
-self.global_step /
self._discount_alpha_temp) - self._discount_beta * math.exp(
-self.global_step / self._discount_beta_temp)
@property
def nstep(self):
return math.floor(self._nstep + self._nstep_alpha *
math.exp(-self.global_step / self._nstep_alpha_temp))
def update_buffer(self):
#self.buffer.update_discount(self.discount)
self.buffer.update_nstep(self.nstep)
return
def eval(self):
step, episode, total_reward, total_sr = 0, 0, 0, 0
eval_until_episode = utils.Until(self.cfg.num_eval_episodes)
while eval_until_episode(episode):
episode_sr = False
time_step = self.eval_env.reset()
#self.video_recorder.init(self.eval_env, enabled=(episode == 0))
while not time_step.last():
with torch.no_grad(), utils.eval_mode(self.agent):
action = self.agent.act(time_step.observation,
self.global_step,
eval_mode=True)
time_step = self.eval_env.step(action)
episode_sr = episode_sr or time_step.success
total_reward += time_step.reward
step += 1
total_sr += episode_sr
episode += 1
#if self.global_frame > 1000000 and success > 0 and save_num < 4:
#imageio.mimsave(video_path, frames, format='GIF', duration = 40)
#save_num += 1
#print(video_path)
#self.video_recorder.save(f'{self.global_frame}.mp4')
with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log:
log('episode_success_rate', total_sr / episode)
log('episode_reward', total_reward / episode)
log('episode_length', step * self.cfg.action_repeat / episode)
log('episode', self.global_episode)
log('step', self.global_step)
def train(self):
# predicates
train_until_step = utils.Until(self.cfg.num_train_frames,
self.cfg.action_repeat)
seed_until_step = utils.Until(self.cfg.num_seed_frames,
self.cfg.action_repeat)
eval_every_step = utils.Every(self.cfg.eval_every_frames,
self.cfg.action_repeat)
episode_step, episode_reward, episode_sr = 0, 0, False
time_step = self.train_env.reset()
self.replay_storage.add(time_step)
# self.train_video_recorder.init(time_step.observation)
metrics = None
while train_until_step(self.global_step):
if time_step.last():
self._global_episode += 1
# self.train_video_recorder.save(f'{self.global_frame}.mp4')
# reset env
time_step = self.train_env.reset()
self.replay_storage.add(time_step) # wait until all the metrics schema is populated
if metrics is not None:
# log stats
elapsed_time, total_time = self.timer.reset()
episode_frame = episode_step * self.cfg.action_repeat
with self.logger.log_and_dump_ctx(self.global_frame,
ty='train') as log:
log('fps', episode_frame / elapsed_time)
log('total_time', total_time)
log('episode_success_rate', episode_sr)
log('episode_reward', episode_reward)
log('episode_length', episode_frame)
log('episode', self.global_episode)
log('buffer_size', len(self.replay_storage))
log('step', self.global_step)
# reset env
time_step = self.train_env.reset()
self.replay_storage.add(time_step)
# self.train_video_recorder.init(time_step.observation)
# try to save snapshot
if self.cfg.save_snapshot:
self.save_snapshot()
episode_sr = False
episode_step = 0
episode_reward = 0
# try to evaluate
if eval_every_step(self.global_step):
self.logger.log('eval_total_time', self.timer.total_time(),
self.global_frame)
self.eval()
# sample action
with torch.no_grad(), utils.eval_mode(self.agent):
action = self.agent.act(time_step.observation,
self.global_step,
eval_mode=False)
# try to update the agent
if not seed_until_step(self.global_step) and self.global_step % self.cfg.update_every_steps == 0:
metrics = self.agent.update(
self.replay_iter, self.global_step)
self.logger.log_metrics(metrics, self.global_frame, ty='train')
# take env step
time_step = self.train_env.step(action)
episode_reward += time_step.reward
self.replay_storage.add(time_step)
#self.train_video_recorder.record(time_step.observation)
episode_step += 1
self._global_step += 1
def save_snapshot(self):
snapshot = self.work_dir / 'snapshot.pt'
keys_to_save = ['agent', 'timer', '_global_step', '_global_episode']
payload = {k: self.__dict__[k] for k in keys_to_save}
with snapshot.open('wb') as f:
torch.save(payload, f)
def load_snapshot(self):
snapshot = self.work_dir / 'snapshot.pt'
with snapshot.open('rb') as f:
payload = torch.load(f)
for k, v in payload.items():
self.__dict__[k] = v
@hydra.main(config_path='cfgs', config_name='config')
def main(cfgs):
from train_mw import Workspace as W
root_dir = Path.cwd()
workspace = W(cfgs)
snapshot = root_dir / 'snapshot.pt'
if snapshot.exists():
print(f'resuming: {snapshot}')
workspace.load_snapshot()
workspace.train()
if __name__ == '__main__':
main()