forked from PeterL1n/BackgroundMattingV2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_base.py
266 lines (210 loc) · 10.9 KB
/
train_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""
Train MattingBase
You can download pretrained DeepLabV3 weights from <https://github.com/VainF/DeepLabV3Plus-Pytorch>
Example:
CUDA_VISIBLE_DEVICES=0 python train_base.py \
--dataset-name videomatte240k \
--model-backbone resnet50 \
--model-name mattingbase-resnet50-videomatte240k \
--model-pretrain-initialization "pretraining/best_deeplabv3_resnet50_voc_os16.pth" \
--epoch-end 8
"""
import argparse
import kornia
import torch
import os
import random
from torch import nn
from torch.nn import functional as F
from torch.cuda.amp import autocast, GradScaler
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from torch.optim import Adam
from torchvision.utils import make_grid
from tqdm import tqdm
from torchvision import transforms as T
from PIL import Image
from data_path import DATA_PATH
from dataset import ImagesDataset, ZipDataset, VideoDataset, SampleDataset
from dataset import augmentation as A
from model import MattingBase
from model.utils import load_matched_state_dict
# --------------- Arguments ---------------
parser = argparse.ArgumentParser()
parser.add_argument('--dataset-name', type=str, required=True, choices=DATA_PATH.keys())
parser.add_argument('--model-backbone', type=str, required=True, choices=['resnet101', 'resnet50', 'mobilenetv2'])
parser.add_argument('--model-name', type=str, required=True)
parser.add_argument('--model-pretrain-initialization', type=str, default=None)
parser.add_argument('--model-last-checkpoint', type=str, default=None)
parser.add_argument('--batch-size', type=int, default=4)
parser.add_argument('--num-workers', type=int, default=8)
parser.add_argument('--epoch-start', type=int, default=0)
parser.add_argument('--epoch-end', type=int, required=True)
parser.add_argument('--log-train-loss-interval', type=int, default=10)
parser.add_argument('--log-train-images-interval', type=int, default=2000)
parser.add_argument('--log-valid-interval', type=int, default=5000)
parser.add_argument('--checkpoint-interval', type=int, default=5000)
args = parser.parse_args()
# --------------- Loading ---------------
def train():
# import pdb;pdb.set_trace()
# Training DataLoader
dataset_train = ZipDataset([
ZipDataset([
ImagesDataset(DATA_PATH[args.dataset_name]['train']['pha'], mode='L'),
ImagesDataset(DATA_PATH[args.dataset_name]['train']['fgr'], mode='RGB'),
], transforms=A.PairCompose([
A.PairRandomAffineAndResize((2048, 2048), degrees=(-5, 5), translate=(0.1, 0.1), scale=(0.3, 1), shear=(-5, 5)),
A.PairRandomHorizontalFlip(),
A.PairRandomBoxBlur(0.1, 5),
A.PairRandomSharpen(0.1),
A.PairApplyOnlyAtIndices([1], T.ColorJitter(0.15, 0.15, 0.15, 0.05)),
A.PairApply(T.ToTensor())
]), assert_equal_length=True),
ImagesDataset(DATA_PATH['backgrounds']['train'], mode='RGB', transforms=T.Compose([
A.RandomAffineAndResize((2048, 2048), degrees=(-5, 5), translate=(0.1, 0.1), scale=(1, 2), shear=(-5, 5)),
T.RandomHorizontalFlip(),
A.RandomBoxBlur(0.1, 5),
A.RandomSharpen(0.1),
T.ColorJitter(0.15, 0.15, 0.15, 0.05),
T.ToTensor()
])),
])
dataloader_train = DataLoader(dataset_train,
shuffle=True,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True)
# Validation DataLoader
dataset_valid = ZipDataset([
ZipDataset([
ImagesDataset(DATA_PATH[args.dataset_name]['valid']['pha'], mode='L'),
ImagesDataset(DATA_PATH[args.dataset_name]['valid']['fgr'], mode='RGB')
], transforms=A.PairCompose([
A.PairRandomAffineAndResize((512, 512), degrees=(-5, 5), translate=(0.1, 0.1), scale=(0.3, 1), shear=(-5, 5)),
A.PairApply(T.ToTensor())
]), assert_equal_length=True),
ImagesDataset(DATA_PATH['backgrounds']['valid'], mode='RGB', transforms=T.Compose([
A.RandomAffineAndResize((512, 512), degrees=(-5, 5), translate=(0.1, 0.1), scale=(1, 1.2), shear=(-5, 5)),
T.ToTensor()
])),
])
dataset_valid = SampleDataset(dataset_valid, 50)
dataloader_valid = DataLoader(dataset_valid,
pin_memory=True,
batch_size=args.batch_size,
num_workers=args.num_workers)
# Model
model = MattingBase(args.model_backbone).cuda()
if args.model_last_checkpoint is not None:
load_matched_state_dict(model, torch.load(args.model_last_checkpoint))
elif args.model_pretrain_initialization is not None:
model.load_pretrained_deeplabv3_state_dict(torch.load(args.model_pretrain_initialization)['model_state'])
optimizer = Adam([
{'params': model.backbone.parameters(), 'lr': 1e-4},
{'params': model.aspp.parameters(), 'lr': 5e-4},
{'params': model.decoder.parameters(), 'lr': 5e-4}
])
scaler = GradScaler()
# Logging and checkpoints
if not os.path.exists(f'checkpoint/{args.model_name}'):
os.makedirs(f'checkpoint/{args.model_name}')
writer = SummaryWriter(f'log/{args.model_name}')
# Run loop
for epoch in range(args.epoch_start, args.epoch_end):
for i, ((true_pha, true_fgr), true_bgr) in enumerate(tqdm(dataloader_train)):
step = epoch * len(dataloader_train) + i
#true_pha=1*512*512 true_fgr=3*512*512 true_bgr=3*512*512
true_pha = true_pha.cuda(non_blocking=True)
true_fgr = true_fgr.cuda(non_blocking=True)
true_bgr = true_bgr.cuda(non_blocking=True)
true_pha, true_fgr, true_bgr = random_crop(true_pha, true_fgr, true_bgr)#在这里进行了一个随即裁剪,把他们都变成了383*463(这个h和w都是随机数生成出来的)
#true-src是background的clone()(不要忘记)
true_src = true_bgr.clone()
# Augment with shadow
aug_shadow_idx = torch.rand(len(true_src)) < 0.3
if aug_shadow_idx.any():
aug_shadow = true_pha[aug_shadow_idx].mul(0.3 * random.random())
aug_shadow = T.RandomAffine(degrees=(-5, 5), translate=(0.2, 0.2), scale=(0.5, 1.5), shear=(-5, 5))(aug_shadow)
aug_shadow = kornia.filters.box_blur(aug_shadow, (random.choice(range(20, 40)),) * 2)
true_src[aug_shadow_idx] = true_src[aug_shadow_idx].sub_(aug_shadow).clamp_(0, 1)
del aug_shadow
del aug_shadow_idx
# Composite foreground onto source
true_src = true_fgr * true_pha + true_src * (1 - true_pha)
# Augment with noise
aug_noise_idx = torch.rand(len(true_src)) < 0.4
if aug_noise_idx.any():
true_src[aug_noise_idx] = true_src[aug_noise_idx].add_(torch.randn_like(true_src[aug_noise_idx]).mul_(0.03 * random.random())).clamp_(0, 1)
true_bgr[aug_noise_idx] = true_bgr[aug_noise_idx].add_(torch.randn_like(true_bgr[aug_noise_idx]).mul_(0.03 * random.random())).clamp_(0, 1)
del aug_noise_idx
# Augment background with jitter 这一块都是数据增强的操作了,
aug_jitter_idx = torch.rand(len(true_src)) < 0.8
if aug_jitter_idx.any():
true_bgr[aug_jitter_idx] = kornia.augmentation.ColorJitter(0.18, 0.18, 0.18, 0.1)(true_bgr[aug_jitter_idx])
del aug_jitter_idx
# Augment background with affine
aug_affine_idx = torch.rand(len(true_bgr)) < 0.3
if aug_affine_idx.any():
true_bgr[aug_affine_idx] = T.RandomAffine(degrees=(-1, 1), translate=(0.01, 0.01))(true_bgr[aug_affine_idx])
del aug_affine_idx
with autocast():
pred_pha, pred_fgr, pred_err = model(true_src, true_bgr)[:3]
loss = compute_loss(pred_pha, pred_fgr, pred_err, true_pha, true_fgr)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if (i + 1) % args.log_train_loss_interval == 0:
writer.add_scalar('loss', loss, step)
if (i + 1) % args.log_train_images_interval == 0:
writer.add_image('train_pred_pha', make_grid(pred_pha, nrow=5), step)
writer.add_image('train_pred_fgr', make_grid(pred_fgr, nrow=5), step)
writer.add_image('train_pred_com', make_grid(pred_fgr * pred_pha, nrow=5), step)
writer.add_image('train_pred_err', make_grid(pred_err, nrow=5), step)
writer.add_image('train_true_src', make_grid(true_src, nrow=5), step)
writer.add_image('train_true_bgr', make_grid(true_bgr, nrow=5), step)
del true_pha, true_fgr, true_bgr
del pred_pha, pred_fgr, pred_err
if (i + 1) % args.log_valid_interval == 0:
valid(model, dataloader_valid, writer, step)
if (step + 1) % args.checkpoint_interval == 0:
torch.save(model.state_dict(), f'checkpoint/{args.model_name}/epoch-{epoch}-iter-{step}.pth')
torch.save(model.state_dict(), f'checkpoint/{args.model_name}/epoch-{epoch}.pth')
# --------------- Utils ---------------
def compute_loss(pred_pha, pred_fgr, pred_err, true_pha, true_fgr):
true_err = torch.abs(pred_pha.detach() - true_pha)
true_msk = true_pha != 0
return F.l1_loss(pred_pha, true_pha) + \
F.l1_loss(kornia.sobel(pred_pha), kornia.sobel(true_pha)) + \
F.l1_loss(pred_fgr * true_msk, true_fgr * true_msk) + \
F.mse_loss(pred_err, true_err)
def random_crop(*imgs):
w = random.choice(range(256, 512))
h = random.choice(range(256, 512))
results = []
for img in imgs:
img = kornia.resize(img, (max(h, w), max(h, w)))
img = kornia.center_crop(img, (h, w))
results.append(img)
return results
def valid(model, dataloader, writer, step):
model.eval()
loss_total = 0
loss_count = 0
with torch.no_grad():
for (true_pha, true_fgr), true_bgr in dataloader:
batch_size = true_pha.size(0)
true_pha = true_pha.cuda(non_blocking=True)
true_fgr = true_fgr.cuda(non_blocking=True)
true_bgr = true_bgr.cuda(non_blocking=True)
true_src = true_pha * true_fgr + (1 - true_pha) * true_bgr
pred_pha, pred_fgr, pred_err = model(true_src, true_bgr)[:3]
loss = compute_loss(pred_pha, pred_fgr, pred_err, true_pha, true_fgr)
loss_total += loss.cpu().item() * batch_size
loss_count += batch_size
writer.add_scalar('valid_loss', loss_total / loss_count, step)
model.train()
# --------------- Start ---------------
if __name__ == '__main__':
train()