python inference_video.py \
--model-checkpoint "./pretrain/pytorch_resnet50.pth" \
--video-src "./images/dlh.mp4" \
--video-bgr "./images/dlh.png" \
--output-dir "./output/" \
--output-type fgr
CUDA_VISIBLE_DEVICES=0 python train_base.py \
--dataset-name videomatte240k \
--model-backbone resnet50 \
--model-name mattingbase-resnet50-videomatte240k \
--model-pretrain-initialization "pretrain/best_deeplabv3_resnet50_voc_os16.pth" \
--epoch-end 8
CUDA_VISIBLE_DEVICES=0,1 python train_refine.py \
--dataset-name videomatte240k \
--model-backbone resnet50 \
--model-name mattingrefine-resnet50-videomatte240k \
--model-last-checkpoint "./checkpoint/mattingbase-resnet50-videomatte240k/epoch-7.pth" \
--epoch-end 1
python inference_speed_test.py \
--model-type mattingrefine \
--model-backbone resnet50 \
--model-backbone-scale 0.25 \
--model-refine-mode sampling \
--model-refine-sample-pixels 80000 \
--batch-size 1 \
--resolution 1920 1080 \
--backend pytorch \
--precision float32\
--model-checkpoint "./checkpoint/mattingrefine-resnet50-videomatte240k/epoch-0.pth"