-
Notifications
You must be signed in to change notification settings - Fork 58
/
optim_utils.py
250 lines (185 loc) · 8.97 KB
/
optim_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import random
import numpy as np
import requests
from io import BytesIO
from PIL import Image
from statistics import mean
import copy
import json
from typing import Any, Mapping
import open_clip
import torch
from sentence_transformers.util import (semantic_search,
dot_score,
normalize_embeddings)
def read_json(filename: str) -> Mapping[str, Any]:
"""Returns a Python dict representation of JSON object at input file."""
with open(filename) as fp:
return json.load(fp)
def nn_project(curr_embeds, embedding_layer, print_hits=False):
with torch.no_grad():
bsz,seq_len,emb_dim = curr_embeds.shape
# Using the sentence transformers semantic search which is
# a dot product exact kNN search between a set of
# query vectors and a corpus of vectors
curr_embeds = curr_embeds.reshape((-1,emb_dim))
curr_embeds = normalize_embeddings(curr_embeds) # queries
embedding_matrix = embedding_layer.weight
embedding_matrix = normalize_embeddings(embedding_matrix)
hits = semantic_search(curr_embeds, embedding_matrix,
query_chunk_size=curr_embeds.shape[0],
top_k=1,
score_function=dot_score)
if print_hits:
all_hits = []
for hit in hits:
all_hits.append(hit[0]["score"])
print(f"mean hits:{mean(all_hits)}")
nn_indices = torch.tensor([hit[0]["corpus_id"] for hit in hits], device=curr_embeds.device)
nn_indices = nn_indices.reshape((bsz,seq_len))
projected_embeds = embedding_layer(nn_indices)
return projected_embeds, nn_indices
def set_random_seed(seed=0):
torch.manual_seed(seed + 0)
torch.cuda.manual_seed(seed + 1)
torch.cuda.manual_seed_all(seed + 2)
np.random.seed(seed + 3)
torch.cuda.manual_seed_all(seed + 4)
random.seed(seed + 5)
def decode_ids(input_ids, tokenizer, by_token=False):
input_ids = input_ids.detach().cpu().numpy()
texts = []
if by_token:
for input_ids_i in input_ids:
curr_text = []
for tmp in input_ids_i:
curr_text.append(tokenizer.decode([tmp]))
texts.append('|'.join(curr_text))
else:
for input_ids_i in input_ids:
texts.append(tokenizer.decode(input_ids_i))
return texts
def download_image(url):
try:
response = requests.get(url)
except:
return None
return Image.open(BytesIO(response.content)).convert("RGB")
def get_target_feature(model, preprocess, tokenizer_funct, device, target_images=None, target_prompts=None):
if target_images is not None:
with torch.no_grad():
curr_images = [preprocess(i).unsqueeze(0) for i in target_images]
curr_images = torch.concatenate(curr_images).to(device)
all_target_features = model.encode_image(curr_images)
else:
texts = tokenizer_funct(target_prompts).to(device)
all_target_features = model.encode_text(texts)
return all_target_features
def initialize_prompt(tokenizer, token_embedding, args, device):
prompt_len = args.prompt_len
# randomly optimize prompt embeddings
prompt_ids = torch.randint(len(tokenizer.encoder), (args.prompt_bs, prompt_len)).to(device)
prompt_embeds = token_embedding(prompt_ids).detach()
prompt_embeds.requires_grad = True
# initialize the template
template_text = "{}"
padded_template_text = template_text.format(" ".join(["<start_of_text>"] * prompt_len))
dummy_ids = tokenizer.encode(padded_template_text)
# -1 for optimized tokens
dummy_ids = [i if i != 49406 else -1 for i in dummy_ids]
dummy_ids = [49406] + dummy_ids + [49407]
dummy_ids += [0] * (77 - len(dummy_ids))
dummy_ids = torch.tensor([dummy_ids] * args.prompt_bs).to(device)
# for getting dummy embeds; -1 won't work for token_embedding
tmp_dummy_ids = copy.deepcopy(dummy_ids)
tmp_dummy_ids[tmp_dummy_ids == -1] = 0
dummy_embeds = token_embedding(tmp_dummy_ids).detach()
dummy_embeds.requires_grad = False
return prompt_embeds, dummy_embeds, dummy_ids
def optimize_prompt_loop(model, tokenizer, token_embedding, all_target_features, args, device):
opt_iters = args.iter
lr = args.lr
weight_decay = args.weight_decay
print_step = args.print_step
batch_size = args.batch_size
print_new_best = getattr(args, 'print_new_best', False)
# initialize prompt
prompt_embeds, dummy_embeds, dummy_ids = initialize_prompt(tokenizer, token_embedding, args, device)
p_bs, p_len, p_dim = prompt_embeds.shape
# get optimizer
input_optimizer = torch.optim.AdamW([prompt_embeds], lr=lr, weight_decay=weight_decay)
best_sim = -1000 * args.loss_weight
best_text = ""
for step in range(opt_iters):
# randomly sample sample images and get features
if batch_size is None:
target_features = all_target_features
else:
curr_indx = torch.randperm(len(all_target_features))
target_features = all_target_features[curr_indx][0:batch_size]
universal_target_features = all_target_features
# forward projection
projected_embeds, nn_indices = nn_project(prompt_embeds, token_embedding, print_hits=False)
# get cosine similarity score with all target features
with torch.no_grad():
# padded_embeds = copy.deepcopy(dummy_embeds)
padded_embeds = dummy_embeds.detach().clone()
padded_embeds[dummy_ids == -1] = projected_embeds.reshape(-1, p_dim)
logits_per_image, _ = model.forward_text_embedding(padded_embeds, dummy_ids, universal_target_features)
scores_per_prompt = logits_per_image.mean(dim=0)
universal_cosim_score = scores_per_prompt.max().item()
best_indx = scores_per_prompt.argmax().item()
# tmp_embeds = copy.deepcopy(prompt_embeds)
tmp_embeds = prompt_embeds.detach().clone()
tmp_embeds.data = projected_embeds.data
tmp_embeds.requires_grad = True
# padding
# padded_embeds = copy.deepcopy(dummy_embeds)
padded_embeds = dummy_embeds.detach().clone()
padded_embeds[dummy_ids == -1] = tmp_embeds.reshape(-1, p_dim)
logits_per_image, _ = model.forward_text_embedding(padded_embeds, dummy_ids, target_features)
cosim_scores = logits_per_image
loss = 1 - cosim_scores.mean()
loss = loss * args.loss_weight
prompt_embeds.grad, = torch.autograd.grad(loss, [tmp_embeds])
input_optimizer.step()
input_optimizer.zero_grad()
curr_lr = input_optimizer.param_groups[0]["lr"]
cosim_scores = cosim_scores.mean().item()
decoded_text = decode_ids(nn_indices, tokenizer)[best_indx]
if print_step is not None and (step % print_step == 0 or step == opt_iters-1):
per_step_message = f"step: {step}, lr: {curr_lr}"
if not print_new_best:
per_step_message = f"\n{per_step_message}, cosim: {universal_cosim_score:.3f}, text: {decoded_text}"
print(per_step_message)
if best_sim * args.loss_weight < universal_cosim_score * args.loss_weight:
best_sim = universal_cosim_score
best_text = decoded_text
if print_new_best:
print(f"new best cosine sim: {best_sim}")
print(f"new best prompt: {best_text}")
if print_step is not None:
print()
print(f"best cosine sim: {best_sim}")
print(f"best prompt: {best_text}")
return best_text
def optimize_prompt(model, preprocess, args, device, target_images=None, target_prompts=None):
token_embedding = model.token_embedding
tokenizer = open_clip.tokenizer._tokenizer
tokenizer_funct = open_clip.get_tokenizer(args.clip_model)
# get target features
all_target_features = get_target_feature(model, preprocess, tokenizer_funct, device, target_images=target_images, target_prompts=target_prompts)
# optimize prompt
learned_prompt = optimize_prompt_loop(model, tokenizer, token_embedding, all_target_features, args, device)
return learned_prompt
def measure_similarity(orig_images, images, ref_model, ref_clip_preprocess, device):
with torch.no_grad():
ori_batch = [ref_clip_preprocess(i).unsqueeze(0) for i in orig_images]
ori_batch = torch.concatenate(ori_batch).to(device)
gen_batch = [ref_clip_preprocess(i).unsqueeze(0) for i in images]
gen_batch = torch.concatenate(gen_batch).to(device)
ori_feat = ref_model.encode_image(ori_batch)
gen_feat = ref_model.encode_image(gen_batch)
ori_feat = ori_feat / ori_feat.norm(dim=1, keepdim=True)
gen_feat = gen_feat / gen_feat.norm(dim=1, keepdim=True)
return (ori_feat @ gen_feat.t()).mean().item()