forked from PeterL1n/BackgroundMattingV2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_moe.py
133 lines (107 loc) · 5.16 KB
/
inference_moe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""
Inference images: Extract matting on images.
Example:
python inference_images.py \
--model-type mattingrefine \
--model-backbone resnet50 \
--model-backbone-scale 0.25 \
--model-refine-mode sampling \
--model-refine-sample-pixels 80000 \
--model-checkpoint "PATH_TO_CHECKPOINT" \
--images-src "PATH_TO_IMAGES_SRC_DIR" \
--images-bgr "PATH_TO_IMAGES_BGR_DIR" \
--output-dir "PATH_TO_OUTPUT_DIR" \
--output-type com fgr pha
"""
import argparse
import torch
import os
import shutil
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms as T
from torchvision.transforms.functional import to_pil_image
from threading import Thread
from tqdm import tqdm
from dataset import ImagesDataset, ZipDataset
from dataset import augmentation as A
from model import MattingBase, MattingRefine, MoE
from inference_utils import HomographicAlignment
# --------------- Arguments ---------------
parser = argparse.ArgumentParser(description='Inference images')
parser.add_argument('--model-backbone', type=str, required=True, choices=['resnet101', 'resnet50', 'mobilenetv2'])
parser.add_argument('--model-backbone-scale', type=float, default=0.25)
parser.add_argument('--model-checkpoint', type=str,default='checkpoint/mattingrefine_resnet50_moe3/epoch-0-iter-17999-loss1.9135754108428955-model.pth')
parser.add_argument('--model-refine-mode', type=str, default='sampling', choices=['full', 'sampling', 'thresholding'])
parser.add_argument('--model-refine-sample-pixels', type=int, default=80_000)
parser.add_argument('--model-refine-kernel-size', type=int, default=3)
parser.add_argument('--model-refine-thresholding', type=float, default=0.7)
parser.add_argument('--images-src', type=str, default='evaldata/img')
parser.add_argument('--images-bgr', type=str, default='evaldata/bgr')
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--num-workers', type=int, default=0,
help='number of worker threads used in DataLoader. Note that Windows need to use single thread (0).')
parser.add_argument('--preprocess-alignment', action='store_true')
parser.add_argument('--output-dir', type=str, default='output1')
parser.add_argument('--output-types', type=str, required=True, nargs='+', choices=['com', 'pha', 'fgr', 'err', 'ref'])
parser.add_argument('-y', action='store_true')
parser.add_argument('--num-experts',type=int, default=3)
args = parser.parse_args()
# --------------- Main ---------------
device = torch.device(args.device)
# Load model
model = MoE(6*484*452,
args.num_experts,
args.model_backbone,
args.model_backbone_scale,
args.model_refine_mode,
args.model_refine_sample_pixels,
args.model_refine_thresholding,
args.model_refine_kernel_size)
model = model.to(device).eval()
model.load_state_dict(torch.load(args.model_checkpoint, map_location=device), strict=False)
# Load images
dataset = ZipDataset([
ImagesDataset(args.images_src),
ImagesDataset(args.images_bgr),
], assert_equal_length=True, transforms=A.PairCompose([
A.PairResize((1936,1808)),
HomographicAlignment() ,
A.PairApply(T.ToTensor())
]))
dataloader = DataLoader(dataset, batch_size=1, num_workers=args.num_workers, pin_memory=True)
# Create output directory
if os.path.exists(args.output_dir):
if args.y or input(f'Directory {args.output_dir} already exists. Override? [Y/N]: ').lower() == 'y':
shutil.rmtree(args.output_dir)
else:
exit()
for output_type in args.output_types:
os.makedirs(os.path.join(args.output_dir, output_type))
# Worker function
def writer(img, path):
img = to_pil_image(img[0].cpu())
img.save(path)
# Conversion loop
with torch.no_grad():
for i, (src, bgr) in enumerate(tqdm(dataloader)):
src = src.to(device, non_blocking=True)
bgr = bgr.to(device, non_blocking=True)
pha, fgr, _, _, err,ref,_ = model(src,bgr)
pathname = dataset.datasets[0].filenames[i]
pathname = os.path.relpath(pathname, args.images_src)
pathname = os.path.splitext(pathname)[0]
if 'com' in args.output_types:
com = torch.cat([fgr * pha.ne(0), pha], dim=1)
Thread(target=writer, args=(com, os.path.join(args.output_dir, 'com', pathname + '.png'))).start()
if 'pha' in args.output_types:
Thread(target=writer, args=(pha, os.path.join(args.output_dir, 'pha', pathname + '.jpg'))).start()
if 'fgr' in args.output_types:
Thread(target=writer, args=(fgr, os.path.join(args.output_dir, 'fgr', pathname + '.jpg'))).start()
if 'err' in args.output_types:
err = F.interpolate(err, src.shape[2:], mode='bilinear', align_corners=False)
Thread(target=writer, args=(err, os.path.join(args.output_dir, 'err', pathname + '.jpg'))).start()
if 'ref' in args.output_types:
ref = F.interpolate(ref, src.shape[2:], mode='nearest')
Thread(target=writer, args=(ref, os.path.join(args.output_dir, 'ref', pathname + '.jpg'))).start()