forked from eriklindernoren/Keras-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
srgan.py
273 lines (211 loc) · 9.7 KB
/
srgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""
Super-resolution of CelebA using Generative Adversarial Networks.
The dataset can be downloaded from: https://www.dropbox.com/sh/8oqt9vytwxb3s4r/AADIKlz8PR9zr6Y20qbkunrba/Img/img_align_celeba.zip?dl=0
Instrustion on running the script:
1. Download the dataset from the provided link
2. Save the folder 'img_align_celeba' to 'datasets/'
4. Run the sript using command 'python srgan.py'
"""
from __future__ import print_function, division
import scipy
from keras.datasets import mnist
from keras_contrib.layers.normalization import InstanceNormalization
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, Concatenate
from keras.layers import BatchNormalization, Activation, ZeroPadding2D, Add
from keras.layers.advanced_activations import PReLU, LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.applications import VGG19
from keras.models import Sequential, Model
from keras.optimizers import Adam
import datetime
import matplotlib.pyplot as plt
import sys
from data_loader import DataLoader
import numpy as np
import os
import keras.backend as K
class SRGAN():
def __init__(self):
# Input shape
self.channels = 3
self.lr_height = 64 # Low resolution height
self.lr_width = 64 # Low resolution width
self.lr_shape = (self.lr_height, self.lr_width, self.channels)
self.hr_height = self.lr_height*4 # High resolution height
self.hr_width = self.lr_width*4 # High resolution width
self.hr_shape = (self.hr_height, self.hr_width, self.channels)
# Number of residual blocks in the generator
self.n_residual_blocks = 16
optimizer = Adam(0.0002, 0.5)
# We use a pre-trained VGG19 model to extract image features from the high resolution
# and the generated high resolution images and minimize the mse between them
self.vgg = self.build_vgg()
self.vgg.trainable = False
self.vgg.compile(loss='mse',
optimizer=optimizer,
metrics=['accuracy'])
# Configure data loader
self.dataset_name = 'img_align_celeba'
self.data_loader = DataLoader(dataset_name=self.dataset_name,
img_res=(self.hr_height, self.hr_width))
# Calculate output shape of D (PatchGAN)
patch = int(self.hr_height / 2**4)
self.disc_patch = (patch, patch, 1)
# Number of filters in the first layer of G and D
self.gf = 64
self.df = 64
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='mse',
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# High res. and low res. images
img_hr = Input(shape=self.hr_shape)
img_lr = Input(shape=self.lr_shape)
# Generate high res. version from low res.
fake_hr = self.generator(img_lr)
# Extract image features of the generated img
fake_features = self.vgg(fake_hr)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# Discriminator determines validity of generated high res. images
validity = self.discriminator(fake_hr)
self.combined = Model([img_lr, img_hr], [validity, fake_features])
self.combined.compile(loss=['binary_crossentropy', 'mse'],
loss_weights=[1e-3, 1],
optimizer=optimizer)
def build_vgg(self):
"""
Builds a pre-trained VGG19 model that outputs image features extracted at the
third block of the model
"""
vgg = VGG19(weights="imagenet")
# Set outputs to outputs of last conv. layer in block 3
# See architecture at: https://github.com/keras-team/keras/blob/master/keras/applications/vgg19.py
vgg.outputs = [vgg.layers[9].output]
img = Input(shape=self.hr_shape)
# Extract image features
img_features = vgg(img)
return Model(img, img_features)
def build_generator(self):
def residual_block(layer_input, filters):
"""Residual block described in paper"""
d = Conv2D(filters, kernel_size=3, strides=1, padding='same')(layer_input)
d = Activation('relu')(d)
d = BatchNormalization(momentum=0.8)(d)
d = Conv2D(filters, kernel_size=3, strides=1, padding='same')(d)
d = BatchNormalization(momentum=0.8)(d)
d = Add()([d, layer_input])
return d
def deconv2d(layer_input):
"""Layers used during upsampling"""
u = UpSampling2D(size=2)(layer_input)
u = Conv2D(256, kernel_size=3, strides=1, padding='same')(u)
u = Activation('relu')(u)
return u
# Low resolution image input
img_lr = Input(shape=self.lr_shape)
# Pre-residual block
c1 = Conv2D(64, kernel_size=9, strides=1, padding='same')(img_lr)
c1 = Activation('relu')(c1)
# Propogate through residual blocks
r = residual_block(c1, self.gf)
for _ in range(self.n_residual_blocks - 1):
r = residual_block(r, self.gf)
# Post-residual block
c2 = Conv2D(64, kernel_size=3, strides=1, padding='same')(r)
c2 = BatchNormalization(momentum=0.8)(c2)
c2 = Add()([c2, c1])
# Upsampling
u1 = deconv2d(c2)
u2 = deconv2d(u1)
# Generate high resolution output
gen_hr = Conv2D(self.channels, kernel_size=9, strides=1, padding='same', activation='tanh')(u2)
return Model(img_lr, gen_hr)
def build_discriminator(self):
def d_block(layer_input, filters, strides=1, bn=True):
"""Discriminator layer"""
d = Conv2D(filters, kernel_size=3, strides=strides, padding='same')(layer_input)
d = LeakyReLU(alpha=0.2)(d)
if bn:
d = BatchNormalization(momentum=0.8)(d)
return d
# Input img
d0 = Input(shape=self.hr_shape)
d1 = d_block(d0, self.df, bn=False)
d2 = d_block(d1, self.df, strides=2)
d3 = d_block(d2, self.df*2)
d4 = d_block(d3, self.df*2, strides=2)
d5 = d_block(d4, self.df*4)
d6 = d_block(d5, self.df*4, strides=2)
d7 = d_block(d6, self.df*8)
d8 = d_block(d7, self.df*8, strides=2)
d9 = Dense(self.df*16)(d8)
d10 = LeakyReLU(alpha=0.2)(d9)
validity = Dense(1, activation='sigmoid')(d10)
return Model(d0, validity)
def train(self, epochs, batch_size=1, sample_interval=50):
start_time = datetime.datetime.now()
for epoch in range(epochs):
# ----------------------
# Train Discriminator
# ----------------------
# Sample images and their conditioning counterparts
imgs_hr, imgs_lr = self.data_loader.load_data(batch_size)
# From low res. image generate high res. version
fake_hr = self.generator.predict(imgs_lr)
valid = np.ones((batch_size,) + self.disc_patch)
fake = np.zeros((batch_size,) + self.disc_patch)
# Train the discriminators (original images = real / generated = Fake)
d_loss_real = self.discriminator.train_on_batch(imgs_hr, valid)
d_loss_fake = self.discriminator.train_on_batch(fake_hr, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ------------------
# Train Generator
# ------------------
# Sample images and their conditioning counterparts
imgs_hr, imgs_lr = self.data_loader.load_data(batch_size)
# The generators want the discriminators to label the generated images as real
valid = np.ones((batch_size,) + self.disc_patch)
# Extract ground truth image features using pre-trained VGG19 model
image_features = self.vgg.predict(imgs_hr)
# Train the generators
g_loss = self.combined.train_on_batch([imgs_lr, imgs_hr], [valid, image_features])
elapsed_time = datetime.datetime.now() - start_time
# Plot the progress
print ("%d time: %s" % (epoch, elapsed_time))
# If at save interval => save generated image samples
if epoch % sample_interval == 0:
self.sample_images(epoch)
def sample_images(self, epoch):
os.makedirs('images/%s' % self.dataset_name, exist_ok=True)
r, c = 2, 2
imgs_hr, imgs_lr = self.data_loader.load_data(batch_size=2, is_testing=True)
fake_hr = self.generator.predict(imgs_lr)
# Rescale images 0 - 1
imgs_lr = 0.5 * imgs_lr + 0.5
fake_hr = 0.5 * fake_hr + 0.5
imgs_hr = 0.5 * imgs_hr + 0.5
# Save generated images and the high resolution originals
titles = ['Generated', 'Original']
fig, axs = plt.subplots(r, c)
cnt = 0
for row in range(r):
for col, image in enumerate([fake_hr, imgs_hr]):
axs[row, col].imshow(image[row])
axs[row, col].set_title(titles[col])
axs[row, col].axis('off')
cnt += 1
fig.savefig("images/%s/%d.png" % (self.dataset_name, epoch))
plt.close()
# Save low resolution images for comparison
for i in range(r):
fig = plt.figure()
plt.imshow(imgs_lr[i])
fig.savefig('images/%s/%d_lowres%d.png' % (self.dataset_name, epoch, i))
plt.close()
if __name__ == '__main__':
gan = SRGAN()
gan.train(epochs=30000, batch_size=1, sample_interval=50)