-
Notifications
You must be signed in to change notification settings - Fork 48
/
rxuart.v
531 lines (509 loc) · 16.5 KB
/
rxuart.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
////////////////////////////////////////////////////////////////////////////////
//
// Filename: rxuart.v
// {{{
// Project: wbuart32, a full featured UART with simulator
//
// Purpose: Receive and decode inputs from a single UART line.
//
//
// To interface with this module, connect it to your system clock,
// pass it the 32 bit setup register (defined below) and the UART
// input. When data becomes available, the o_wr line will be asserted
// for one clock cycle. On parity or frame errors, the o_parity_err
// or o_frame_err lines will be asserted. Likewise, on a break
// condition, o_break will be asserted. These lines are self clearing.
//
// There is a synchronous reset line, logic high.
//
// Now for the setup register. The register is 32 bits, so that this
// UART may be set up over a 32-bit bus.
//
// i_setup[30] True if we are not using hardware flow control. This bit
// is ignored within this module, as any receive hardware flow
// control will need to be implemented elsewhere.
//
// i_setup[29:28] Indicates the number of data bits per word. This will
// either be 2'b00 for an 8-bit word, 2'b01 for a 7-bit word, 2'b10
// for a six bit word, or 2'b11 for a five bit word.
//
// i_setup[27] Indicates whether or not to use one or two stop bits.
// Set this to one to expect two stop bits, zero for one.
//
// i_setup[26] Indicates whether or not a parity bit exists. Set this
// to 1'b1 to include parity.
//
// i_setup[25] Indicates whether or not the parity bit is fixed. Set
// to 1'b1 to include a fixed bit of parity, 1'b0 to allow the
// parity to be set based upon data. (Both assume the parity
// enable value is set.)
//
// i_setup[24] This bit is ignored if parity is not used. Otherwise,
// in the case of a fixed parity bit, this bit indicates whether
// mark (1'b1) or space (1'b0) parity is used. Likewise if the
// parity is not fixed, a 1'b1 selects even parity, and 1'b0
// selects odd.
//
// i_setup[23:0] Indicates the speed of the UART in terms of clocks.
// So, for example, if you have a 200 MHz clock and wish to
// run your UART at 9600 baud, you would take 200 MHz and divide
// by 9600 to set this value to 24'd20834. Likewise if you wished
// to run this serial port at 115200 baud from a 200 MHz clock,
// you would set the value to 24'd1736
//
// Thus, to set the UART for the common setting of an 8-bit word,
// one stop bit, no parity, and 115200 baud over a 200 MHz clock, you
// would want to set the setup value to:
//
// 32'h0006c8 // For 115,200 baud, 8 bit, no parity
// 32'h005161 // For 9600 baud, 8 bit, no parity
//
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2015-2024, Gisselquist Technology, LLC
// {{{
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
// target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
// }}}
// License: GPL, v3, as defined and found on www.gnu.org,
// {{{
// http://www.gnu.org/licenses/gpl.html
//
////////////////////////////////////////////////////////////////////////////////
//
`default_nettype none
// }}}
module rxuart #(
// {{{
// 8 data bits, no parity, (at least 1) stop bit
parameter [30:0] INITIAL_SETUP = 31'd868,
// States: (@ baud counter == 0)
// 0 First bit arrives
// ..7 Bits arrive
// 8 Stop bit (x1)
// 9 Stop bit (x2)
// c break condition
// d Waiting for the channel to go high
// e Waiting for the reset to complete
// f Idle state
localparam [3:0] RXU_BIT_ZERO = 4'h0,
RXU_BIT_ONE = 4'h1,
RXU_BIT_TWO = 4'h2,
RXU_BIT_THREE = 4'h3,
// RXU_BIT_FOUR = 4'h4, // UNUSED
// RXU_BIT_FIVE = 4'h5, // UNUSED
// RXU_BIT_SIX = 4'h6, // UNUSED
RXU_BIT_SEVEN = 4'h7,
RXU_PARITY = 4'h8,
RXU_STOP = 4'h9,
RXU_SECOND_STOP = 4'ha,
// Unused 4'hb
// Unused 4'hc
RXU_BREAK = 4'hd,
RXU_RESET_IDLE = 4'he,
RXU_IDLE = 4'hf
// }}}
) (
// {{{
input wire i_clk, i_reset,
/* verilator lint_off UNUSED */
input wire [30:0] i_setup,
/* verilator lint_on UNUSED */
input wire i_uart_rx,
output reg o_wr,
output reg [7:0] o_data,
output reg o_break,
output reg o_parity_err, o_frame_err,
output wire o_ck_uart
// }}}
);
// Signal declarations
// {{{
wire [23:0] clocks_per_baud, half_baud;
wire [1:0] data_bits;
wire use_parity, parity_even, dblstop, fixd_parity;
reg [29:0] r_setup;
reg [3:0] state;
reg [23:0] baud_counter;
reg zero_baud_counter;
reg q_uart, qq_uart, ck_uart;
reg [27:0] chg_counter, break_condition;
reg line_synch;
reg half_baud_time;
reg [7:0] data_reg;
reg calc_parity;
reg pre_wr;
assign clocks_per_baud = r_setup[23:0];
// assign hw_flow_control = !r_setup[30];
assign data_bits = r_setup[29:28];
assign dblstop = r_setup[27];
assign use_parity = r_setup[26];
assign fixd_parity = r_setup[25];
assign parity_even = r_setup[24];
assign break_condition = { r_setup[23:0], 4'h0 };
assign half_baud = { 1'h0, r_setup[23:1] }-24'h1;
// }}}
// ck_uart
// {{{
// Since this is an asynchronous receiver, we need to register our
// input a couple of clocks over to avoid any problems with
// metastability. We do that here, and then ignore all but the
// ck_uart wire.
initial q_uart = 1'b0;
initial qq_uart = 1'b0;
initial ck_uart = 1'b0;
always @(posedge i_clk)
if (i_reset)
{ ck_uart, qq_uart, q_uart } <= 3'h0;
else
{ ck_uart, qq_uart, q_uart } <= { qq_uart, q_uart, i_uart_rx };
// }}}
// o_ck_uart
// {{{
// In case anyone else wants this clocked, stabilized value, we
// offer it on our output.
assign o_ck_uart = ck_uart;
// }}}
// chg_counter
// {{{
// Keep track of the number of clocks since the last change.
//
// This is used to determine if we are in either a break or an idle
// condition, as discussed further below.
initial chg_counter = 0;
always @(posedge i_clk)
if (i_reset)
chg_counter <= 0;
else if (qq_uart != ck_uart)
chg_counter <= 0;
else if (chg_counter < break_condition)
chg_counter <= chg_counter + 1;
// }}}
// o_break
// {{{
// Are we in a break condition?
//
// A break condition exists if the line is held low for longer than
// a data word. Hence, we keep track of when the last change occurred.
// If it was more than break_condition clocks ago, and the current input
// value is a 0, then we're in a break--and nothing can be read until
// the line idles again.
initial o_break = 1'b0;
always @(posedge i_clk)
if (i_reset)
o_break <= 1'b0;
else
o_break <= ((chg_counter >= break_condition)&&(~ck_uart))? 1'b1:1'b0;
// }}}
// line_synch
// {{{
// Are we between characters?
//
// The opposite of a break condition is where the line is held high
// for more clocks than would be in a character. When this happens,
// we know we have synchronization--otherwise, we might be sampling
// from within a data word.
//
// This logic is used later to hold the RXUART in a reset condition
// until we know we are between data words. At that point, we should
// be able to hold on to our synchronization.
initial line_synch = 1'b0;
always @(posedge i_clk)
if (i_reset)
line_synch <= 1'b0;
else
line_synch <= ((chg_counter >= break_condition)&&(ck_uart));
// }}}
// half_baud_time
// {{{
// Are we in the middle of a baud iterval? Specifically, are we
// in the middle of a start bit? Set this to high if so. We'll use
// this within our state machine to transition out of the IDLE
// state.
initial half_baud_time = 0;
always @(posedge i_clk)
if (i_reset)
half_baud_time <= 1'b0;
else
half_baud_time <= (~ck_uart)&&(chg_counter >= {4'h0,half_baud});
// }}}
// r_setup
// {{{
// Allow our controlling processor to change our setup at any time
// outside of receiving/processing a character.
initial r_setup = INITIAL_SETUP[29:0];
always @(posedge i_clk)
if (i_reset)
r_setup <= INITIAL_SETUP[29:0];
else if (state >= RXU_RESET_IDLE)
r_setup <= i_setup[29:0];
// }}}
// state -- the monster state machine
// {{{
// Our monster state machine. YIKES!
//
// Yeah, this may be more complicated than it needs to be. The basic
// progression is:
// RESET -> RESET_IDLE -> (when line is idle) -> IDLE
// IDLE -> bit 0 -> bit 1 -> bit_{ndatabits} ->
// (optional) PARITY -> STOP -> (optional) SECOND_STOP
// -> IDLE
// ANY -> (on break) BREAK -> IDLE
//
// There are 16 states, although all are not used. These are listed
// at the top of this file.
//
// Logic inputs (12): (I've tried to minimize this number)
// state (4)
// i_reset
// line_synch
// o_break
// ckuart
// half_baud_time
// zero_baud_counter
// use_parity
// dblstop
// Logic outputs (4):
// state
//
initial state = RXU_RESET_IDLE;
always @(posedge i_clk)
if (i_reset)
state <= RXU_RESET_IDLE;
else if (state == RXU_RESET_IDLE)
begin
// {{{
if (line_synch)
// Goto idle state from a reset
state <= RXU_IDLE;
else // Otherwise, stay in this condition 'til reset
state <= RXU_RESET_IDLE;
// }}}
end else if (o_break)
begin // We are in a break condition
state <= RXU_BREAK;
end else if (state == RXU_BREAK)
begin // Goto idle state following return ck_uart going high
// {{{
if (ck_uart)
state <= RXU_IDLE;
else
state <= RXU_BREAK;
// }}}
end else if (state == RXU_IDLE)
begin // Idle state, independent of baud counter
// {{{
if (!ck_uart && half_baud_time)
begin
// We are in the center of a valid start bit
case (data_bits)
2'b00: state <= RXU_BIT_ZERO;
2'b01: state <= RXU_BIT_ONE;
2'b10: state <= RXU_BIT_TWO;
2'b11: state <= RXU_BIT_THREE;
endcase
end else // Otherwise, just stay here in idle
state <= RXU_IDLE;
// }}}
end else if (zero_baud_counter)
begin
// {{{
if (state < RXU_BIT_SEVEN)
// Data arrives least significant bit first.
// By the time this is clocked in, it's what
// you'll have.
state <= state + 1;
else if (state == RXU_BIT_SEVEN)
state <= (use_parity) ? RXU_PARITY:RXU_STOP;
else if (state == RXU_PARITY)
state <= RXU_STOP;
else if (state == RXU_STOP)
begin // Stop (or parity) bit(s)
if (!ck_uart) // On frame error, wait 4 ch idle
state <= RXU_RESET_IDLE;
else if (dblstop)
state <= RXU_SECOND_STOP;
else
state <= RXU_IDLE;
end else // state must equal RX_SECOND_STOP
begin
if (!ck_uart) // On frame error, wait 4 ch idle
state <= RXU_RESET_IDLE;
else
state <= RXU_IDLE;
end
// }}}
end
// }}}
// data_reg -- Data bit capture logic.
// {{{
// This is drastically simplified from the state machine above, based
// upon: 1) it doesn't matter what it is until the end of a captured
// byte, and 2) the data register will flush itself of any invalid
// data in all other cases. Hence, let's keep it real simple.
// The only trick, though, is that if we have parity, then the data
// register needs to be held through that state without getting
// updated.
always @(posedge i_clk)
if ((zero_baud_counter)&&(state != RXU_PARITY))
data_reg <= { ck_uart, data_reg[7:1] };
// }}}
// calc_parity
// {{{
// Parity calculation logic
//
// As with the data capture logic, all that must be known about this
// bit is that it is the exclusive-OR of all bits prior. The first
// of those will follow idle, so we set ourselves to zero on idle.
// Then, as we walk through the states of a bit, all will adjust this
// value up until the parity bit, where the value will be read. Setting
// it then or after will be irrelevant, so ... this should be good
// and simplified. Note--we don't need to adjust this on reset either,
// since the reset state will lead to the idle state where we'll be
// reset before any transmission takes place.
always @(posedge i_clk)
if (i_reset)
calc_parity <= 0;
else if (state == RXU_IDLE)
calc_parity <= 0;
else if (zero_baud_counter)
calc_parity <= calc_parity ^ ck_uart;
// }}}
// o_parity_err -- Parity error logic
// {{{
// Set during the parity bit interval, read during the last stop bit
// interval, cleared on BREAK, RESET_IDLE, or IDLE states.
initial o_parity_err = 1'b0;
always @(posedge i_clk)
if (i_reset)
o_parity_err <= 1'b0;
else if ((zero_baud_counter)&&(state == RXU_PARITY))
begin
if (fixd_parity)
// Fixed parity bit--independent of any dat
// value.
o_parity_err <= (ck_uart ^ parity_even);
else if (parity_even)
// Parity even: The XOR of all bits including
// the parity bit must be zero.
o_parity_err <= (calc_parity != ck_uart);
else
// Parity odd: the parity bit must equal the
// XOR of all the data bits.
o_parity_err <= (calc_parity == ck_uart);
end else if (state >= RXU_BREAK)
o_parity_err <= 1'b0;
// }}}
// o_frame_err -- Frame error determination
// {{{
// For the purpose of this controller, a frame error is defined as a
// stop bit (or second stop bit, if so enabled) not being high midway
// through the stop baud interval. The frame error value is
// immediately read, so we can clear it under all other circumstances.
// Specifically, we want it clear in RXU_BREAK, RXU_RESET_IDLE, and
// most importantly in RXU_IDLE.
initial o_frame_err = 1'b0;
always @(posedge i_clk)
if (i_reset)
o_frame_err <= 1'b0;
else if ((zero_baud_counter)&&((state == RXU_STOP)
||(state == RXU_SECOND_STOP)))
o_frame_err <= (o_frame_err)||(~ck_uart);
else if ((zero_baud_counter)||(state >= RXU_BREAK))
o_frame_err <= 1'b0;
// }}}
// pre_wr, o_data
// {{{
// Our data bit logic doesn't need nearly the complexity of all that
// work above. Indeed, we only need to know if we are at the end of
// a stop bit, in which case we copy the data_reg into our output
// data register, o_data.
//
// We would also set o_wr to be true when this is the case, but ... we
// won't know if there is a frame error on the second stop bit for
// another baud interval yet. So, instead, we set up the logic so that
// we know on the next zero baud counter that we can write out. That's
// the purpose of pre_wr.
initial o_data = 8'h00;
initial pre_wr = 1'b0;
always @(posedge i_clk)
if (i_reset)
begin
pre_wr <= 1'b0;
o_data <= 8'h00;
end else if ((zero_baud_counter)&&(state == RXU_STOP))
begin
pre_wr <= 1'b1;
case (data_bits)
2'b00: o_data <= data_reg;
2'b01: o_data <= { 1'b0, data_reg[7:1] };
2'b10: o_data <= { 2'b0, data_reg[7:2] };
2'b11: o_data <= { 3'b0, data_reg[7:3] };
endcase
end else if ((zero_baud_counter)||(state == RXU_IDLE))
pre_wr <= 1'b0;
// }}}
// o_wr
// {{{
// Create an output strobe, true for one clock only, once we know
// all we need to know. o_data will be set on the last baud interval,
// o_parity_err on the last parity baud interval (if it existed,
// cleared otherwise, so ... we should be good to go here.)
initial o_wr = 1'b0;
always @(posedge i_clk)
if (i_reset)
o_wr <= 1'b0;
else if ((zero_baud_counter)||(state == RXU_IDLE))
o_wr <= (pre_wr)&&(!i_reset);
else
o_wr <= 1'b0;
// }}}
// The baud counter
// {{{
// This is used as a "clock divider" if you will, but the clock needs
// to be reset before any byte can be decoded. In all other respects,
// we set ourselves up for clocks_per_baud counts between baud
// intervals.
always @(posedge i_clk)
if (i_reset)
baud_counter <= INITIAL_SETUP[23:0]-1;
else if (zero_baud_counter)
baud_counter <= clocks_per_baud-1;
else case(state)
RXU_RESET_IDLE:baud_counter <= clocks_per_baud-1;
RXU_BREAK: baud_counter <= clocks_per_baud-1;
RXU_IDLE: baud_counter <= clocks_per_baud-1;
default: baud_counter <= baud_counter-1;
endcase
// }}}
// zero_baud_counter
// {{{
// Rather than testing whether or not (baud_counter == 0) within our
// (already too complicated) state transition tables, we use
// zero_baud_counter to pre-charge that test on the clock
// before--cleaning up some otherwise difficult timing dependencies.
initial zero_baud_counter = 1'b0;
always @(posedge i_clk)
if (state == RXU_IDLE)
zero_baud_counter <= 1'b0;
else
zero_baud_counter <= (baud_counter == 1);
// }}}
endmodule