Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

A question when training #2

Open
xiaowenhe opened this issue Jul 28, 2017 · 17 comments
Open

A question when training #2

xiaowenhe opened this issue Jul 28, 2017 · 17 comments

Comments

@xiaowenhe
Copy link

Hey, much thanks for your great work. I follow your work now.
But i met a problem when training, like :
iter: 0 / 100000, total loss: 5.0174, rpn_loss_cls: 1.2912, rpn_loss_box: 0.4618, loss_cls: 3.1485, loss_box: 0.1159, lr: 0.001000
speed: 3.746s / iter
cudaCheckError() failed : invalid device function.
That is say , after the firsr iter , it throw an error.
I do not know how to deal with it! Can you help me?

device: K80, CUDA8.0, cudnn5.1

@Zardinality
Copy link
Owner

@xiaowenhe You might want to check this. smallcorgi/Faster-RCNN_TF#19

I was planning to add it in readme (and I did, but in another repo). Will add it before tomorrow.

@xiaowenhe
Copy link
Author

@Zardinality ,thanks for your answer. But the error still again. Even I change the -arch=sm_37 (K80) in make.sh and setup.py, and rerun the make.

@Zardinality
Copy link
Owner

@xiaowenhe That is odd. Can you make sure you use the recompiled version by deleting original ones, or comment out all lines related to deform stuff to check if regular roi_pooling op works?

@xiaowenhe
Copy link
Author

@Zardinality . Thank you very much. I get it by recompiled version by deleting original ones.

@feitiandemiaomi
Copy link

@xiaowenhe I met the same problem , What did you delete? Makefile has the effect of rm, I can not understand

@Zardinality
Copy link
Owner

@feitiandemiaomi Have you changed -arch to a value compatible with your device?

@feitiandemiaomi
Copy link

@Zardinality I have changed ,my machine is k40m and I change the -arch=sm_35, and I also rerun the make ,but it did not work

@feitiandemiaomi
Copy link

gpu2@gpu2-PowerEdge-R730:~/OWFO/TF_Deformable_Net$ python faster_rcnn/demo.py --model tf_deformable_net/restore_output/Resnet50_iter_145000.ckpt
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locally
filename: /home/gpu2/OWFO/TF_Deformable_Net/lib/psroi_pooling_layer/psroi_pooling.so


/home/gpu2/OWFO/TF_Deformable_Net/lib/psroi_pooling_layer/psroi_pooling.so
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties:
name: Tesla K40m
major: 3 minor: 5 memoryClockRate (GHz) 0.745
pciBusID 0000:04:00.0
Total memory: 11.17GiB
Free memory: 11.10GiB
W tensorflow/stream_executor/cuda/cuda_driver.cc:590] creating context when one is currently active; existing: 0x18aa400
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 1 with properties:
name: Tesla K40m
major: 3 minor: 5 memoryClockRate (GHz) 0.745
pciBusID 0000:82:00.0
Total memory: 11.17GiB
Free memory: 11.10GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:777] Peer access not supported between device ordinals 0 and 1
I tensorflow/core/common_runtime/gpu/gpu_device.cc:777] Peer access not supported between device ordinals 1 and 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 1
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y N
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 1: N Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Tesla K40m, pci bus id: 0000:04:00.0)
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:1) -> (device: 1, name: Tesla K40m, pci bus id: 0000:82:00.0)
Tensor("Placeholder:0", shape=(?, ?, ?, 3), dtype=float32)
Tensor("pool1:0", shape=(?, ?, ?, 64), dtype=float32)
Tensor("bn2a_branch1/batchnorm/add_1:0", shape=(?, ?, ?, 256), dtype=float32)
Tensor("bn2a_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 256), dtype=float32)
Tensor("res2a_relu:0", shape=(?, ?, ?, 256), dtype=float32)
Tensor("bn2b_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 256), dtype=float32)
Tensor("res2b_relu:0", shape=(?, ?, ?, 256), dtype=float32)
Tensor("bn2c_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 256), dtype=float32)
Tensor("res2c_relu:0", shape=(?, ?, ?, 256), dtype=float32)
Tensor("bn3a_branch1/batchnorm/add_1:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("bn3a_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("res3a_relu:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("bn3b_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("res3b_relu:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("bn3c_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("res3c_relu:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("bn3d_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("res3d_relu:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("bn4a_branch1/batchnorm/add_1:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("bn4a_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("res4a_relu:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("bn4b_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("res4b_relu:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("bn4c_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("res4c_relu:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("bn4d_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("res4d_relu:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("bn4e_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("res4e_relu:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("bn4f_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("res4f_relu:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("rpn_conv/3x3/Relu:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("rpn_cls_score/BiasAdd:0", shape=(?, ?, ?, 18), dtype=float32)
Tensor("rpn_cls_prob:0", shape=(?, ?, ?, ?), dtype=float32)
Tensor("Reshape_2:0", shape=(?, ?, ?, 18), dtype=float32)
Tensor("rpn_bbox_pred/BiasAdd:0", shape=(?, ?, ?, 36), dtype=float32)
Tensor("Placeholder_1:0", shape=(?, 3), dtype=float32)
Tensor("res4f_relu:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("res4f_relu:0", shape=(?, ?, ?, 1024), dtype=float32)
Tensor("res5a_branch2a_relu:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("res5a_branch2b_offset/BiasAdd:0", shape=(?, ?, ?, 72), dtype=float32)
Tensor("transpose:0", shape=(?, 512, ?, ?), dtype=float32) Tensor("res5a_branch2b/weights/read:0", shape=(512, 512, 3, 3), dtype=float32) Tensor("transpose_1:0", shape=(?, 72, ?, ?), dtype=float32)
Tensor("bn5a_branch1/batchnorm/add_1:0", shape=(?, ?, ?, 2048), dtype=float32)
Tensor("bn5a_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 2048), dtype=float32)
Tensor("res5b_branch2a_relu:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("res5b_branch2b_offset/BiasAdd:0", shape=(?, ?, ?, 72), dtype=float32)
Tensor("transpose_2:0", shape=(?, 512, ?, ?), dtype=float32) Tensor("res5b_branch2b/weights/read:0", shape=(512, 512, 3, 3), dtype=float32) Tensor("transpose_3:0", shape=(?, 72, ?, ?), dtype=float32)
Tensor("res5a_relu:0", shape=(?, ?, ?, 2048), dtype=float32)
Tensor("bn5b_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 2048), dtype=float32)
Tensor("res5c_branch2a_relu:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("res5c_branch2b_offset/BiasAdd:0", shape=(?, ?, ?, 72), dtype=float32)
Tensor("transpose_4:0", shape=(?, 512, ?, ?), dtype=float32) Tensor("res5c_branch2b/weights/read:0", shape=(512, 512, 3, 3), dtype=float32) Tensor("transpose_5:0", shape=(?, 72, ?, ?), dtype=float32)
Tensor("res5b_relu:0", shape=(?, ?, ?, 2048), dtype=float32)
Tensor("bn5c_branch2c/batchnorm/add_1:0", shape=(?, ?, ?, 2048), dtype=float32)
Tensor("conv_new_1_relu:0", shape=(?, ?, ?, 256), dtype=float32)
Tensor("rois:0", shape=(?, 5), dtype=float32)
Tensor("conv_new_1_relu:0", shape=(?, ?, ?, 256), dtype=float32)
Tensor("rois:0", shape=(?, 5), dtype=float32)
Tensor("offset_reshape:0", shape=(?, 2, 7, 7), dtype=float32)
Tensor("fc_new_2/fc_new_2:0", shape=(?, 1024), dtype=float32)
Tensor("fc_new_2/fc_new_2:0", shape=(?, 1024), dtype=float32)
Loading network Resnet50_test... restore from the checkpointtf_deformable_net/restore_output/Resnet50_iter_145000.ckpt
done.
cudaCheckError() failed : invalid device function

@Zardinality
Copy link
Owner

@feitiandemiaomi I guess maybe only when you manually write clean lines in Makefile that it would rebuilt them all? Because the only reason I am aware that cause this error is the -arch flag, so I suggest you remove all previous built lib and rebuild again.
Also, I don't know if relevant, but here also contains an -arch flag.

@feitiandemiaomi
Copy link

@Zardinality Thank you a lot , I will try again, Do not give up

@xiaowenhe
Copy link
Author

@feitiandemiaomi, I delete all projects and reload it again. I change the -arch=sm_37 (K80) in make.sh and setup.py, and rerun the make.

@feitiandemiaomi
Copy link

@xiaowenhe Thanks ,you are right , I make it

@feitiandemiaomi
Copy link

@Zardinality Just now , I did test, It seemed to miss file in /experiments/scripts/, such as voc2007_test_vgg.sh

@Zardinality
Copy link
Owner

@feitiandemiaomi Already pushed.

@feitiandemiaomi
Copy link

@Zardinality Thank you for your reply, If possible , can I add friend by wechat or qq?

@Zardinality
Copy link
Owner

sure, my wechat nickname is the same as github's

@feitiandemiaomi
Copy link

I apply for you

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants