-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
625 lines (535 loc) · 20.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
import math
import torch
from torch.nn import Module
import torch.nn.functional as F
from gpytorch.kernels import Kernel
from gpytorch.constraints import Positive
from gpytorch.lazy import MatmulLazyTensor, RootLazyTensor
from gpytorch.functions import RBFCovariance
from gpytorch.settings import trace_mode
from gpytorch.kernels.kernel import Kernel
import csv
import torch
import numpy as np
import json
import branca
import folium
import arrow
import gpytorch
import torch.optim as optim
import matplotlib.pyplot as plt
from torch.utils.data import TensorDataset, DataLoader
from gpytorch.models import ApproximateGP
from gpytorch.variational import CholeskyVariationalDistribution
from gpytorch.variational import VariationalStrategy
from gpytorch.means.mean import Mean
import random
from DeepKernel import DeepNonstationarySpatiotemporalKernel, FocusPointsNN
from torch.nn.utils import clip_grad_norm_
class STVA(Mean):
def __init__(self, n_features):
"""
Spatio-temporal Vector Autoregressive Mean Model
"""
super().__init__()
# model configuration
self.n_features = n_features # number of features for each county
# parameters
self.W = torch.nn.Parameter(torch.randn((n_features), requires_grad=True))
def forward(self, x_feature):
"""
Args:
- x: spatio-temporal index [ n_batches, 2 ]
"""
# calculate mean given the spatio-temporal index
mean = (x_feature * self.W.unsqueeze(0)).sum(1) # [ n_batches ]
mean = torch.nn.functional.softplus(mean) # [ n_batches ]
return mean
class DeepGP(ApproximateGP):
"""
Gaussian Process Model for COVID-19
"""
def __init__(self, n_features, inducing_x):
"""
Args:
- n_features: number of features for each county
- inducing_x: inducing point (a subset of X)
"""
# posterior distribution for inducing points
variational_distribution = CholeskyVariationalDistribution(inducing_x.size(0))
variational_strategy = VariationalStrategy(self, inducing_x, variational_distribution, learn_inducing_locations=True)
super(DeepGP, self).__init__(variational_strategy)
self.mean_module = STVA(n_features)
self.covar_module = DeepNonstationarySpatiotemporalKernel()
def forward(self, x):
x_feature = x[:, 4:].clone() # spatio-temporal index
x_coord = x[:, :3].clone() # spatio-temporal coordinate
mean_x = self.mean_module(x_feature)
covar_x = self.covar_module(x_coord)
return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
def train_test_split(C, D, H, locs, p=2, tau=None):
'''
Function to create a training data set (<=t) and testing data set
Parameters
----------
- C : Tensor of cases data [T, n_weeks]
- D : Tensor of deaths data [T, n_weeks]
- H : Tensor of hotspot data [T, n_weeks]
- locs : Tensor of locations data [n_counties, 2]
- p : Number of lags we consider
- t: Time window for training data (if t is None, t = T)
Returns
-------
- train_x : Tensor of train data x [ t * n_counties, 4 + n_features ]
- train_y : Tensor of train data y [ t * n_counties ]
- train_hotspot : Tensor of train hotspot data [ t * n_counties ]
- test_x : Tensor of test data x [ (T-t-p) * n_counties, 4 + n_features ]
- test_y : Tensor of test data y [ (T-t-p) * n_counties ]
- test_hotspot : Tensor of test hotspot data [ (T-t-p) * n_counties ]
'''
# Number of features
n_features = 2 * p
T, n_counties = C.shape
tau = T - p if tau is None else tau
# Y: number of cases
y = C[p:, :] # [ T-p, n_counties ]
hotspot = H[p:, :]
# X: spatio-temporal coordinates and features
X = np.zeros((T-p, n_counties, 4 + n_features)) # [ T-p, n_counties, 4 + n_features]
# prepare X
for t in range(T-p):
X[t, :, 0] = t + p # time
X[t, :, 1:3] = locs # geolocation
X[t, :, 3] = np.arange(n_counties) # location index
feature = np.concatenate((
C[t:t+p, :].transpose(),
D[t:t+p, :].transpose()), axis=1) # [ n_counties, 2p]
X[t, :, 4:] = feature
train_X, train_y, train_hotspot = X[:tau, :, :], y[:tau, :], hotspot[:tau, :]
train_y = torch.FloatTensor(train_y).view(tau * n_counties) # [ tau * n_counties ]
train_hotspot = torch.FloatTensor(train_hotspot).view(tau * n_counties) # [ tau * n_counties ]
train_X = torch.FloatTensor(train_X).view(tau * n_counties, 4 + n_features) # [ tau * n_counties, 4 + n_features ]
if tau < T - p:
test_X, test_y, test_hotspot = X[tau:, :, :], y[tau:, :], hotspot[tau:, :]
test_y = torch.FloatTensor(test_y).view((T-p-tau) * n_counties) # [ T-p-tau * n_counties ]
test_hotspot = torch.FloatTensor(test_hotspot).view((T-p-tau) * n_counties) # [ T-p-tau * n_counties ]
test_X = torch.FloatTensor(test_X).view((T-p-tau) * n_counties, 4 + n_features) # [ T-p-tau * n_counties, 4 + n_features ]
else:
test_X, test_y, test_hotspot = None, None, None
return train_X, train_y, train_hotspot, test_X, test_y, test_hotspot
def train_MLE(
model, likelihood, train_loader, n,
num_epochs = 10,
ngd_lr = 1e-7,
adam_lr = 1e-1,
print_iter = 100,
batch_size = 500,
modelname = "STVAmean-RBFkernel"):
"""
Train GP model by MLE
"""
# Set training mode
model.train()
likelihood.train()
# NGD optimizer for variational parameters
variational_ngd_optimizer = gpytorch.optim.NGD(
model.variational_parameters(),
num_data=n, lr=ngd_lr)
# Adam optimizer for hyperparameters
adam_optimizer = torch.optim.Adam([
{'params': model.hyperparameters()},
{'params': likelihood.parameters()},
], lr=adam_lr)
# Loss function - Variational ELBO
# mll = gpytorch.mlls.VariationalELBO(likelihood, model, num_data=n)
mll = gpytorch.mlls.PredictiveLogLikelihood(likelihood, model, num_data=n)
# Training
for i in range(num_epochs):
# Within each iteration, we will go over each minibatch of data
for j, data in enumerate(train_loader):
if torch.isnan(model.variational_strategy.inducing_points).any():
print("Bad variational points")
# with torch.autograd.detect_anomaly():
# Alternate between NGD and Adam optimization
x_batch, y_batch = data
# adam optimizer
adam_optimizer.zero_grad()
output = model(x_batch)
loss = -mll(output, y_batch)
loss.backward()
adam_optimizer.step()
# ngd optimizer
variational_ngd_optimizer.zero_grad()
output = model(x_batch)
loss = -mll(output, y_batch)
loss.backward()
variational_ngd_optimizer.step()
if j % print_iter == 0:
print("[%s] Epoch : %d,\titer : %d,\tloss : %.5e" % (arrow.now(), i, j, loss / print_iter))
torch.save(model.state_dict(), "saved_models/%s.pth" % modelname)
return model, likelihood
def GP_prediction(model, gaussian_likelihood, data_loader, sigma=3):
"""
Prediction using GP models
"""
model.eval()
gaussian_likelihood.eval()
with torch.no_grad():
# mean
means = [
gaussian_likelihood(model(x_batch)).mean.detach().numpy() # [ n_batches ]
for x_batch, y_batch, _ in data_loader ]
means = np.concatenate(means, axis=0) # [ n ]
# confidence interval
lowerbs, upperbs = [], []
for x_batch, y_batch, _ in data_loader:
std = gaussian_likelihood(model(x_batch)).stddev.mul_(sigma)
mean = gaussian_likelihood(model(x_batch)).mean
lowerb, upperb = mean.sub(std), mean.add(std) # 2 * [ n_batches ]
lowerbs.append(lowerb.detach().numpy())
upperbs.append(upperb.detach().numpy())
lowerbs = np.concatenate(lowerbs, axis=0) # [ n ]
upperbs = np.concatenate(upperbs, axis=0) # [ n ]
return means, lowerbs, upperbs
def plot_nationwide_prediction(true, mean, lowerb, upperb, filename="Prediction"):
"""
Plot prediction trajectory against ground truth.
"""
fig, ax = plt.subplots(figsize=(8, 5))
time = np.arange(true.shape[0])
ax.plot(time, true, linewidth=3, linestyle="--", color="gray", alpha=1, label="True")
ax.plot(time, mean, linewidth=3, linestyle="-", color="blue", alpha=.7, label="Prediction")
ax.fill_between(time, lowerb, upperb, facecolor='blue', alpha=0.2, label="Prediction CI")
plt.xlabel("Week index")
plt.ylabel("Number of cases")
plt.legend(fontsize=15, loc='upper left')
plt.title(filename)
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.show()
#------------------------------------------------------
#
# Code for custom Kernel
#
#------------------------------------------------------
def kernel_viz(locs,old_locs, model):
net = model.covar_module.NN4
locs = torch.Tensor(locs)
old_locs = torch.Tensor(locs)
focus_points = net(locs)[:, :2]
weights = net(locs)[:, -1]
minv, maxv = float(min(weights)), float(max(weights))
old_locs = torch.stack([old_locs[:, 1], old_locs[:, 0]], axis=-1)
ps1 = old_locs + focus_points * 3 # * 5e-1
ps2 = old_locs # * 5e-1
colorscale = branca.colormap.linear.Blues_09.scale(minv, maxv)
m = folium.Map(
location=[38, -95],
tiles='cartodbpositron',
zoom_start=4
)
def style_function(feature):
county = int(feature['id'][-5:])
try:
data=weights[counties.index(str(county))]
except Exception as e:
data = 0.45
return {
'fillOpacity': 0.5,
'weight': 0,
'fillColor': '#black' if data is None else colorscale(data)
}
print(colorscale)
colorscale.caption = "Weighting"
colorscale.add_to(m)
folium.TopoJson(
uscountygeo,
'objects.us_counties_20m',
style_function=style_function
).add_to(m)
folium.Choropleth(geo_data=uscountygeo,
topojson='objects.us_counties_20m',
line_weight=0.1,
fill_opacity=0.0).add_to(m)
folium.Choropleth(
geo_data=state_json,
topojson='objects.states',
line_weight=0.15,
fill_opacity=0.0
).add_to(m)
# colorscale.add_to(m)
# m.save("tester.html")
for i in range(3144):
coords = [ps1[i, :], ps2[i, :]]
# print(coords)
folium.PolyLine(
locations=coords,
weight=1,
color = 'red').add_to(m)
colorscale.add_to(m)
m.save("Kernel4.html")
def county_kernel_viz(locs, old_locs, model):
cov = model.covar_module
locs = torch.Tensor(locs)
kernel = cov.spatial_kernel(locs, locs).detach().numpy()
maxk = 0
print(kernel.shape)
fulton_id = I.index('13121')
brooks_id = I.index('36005')
la_id = I.index("6037")
chi_id = I.index('17031')
mia_id = I.index('12086')
hst_id = I.index('48201')
sea_id = I.index("53033")
minv = min(kernel[fulton_id])
maxv = max(kernel[fulton_id])
print(minv, maxv)
colorscale = branca.colormap.linear.Reds_09.scale(-12 + 12, (np.log(maxv) + 12) / 40)
m = folium.Map(
location=[38, -95],
tiles='cartodbpositron',
zoom_start=4
)
def style_function(feature):
county = int(feature['id'][-5:])
try:
data=(np.log(kernel[fulton_id][counties.index(str(county))]) + 12)/40 - 0.03
except Exception as e:
data = 0.0
return {
'fillOpacity': 0.5,
'weight': 0,
'fillColor': '#black' if data is None else colorscale(data)
}
print(colorscale)
colorscale.caption = "Kernel Value"
colorscale.add_to(m)
folium.TopoJson(
uscountygeo,
'objects.us_counties_20m',
style_function=style_function
).add_to(m)
folium.Choropleth(geo_data=uscountygeo,
topojson='objects.us_counties_20m',
line_weight=0.1,
fill_opacity=0.0).add_to(m)
folium.Choropleth(
geo_data=state_json,
topojson='objects.states',
line_weight=0.15,
fill_opacity=0.0
).add_to(m)
#m.save("kernel/Chicago.html")
m.save("kernel/ATL_kernel/R=1.html")
# print(kernel.numpy())
def hotspot_prediction(model,bernoulli_likelihood,data_loader):
'''
Hotspot classification
'''
model.eval()
bernoulli_likelihood.eval()
with torch.no_grad():
# mean
means = [
bernoulli_likelihood(model(x_batch)).mean.detach().numpy() # [ n_batches ]
for x_batch, y_batch, _ in data_loader ]
means = np.concatenate(means, axis=0) # [ n ]
return means
def train_MLE_bernoulli(
model, gaussian_likelihood, bernoulli_likelihood, train_loader, n,
delta = 0.0,
num_epochs = 10,
ngd_lr = 1e-7,
adam_lr = 1e-1,
print_iter = 100,
batch_size = 3144,
modelname = "STVAmean-RBFkernel"):
"""
Train GP model by MLE
"""
# Set training mode
model.train()
gaussian_likelihood.train()
bernoulli_likelihood.train()
# NGD optimizer for variational parameters
variational_ngd_optimizer = gpytorch.optim.NGD(
model.variational_parameters(),
num_data=n, lr=ngd_lr)
# Adam optimizer for hyperparameters
adam_optimizer = torch.optim.Adam([
{'params': model.hyperparameters()},
{'params': gaussian_likelihood.parameters()},
{'params': bernoulli_likelihood.parameters()},
], lr=adam_lr)
# Loss function - Variational ELBO
# mll = gpytorch.mlls.VariationalELBO(likelihood, model, num_data=n)
gaussian_mll = gpytorch.mlls.PredictiveLogLikelihood(gaussian_likelihood, model, num_data=n)
bernoulli_mll = gpytorch.mlls.PredictiveLogLikelihood(bernoulli_likelihood, model, num_data=n)
# Training
for i in range(num_epochs):
# Within each iteration, we will go over each minibatch of data
with gpytorch.settings.cholesky_jitter(1e-1):
for j, data in enumerate(train_loader):
# Alternate between NGD and Adam optimization
x_batch, y_batch, hotspot = data
# adam optimizer
adam_optimizer.zero_grad()
output = model(x_batch)
cases_loss = -gaussian_mll(output, y_batch)
hotspot_loss = -bernoulli_mll(output, hotspot)
loss = delta * cases_loss + (1-delta) * hotspot_loss
loss.backward()
adam_optimizer.step()
# ngd optimizer
variational_ngd_optimizer.zero_grad()
output = model(x_batch)
cases_loss = -gaussian_mll(output, y_batch)
hotspot_loss = -bernoulli_mll(output, hotspot)
loss = delta * cases_loss + hotspot_loss
loss.backward()
variational_ngd_optimizer.step()
if j % print_iter == 0:
print("[%s] Epoch : %d,\titer : %d,\tloss : %.5e" % (arrow.now(), i, j, loss / print_iter))
torch.save(model.state_dict(), "saved_models/%s.pth" % modelname)
return model, gaussian_likelihood, bernoulli_likelihood
if __name__ == "__main__":
#--------------------------------------------------------------------------
#
# LOAD DATA MATRICES
#
#--------------------------------------------------------------------------
# confirmed cases and deaths
C = np.load("data/mat/ConfirmedCases_1-17.npy") # [ T, n_counties ]
D = np.load("data/mat/death_1-17.npy")
H = np.load("data/mat/hotspot_1-17.npy") # [ T, n_counties ]
# Load covariates
M = np.load("data/mat/mobility_1-17.npy").transpose([2,0,1]) # [ n_mobility, T, n_counties ]
pop = np.load("data/mat/population.npy")
over60 = np.load("data/mat/over60.npy")
cov = np.array([pop, over60]) # [ n_covariates, T, n_counties ]
T, n_counties = C.shape # 3144
n_mobility = M.shape[0]
n_covariates = cov.shape[0]
#--------------------------------------------------------------------------
#
# LOAD META DATA AND CONFIGURATIONS
#
#--------------------------------------------------------------------------
# Distance matrix for counties
distance = np.sqrt(np.load("data/mat/distance.npy")) # [ n_counties, n_counties ]
adj = np.load("data/mat/adjacency_matrix.npy") # [ n_counties, n_counties ]
# FIPS for US counties
I = np.load("data/mat/counties.npy").tolist()
loc_dict = {}
# Raw file for US counties
with open('data/meta/county_centers.csv', newline='') as csvfile:
locsreader = list(csv.reader(csvfile, delimiter=','))
for row in locsreader[1:]:
if row[1] != "NA":
fips, lon, lat = int(row[0]), float(row[1]), float(row[2])
loc_dict[fips] = [lon, lat]
else:
print(row)
# Geolocation (longitude and latitude) of US counties
locs = np.array([ loc_dict[int(i)] for i in I ]) # [ n_counties, 2 ]
old_locs = locs.copy()
locs = locs - np.mean(locs, axis = 0)
locs = locs / np.linalg.norm(locs, axis=0) * 100
with open (r"data/meta/states-10m.json", "r") as f:
state_json = json.load(f)
with open(r"data/meta/us_counties_20m_topo.json", "r") as f:
uscountygeo = json.load(f)
counties = list(np.load("data/mat/counties.npy"))
#---------------------------------------------------------------
#
# TRAINING DATA PREPARATION
#
#---------------------------------------------------------------
modelname = "STVAmean-RBFkernel-insample"
p = 2
n_features = 2 * p
batch_size = 786
# Training data loader
train_X, train_y, train_hotspot, _, _, _ = train_test_split(C, D, H, locs, p=p, tau=None)
n = train_y.shape[0] # Number of data points
train_dataset = TensorDataset(train_X, train_y)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# Inducing points for variational inference
init_inducing_idx = random.sample(list(np.arange(n)), batch_size) # randomly initialized inducing point indices
inducing_x = train_X[init_inducing_idx, :] # randomly selected inducing points
# Define models
model = DeepGP(n_features, inducing_x=inducing_x)
gaussian_likelihood = gpytorch.likelihoods.GaussianLikelihood()
bernoulli_likelihood = gpytorch.likelihoods.BernoulliLikelihood()
# ---------------------------------------------------------------
#
# Out of sample prediction
#
# ---------------------------------------------------------------
start_week = T - 17
end_week = T-2
p = 2
batch_size = 786
onestep_hotspots = []
onestep_means = []
onestep_lowerbs1 = []
onestep_uppperbs1 = []
onestep_lowerbs2 = []
onestep_uppperbs2 = []
for tau in range(start_week, end_week):
train_X, train_y, train_hotspot, test_X, test_y, test_H = train_test_split(C, D, H, locs, p=p, tau=tau)
n = train_y.shape[0] # Number of data points
train_dataset = TensorDataset(train_X, train_y, train_hotspot)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# Inducing points for variational inference
init_inducing_idx = random.sample(list(np.arange(n)), batch_size) # randomly initialized inducing point indices
inducing_x = train_X[init_inducing_idx, :] # randomly selected inducing points
# Define models
model = DeepGP(n_features, inducing_x=inducing_x)
gaussian_likelihood = gpytorch.likelihoods.GaussianLikelihood()
bernoulli_likelihood = gpytorch.likelihoods.BernoulliLikelihood()
# Training
# NOTE: Comment lines below if load the model from file
model, _, _ = train_MLE_bernoulli(
model, gaussian_likelihood, bernoulli_likelihood, train_loader, n,
delta=0.9,
num_epochs = 25,
ngd_lr = 1e-3,
adam_lr = 1e-2,
print_iter = 200,
batch_size = batch_size,
modelname = modelname)
print("[%s] training the %d-th model..." % (arrow.now(), tau))
# Load model
model.load_state_dict(torch.load("saved_models/%s.pth" % modelname))
# Testing data loader
test_dataset = TensorDataset(test_X, test_y, test_H)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Generate out-of-sample prediction
hotspots = hotspot_prediction(model, bernoulli_likelihood, test_loader)
hotspots = hotspots.reshape(C[tau + p:, :].shape)
means, lowerbs1, upperbs1 = GP_prediction(model, gaussian_likelihood, test_loader, sigma=1)
_, lowerbs2, upperbs2 = GP_prediction(model, gaussian_likelihood, test_loader, sigma=3)
means = means.reshape(C[tau+p:, :].shape) # [ T-p, n_counties ]
lowerbs1 = lowerbs1.reshape(C[tau+p:, :].shape) # [ T-p, n_counties ]
upperbs1 = upperbs1.reshape(C[tau+p:, :].shape) # [ T-p, n_counties ]
lowerbs2 = lowerbs2.reshape(C[tau+p:, :].shape) # [ T-p, n_counties ]
upperbs2 = upperbs2.reshape(C[tau+p:, :].shape) # [ T-p, n_counties ]
# Get the first prediction result (one-step ahead)
onestep_means.append(means[0, :])
onestep_lowerbs1.append(lowerbs1[0, :])
onestep_uppperbs1.append(upperbs1[0, :])
onestep_lowerbs2.append(lowerbs2[0, :])
onestep_uppperbs2.append(upperbs2[0, :])
onestep_means = np.stack(onestep_means, 0)
onestep_lowerbs1 = np.stack(onestep_lowerbs1, 0)
onestep_uppperbs1 = np.stack(onestep_uppperbs1, 0)
onestep_lowerbs2 = np.stack(onestep_lowerbs2, 0)
onestep_uppperbs2 = np.stack(onestep_uppperbs2, 0)
# Plot Countywise one-step ahead result
fulton_id = I.index('13089')
plot_nationwide_prediction(
C[start_week+p:end_week+2, fulton_id],
onestep_means[:, fulton_id],
onestep_lowerbs1[:, fulton_id],
onestep_uppperbs1[:, fulton_id],
filename="One-step ahead prediction for Dekalb County, GA")