forked from khoih-prog/TimerInterrupt_Generic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Change_Interval.ino
173 lines (133 loc) · 6.1 KB
/
Change_Interval.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/****************************************************************************************************************************
Change_Interval.ino
For RP2040-based boards such as RASPBERRY_PI_PICO, ADAFRUIT_FEATHER_RP2040 and GENERIC_RP2040.
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/TimerInterrupt_Generic
Licensed under MIT license
The RPI_PICO system timer peripheral provides a global microsecond timebase for the system, and generates
interrupts based on this timebase. It supports the following features:
• A single 64-bit counter, incrementing once per microsecond
• This counter can be read from a pair of latching registers, for race-free reads over a 32-bit bus.
• Four alarms: match on the lower 32 bits of counter, IRQ on match: TIMER_IRQ_0-TIMER_IRQ_3
Now even you use all these new 16 ISR-based timers,with their maximum interval practically unlimited (limited only by
unsigned long miliseconds), you just consume only one RPI_PICO timer and avoid conflicting with other cores' tasks.
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
Based on SimpleTimer - A timer library for Arduino.
Author: mromani@ottotecnica.com
Copyright (c) 2010 OTTOTECNICA Italy
Based on BlynkTimer.h
Author: Volodymyr Shymanskyy
*****************************************************************************************************************************/
/*
Notes:
Special design is necessary to share data between interrupt code and the rest of your program.
Variables usually need to be "volatile" types. Volatile tells the compiler to avoid optimizations that assume
variable can not spontaneously change. Because your function may change variables while your program is using them,
the compiler needs this hint. But volatile alone is often not enough.
When accessing shared variables, usually interrupts must be disabled. Even with volatile,
if the interrupt changes a multi-byte variable between a sequence of instructions, it can be read incorrectly.
If your data is multiple variables, such as an array and a count, usually interrupts need to be disabled
or the entire sequence of your code which accesses the data.
*/
// These define's must be placed at the beginning before #include "TimerInterrupt_Generic.h"
// _TIMERINTERRUPT_LOGLEVEL_ from 0 to 4
// Don't define _TIMERINTERRUPT_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define TIMER_INTERRUPT_DEBUG 1
#define _TIMERINTERRUPT_LOGLEVEL_ 4
#include "TimerInterrupt_Generic.h"
#ifndef LED_BUILTIN
#define LED_BUILTIN 25 // Pin D2 mapped to pin GPIO2/ADC12 of ESP32, control on-board LED
#endif
#define PIN_D1 1 // Pin D1 mapped to pin GPIO1 of RPI_PICO
volatile uint32_t Timer0Count = 0;
volatile uint32_t Timer1Count = 0;
bool TimerHandler0(struct repeating_timer *t)
{
static bool toggle0 = false;
// Flag for checking to be sure ISR is working as Serial.print is not OK here in ISR
Timer0Count++;
#if (TIMER_INTERRUPT_DEBUG > 0)
Serial.print("ITimer0: millis() = "); Serial.println(millis());
#endif
//timer interrupt toggles pin LED_BUILTIN
digitalWrite(LED_BUILTIN, toggle0);
toggle0 = !toggle0;
return true;
}
bool TimerHandler1(struct repeating_timer *t)
{
static bool toggle1 = false;
// Flag for checking to be sure ISR is working as Serial.print is not OK here in ISR
Timer1Count++;
#if (TIMER_INTERRUPT_DEBUG > 0)
Serial.print("ITimer1: millis() = "); Serial.println(millis());
#endif
//timer interrupt toggles PIN_D1
digitalWrite(PIN_D1, toggle1);
toggle1 = !toggle1;
return true;
}
void printResult(uint32_t currTime)
{
Serial.print(F("Time = ")); Serial.print(currTime);
Serial.print(F(", Timer0Count = ")); Serial.print(Timer0Count);
Serial.print(F(", Timer1Count = ")); Serial.println(Timer1Count);
}
#define TIMER0_INTERVAL_MS 2000
#define TIMER1_INTERVAL_MS 5000
// Init ESP32 timer 0
RPI_PICO_Timer ITimer0(0);
RPI_PICO_Timer ITimer1(1);
void setup()
{
pinMode(LED_BUILTIN, OUTPUT);
pinMode(PIN_D1, OUTPUT);
Serial.begin(115200);
while (!Serial);
delay(100);
Serial.print(F("\nStarting Change_Interval on ")); Serial.println(BOARD_NAME);
Serial.println(RPI_PICO_TIMER_INTERRUPT_VERSION);
Serial.println(TIMER_INTERRUPT_GENERIC_VERSION);
Serial.print(F("CPU Frequency = ")); Serial.print(F_CPU / 1000000); Serial.println(F(" MHz"));
// Interval in microsecs
if (ITimer0.attachInterruptInterval(TIMER0_INTERVAL_MS * 1000, TimerHandler0))
{
Serial.print(F("Starting ITimer0 OK, millis() = ")); Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer0. Select another freq. or timer"));
// Interval in microsecs
if (ITimer1.attachInterruptInterval(TIMER1_INTERVAL_MS * 1000, TimerHandler1))
{
Serial.print(F("Starting ITimer1 OK, millis() = ")); Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer1. Select another freq. or timer"));
}
#define CHECK_INTERVAL_MS 10000L
#define CHANGE_INTERVAL_MS 20000L
void loop()
{
static uint32_t lastTime = 0;
static uint32_t lastChangeTime = 0;
static uint32_t currTime;
static uint32_t multFactor = 0;
currTime = millis();
if (currTime - lastTime > CHECK_INTERVAL_MS)
{
printResult(currTime);
lastTime = currTime;
if (currTime - lastChangeTime > CHANGE_INTERVAL_MS)
{
//setInterval(unsigned long interval, timerCallback callback)
multFactor = (multFactor + 1) % 2;
ITimer0.setInterval(TIMER0_INTERVAL_MS * 1000 * (multFactor + 1), TimerHandler0);
ITimer1.setInterval(TIMER1_INTERVAL_MS * 1000 * (multFactor + 1), TimerHandler1);
Serial.print(F("Changing Interval, Timer0 = ")); Serial.print(TIMER0_INTERVAL_MS * (multFactor + 1));
Serial.print(F(", Timer1 = ")); Serial.println(TIMER1_INTERVAL_MS * (multFactor + 1));
lastChangeTime = currTime;
}
}
}