-
Notifications
You must be signed in to change notification settings - Fork 494
/
r_xdeepfm_demo.py
72 lines (67 loc) · 2.48 KB
/
r_xdeepfm_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
Created on Nov 14, 2021
train xDeepFM demo
@author: Ziyao Geng(zggzy1996@163.com)
"""
import tensorflow as tf
from tensorflow.keras.losses import binary_crossentropy
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import AUC
from reclearn.models.ranking import xDeepFM
from reclearn.data.datasets.criteo import get_split_file_path, get_fea_map, create_criteo_dataset
import pickle
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# If you have GPU, and the value is GPU serial number.
os.environ['CUDA_VISIBLE_DEVICES'] = '6'
if __name__ == '__main__':
# TODO: Hyper Parameters
file = 'data/criteo/train.txt'
learning_rate = 0.001
batch_size = 4096
embed_dim = 8
model_params = {
'hidden_units': [256, 128, 64],
'cin_size': [128, 128],
'dnn_dropout': 0.5,
'embed_reg': 0.,
'cin_reg': 0.,
'w_reg': 0.
}
# TODO: Split dataset
# If you want to split the file
sample_num = 4600000
split_file_list = get_split_file_path(dataset_path=file, sample_num=sample_num)
# Or if you split the file before
# split_file_list = get_split_file_path(parent_path='data/criteo/split')
print('split file name: %s' % str(split_file_list))
# TODO: Get Feature Map
# If you want to make feature map.
fea_map = get_fea_map(split_file_list=split_file_list)
# Or if you want to load feature map.
# fea_map = get_fea_map(fea_map_path='data/criteo/split/fea_map.pkl')
# TODO: Load test data
print("load test file: %s" % split_file_list[-1])
feature_columns, test_data = create_criteo_dataset(split_file_list[-1], fea_map, embed_dim=embed_dim)
# TODO: Build Model
mirrored_strategy = tf.distribute.MirroredStrategy()
with mirrored_strategy.scope():
model = xDeepFM(feature_columns=feature_columns, **model_params)
model.summary()
model.compile(loss=binary_crossentropy, optimizer=Adam(learning_rate=learning_rate),
metrics=[AUC()])
# TODO: Load train data
for file in split_file_list[:-1]:
print("load %s" % file)
_, train_data = create_criteo_dataset(file, fea_map)
# TODO: Fit
model.fit(
x=train_data[0],
y=train_data[1],
epochs=1,
batch_size=batch_size,
validation_split=0.1
)
# TODO: Test
train_data = []
print('test AUC: %f' % model.evaluate(x=test_data[0], y=test_data[1], batch_size=batch_size)[1])