
Streamlining the calculation of likelihood under PIP

Recall that the classical formula to compute the likelihood of an alignment-tree pair (MSA, τ) within
the PIP model is

L(MSA | τ) = φ(P(c∅ | τ), |MSA|)
∏

c∈MSA

P(c | τ),

where

φ(p,m) =
1

m!
∥ν∥me∥ν∥(p−1).

Within this document we assume the model parameters (i.e. insertion rate λ, deletion rate µ and sub-
stitution matrix Q) and the weighted tree τ to be �xed, and we will use notation p(X) for conditional
probability of event X under those parameter values. We begin with writing φ(P(c∅ | τ) explicitly and
regrouping the terms.

L(MSA | τ) = 1

|MSA|!
∥ν∥me∥ν∥(p(c∅)−1)

∏
c∈MSA

p(c) =
1

|MSA|!
e(∥ν∥p(c∅))−∥ν∥)

∏
c∈MSA

(∥ν∥p(c)).

Taking the logarithm results in a formula for the log-likelihood

l(MSA) = logL(MSA | τ) = − log(m!) + (∥ν∥p(c∅)− ∥ν∥)−
∑

c∈MSA

log(∥ν∥p(c)).

Note that log(|MSA|!) can be calculated using Stirling's approximation

log(m!) ≈ m logm−m+
1

2
logm+ log

√
2π +

1

12m
.

In practical cases, the error introduced by this approximation is negligible, so it suitable for our needs.
Since changing all log-likelihoods by a constant value log

√
2π has no e�ect on the maximal likelihood

method, we choose to remove it, but this change is subject to discussion.
We now turn our attention to computing p(c) and p(c∅), starting with p(c). We recite the formulae

of the norm of the intensity measure and the insertion and survival probailities.

∥ν∥ = λ(
1

µ
+ ∥τ∥),

ιv =

{
b(v)

1/µ+∥τ∥ if v is not the root,
1/µ

1/µ+∥τ∥ if v is the root.

βv =

{
1−e−b(v)µ

b(v)µ if v is not the root,

1 if v is the root.

Here b(v) denotes the length of the branch connecting the node v to its parent. Recall that for non-empty
columns c (do we handle MSAs with completely empty columns properly?) we have

p(c) =
∑

v∈A(c)

ιvfv =
∑

v∈A(c)

ιvβv⟨f̃v, σ⟩

1

(we use σ instead of π to denote stationary frequencies to avoid confusion with the mathematical constant),

∥ν∥p(c) =
∑

v∈A(c)

∥ν∥ιvβv⟨f̃v, σ⟩.

We introduce a new array

wv = ∥ν∥ιvβv =

{
λ 1−e−b(v)µ

µ if v is not the root,
λ
µ if v is the root

which will replace three arrays ιv, βv, fv and allows us to compute the likelihood of a non-empty column
with fewer multiplication-divison operations. Note that the total intensity (or, equivalently, total tree
length) no longer needs to be maintained to do these calculations.

The same optimisation is applicable for the empty column. For c∅ we have

p(c∅) =
∑

v∈V (τ)

ιvfv =
∑

v∈V (τ)

ιv(1− βv(1− ⟨f̃v, σ⟩)).

Note that we abuse the notation and rede�ne f̃ in this formula, but values of ιv and βv depend only on
tree structure and not the alignment.

∥ν∥p(c∅) =
∑

v∈V (τ)

(
∥ν∥ιv + ∥ν∥ιvβv(f̃v − 1)

)
= ∥ν∥+

∑
v∈V (τ)

wv(⟨f̃v, σ⟩ − 1)
)
.

In the last transition we use the fact that insertion probabilities ιv add up to 1. The norm ∥ν∥ in the
formula now cancels with the exterior −∥ν∥. Moreover, since deletion rate is constant, the value of
Felsentein's dynamic f̃v does not depend on the initial parent symbol. To avoid matrix multiplication,
we compute the value of f̃ − 1 for a �unary alphabet� (that is, we only track whether a character is
extinct or not) using the same dynamic programming algorithm and denote the result by f̃1v(c∅). All
our optimisations combine into

l(MSA) + log
√
2π ≈

∑
v∈V (τ)

wv f̃1v(c∅) +
∑

c∈MSA

∑
v∈A(c)

(wv⟨f̃v(c), σ⟩)−

− (|MSA| log |MSA| − |MSA|+ 1

2
log |MSA|+ 1

12|MSA|
).

2

