Skip to content

Zjut-MultimediaPlus/Phy-CoCo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Phy-CoCo

The code of "Phy-CoCo: Physical Constraint-based Correlation Learning for Tropical Cyclone Intensity and Size Estimation" accepted by ECAI2024.

Introduction

Phy-CoCo_framework

Contribution:

  1. We proposed CoM based on Centrally Expanded Pooling (CEP) to model the correlation between the extracted features and the estimated attributes, fully exploring task-specific features.
  2. To facilitate cross-task interaction, we designed bidirectional physical constraints applied to the transformation of features of interrelated tasks using Multi-Domain Recurrent Convolutions (MDRC).
  3. Extensive experiments are conducted on multi-modal TC datasets to demonstrate the superiority of Phy-CoCo over the state-of-the-art TC estimation methods. The results highlight that Phy-CoCo is effective for both TC MSW and RMW estimation.

Requirements

  • python 3.8.8
  • Pytorch 1.1.0
  • CUDA 11.7

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages