-
Notifications
You must be signed in to change notification settings - Fork 29
/
crc.cpp
280 lines (239 loc) · 7.78 KB
/
crc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
// This CRC function is based on Intel Slicing-by-8 algorithm.
//
// Original Intel Slicing-by-8 code is available here:
//
// http://sourceforge.net/projects/slicing-by-8/
//
// Original Intel Slicing-by-8 code is licensed as:
//
// Copyright (c) 2004-2006 Intel Corporation - All Rights Reserved
//
// This software program is licensed subject to the BSD License,
// available at http://www.opensource.org/licenses/bsd-license.html
#include "rar.hpp"
#ifndef SFX_MODULE
// User suggested to avoid BSD license in SFX module, so they do not need
// to include the license to SFX archive.
#define USE_SLICING
#endif
static uint crc_tables[16][256]; // Tables for Slicing-by-16.
#ifdef USE_NEON_CRC32
static bool CRC_Neon;
#endif
// Build the classic CRC32 lookup table.
// We also provide this function to legacy RAR and ZIP decryption code.
void InitCRC32(uint *CRCTab)
{
if (CRCTab[1]!=0)
return;
for (uint I=0;I<256;I++)
{
uint C=I;
for (uint J=0;J<8;J++)
C=(C & 1) ? (C>>1)^0xEDB88320 : (C>>1);
CRCTab[I]=C;
}
#ifdef USE_NEON_CRC32
#ifdef _APPLE
// getauxval isn't available in OS X
uint Value=0;
size_t Size=sizeof(Value);
int RetCode=sysctlbyname("hw.optional.armv8_crc32",&Value,&Size,NULL,0);
CRC_Neon=RetCode==0 && Value!=0;
#else
CRC_Neon=(getauxval(AT_HWCAP) & HWCAP_CRC32)!=0;
#endif
#endif
}
static void InitTables()
{
InitCRC32(crc_tables[0]);
#ifdef USE_SLICING
for (uint I=0;I<256;I++) // Build additional lookup tables.
{
uint C=crc_tables[0][I];
for (uint J=1;J<16;J++)
{
C=crc_tables[0][(byte)C]^(C>>8);
crc_tables[J][I]=C;
}
}
#endif
}
struct CallInitCRC {CallInitCRC() {InitTables();}} static CallInit32;
uint CRC32(uint StartCRC,const void *Addr,size_t Size)
{
byte *Data=(byte *)Addr;
#ifdef USE_NEON_CRC32
if (CRC_Neon)
{
for (;Size>=8;Size-=8,Data+=8)
#ifdef __clang__
StartCRC = __builtin_arm_crc32d(StartCRC, RawGet8(Data));
#else
StartCRC = __builtin_aarch64_crc32x(StartCRC, RawGet8(Data));
#endif
for (;Size>0;Size--,Data++) // Process left data.
#ifdef __clang__
StartCRC = __builtin_arm_crc32b(StartCRC, *Data);
#else
StartCRC = __builtin_aarch64_crc32b(StartCRC, *Data);
#endif
return StartCRC;
}
#endif
#ifdef USE_SLICING
// Align Data to 16 for better performance and to avoid ALLOW_MISALIGNED
// check below.
for (;Size>0 && ((size_t)Data & 15)!=0;Size--,Data++)
StartCRC=crc_tables[0][(byte)(StartCRC^Data[0])]^(StartCRC>>8);
// 2023.12.06: We switched to slicing-by-16, which seems to be faster than
// slicing-by-8 on modern CPUs. Slicing-by-32 would require 32 KB for tables
// and could be limited by L1 cache size on some CPUs.
for (;Size>=16;Size-=16,Data+=16)
{
#ifdef BIG_ENDIAN
StartCRC ^= RawGet4(Data);
uint D1 = RawGet4(Data+4);
uint D2 = RawGet4(Data+8);
uint D3 = RawGet4(Data+12);
#else
// We avoid RawGet4 here for performance reason, to access uint32
// directly even if ALLOW_MISALIGNED isn't defined. We can do it,
// because we aligned 'Data' above.
StartCRC ^= *(uint32 *) Data;
uint D1 = *(uint32 *) (Data+4);
uint D2 = *(uint32 *) (Data+8);
uint D3 = *(uint32 *) (Data+12);
#endif
StartCRC = crc_tables[15][(byte) StartCRC ] ^
crc_tables[14][(byte)(StartCRC >> 8) ] ^
crc_tables[13][(byte)(StartCRC >> 16)] ^
crc_tables[12][(byte)(StartCRC >> 24)] ^
crc_tables[11][(byte) D1 ] ^
crc_tables[10][(byte)(D1 >> 8) ] ^
crc_tables[ 9][(byte)(D1 >> 16)] ^
crc_tables[ 8][(byte)(D1 >> 24)] ^
crc_tables[ 7][(byte) D2 ] ^
crc_tables[ 6][(byte)(D2 >> 8)] ^
crc_tables[ 5][(byte)(D2 >> 16)] ^
crc_tables[ 4][(byte)(D2 >> 24)] ^
crc_tables[ 3][(byte) D3 ] ^
crc_tables[ 2][(byte)(D3 >> 8)] ^
crc_tables[ 1][(byte)(D3 >> 16)] ^
crc_tables[ 0][(byte)(D3 >> 24)];
}
#endif
for (;Size>0;Size--,Data++) // Process left data.
StartCRC=crc_tables[0][(byte)(StartCRC^Data[0])]^(StartCRC>>8);
return StartCRC;
}
#ifndef SFX_MODULE
// For RAR 1.4 archives in case somebody still has them.
ushort Checksum14(ushort StartCRC,const void *Addr,size_t Size)
{
byte *Data=(byte *)Addr;
for (size_t I=0;I<Size;I++)
{
StartCRC=(StartCRC+Data[I])&0xffff;
StartCRC=((StartCRC<<1)|(StartCRC>>15))&0xffff;
}
return StartCRC;
}
#endif
#if 0
static void TestCRC();
struct TestCRCStruct {TestCRCStruct() {TestCRC();exit(0);}} GlobalTesCRC;
void TestCRC()
{
// This function is invoked from global object and _SSE_Version is global
// and can be initialized after this function. So we explicitly initialize
// it here to enable SSE support in Blake2sp.
_SSE_Version=GetSSEVersion();
const uint FirstSize=300;
byte b[FirstSize];
if ((CRC32(0xffffffff,(byte*)"testtesttest",12)^0xffffffff)==0x44608e84)
mprintf(L"\nCRC32 test1 OK");
else
mprintf(L"\nCRC32 test1 FAILED");
if (CRC32(0,(byte*)"te\x80st",5)==0xB2E5C5AE)
mprintf(L"\nCRC32 test2 OK");
else
mprintf(L"\nCRC32 test2 FAILED");
for (uint I=0;I<14;I++) // Check for possible int sign extension.
b[I]=(byte)0x7f+I;
if ((CRC32(0xffffffff,b,14)^0xffffffff)==0x1DFA75DA)
mprintf(L"\nCRC32 test3 OK");
else
mprintf(L"\nCRC32 test3 FAILED");
for (uint I=0;I<FirstSize;I++)
b[I]=(byte)I;
uint r32=CRC32(0xffffffff,b,FirstSize);
for (uint I=FirstSize;I<1024;I++)
{
b[0]=(byte)I;
r32=CRC32(r32,b,1);
}
if ((r32^0xffffffff)==0xB70B4C26)
mprintf(L"\nCRC32 test4 OK");
else
mprintf(L"\nCRC32 test4 FAILED");
if ((CRC64(0xffffffffffffffff,(byte*)"testtesttest",12)^0xffffffffffffffff)==0x7B1C2D230EDEB436)
mprintf(L"\nCRC64 test1 OK");
else
mprintf(L"\nCRC64 test1 FAILED");
if (CRC64(0,(byte*)"te\x80st",5)==0xB5DBF9583A6EED4A)
mprintf(L"\nCRC64 test2 OK");
else
mprintf(L"\nCRC64 test2 FAILED");
for (uint I=0;I<14;I++) // Check for possible int sign extension.
b[I]=(byte)0x7f+I;
if ((CRC64(0xffffffffffffffff,b,14)^0xffffffffffffffff)==0xE019941C05B2820C)
mprintf(L"\nCRC64 test3 OK");
else
mprintf(L"\nCRC64 test3 FAILED");
for (uint I=0;I<FirstSize;I++)
b[I]=(byte)I;
uint64 r64=CRC64(0xffffffffffffffff,b,FirstSize);
for (uint I=FirstSize;I<1024;I++)
{
b[0]=(byte)I;
r64=CRC64(r64,b,1);
}
if ((r64^0xffffffffffffffff)==0xD51FB58DC789C400)
mprintf(L"\nCRC64 test4 OK");
else
mprintf(L"\nCRC64 test4 FAILED");
const size_t BufSize=0x100000;
byte *Buf=new byte[BufSize];
GetRnd(Buf,BufSize);
clock_t StartTime=clock();
r32=0xffffffff;
const uint64 BufCount=5000;
for (uint I=0;I<BufCount;I++)
r32=CRC32(r32,Buf,BufSize);
if (r32!=0) // Otherwise compiler optimizer removes CRC calculation.
mprintf(L"\nCRC32 speed: %llu MB/s",BufCount*CLOCKS_PER_SEC/(clock()-StartTime));
StartTime=clock();
DataHash Hash;
Hash.Init(HASH_CRC32,MaxPoolThreads);
const uint64 BufCountMT=20000;
for (uint I=0;I<BufCountMT;I++)
Hash.Update(Buf,BufSize);
HashValue Result;
Hash.Result(&Result);
mprintf(L"\nCRC32 MT speed: %llu MB/s",BufCountMT*CLOCKS_PER_SEC/(clock()-StartTime));
StartTime=clock();
Hash.Init(HASH_BLAKE2,MaxPoolThreads);
for (uint I=0;I<BufCount;I++)
Hash.Update(Buf,BufSize);
Hash.Result(&Result);
mprintf(L"\nBlake2sp speed: %llu MB/s",BufCount*CLOCKS_PER_SEC/(clock()-StartTime));
StartTime=clock();
r64=0xffffffffffffffff;
for (uint I=0;I<BufCount;I++)
r64=CRC64(r64,Buf,BufSize);
if (r64!=0) // Otherwise compiler optimizer removes CRC calculation.
mprintf(L"\nCRC64 speed: %llu MB/s",BufCount*CLOCKS_PER_SEC/(clock()-StartTime));
}
#endif