From 4f694123d081bb237dc5b1a3f9fc3dc6c17396f5 Mon Sep 17 00:00:00 2001 From: Raymond Hettinger Date: Thu, 14 Mar 2024 16:39:50 -0500 Subject: [PATCH] Minor improvements to the itertools documentation (gh-116833) --- Doc/library/itertools.rst | 178 ++++++++++++++++++++------------------ 1 file changed, 94 insertions(+), 84 deletions(-) diff --git a/Doc/library/itertools.rst b/Doc/library/itertools.rst index 962d23bb53bf6b..7df8e804507ef5 100644 --- a/Doc/library/itertools.rst +++ b/Doc/library/itertools.rst @@ -41,9 +41,9 @@ operator can be mapped across two vectors to form an efficient dot-product: ================== ================= ================================================= ========================================= Iterator Arguments Results Example ================== ================= ================================================= ========================================= -:func:`count` [start[, step]] start, start+step, start+2*step, ... ``count(10) --> 10 11 12 13 14 ...`` -:func:`cycle` p p0, p1, ... plast, p0, p1, ... ``cycle('ABCD') --> A B C D A B C D ...`` -:func:`repeat` elem [,n] elem, elem, elem, ... endlessly or up to n times ``repeat(10, 3) --> 10 10 10`` +:func:`count` [start[, step]] start, start+step, start+2*step, ... ``count(10) → 10 11 12 13 14 ...`` +:func:`cycle` p p0, p1, ... plast, p0, p1, ... ``cycle('ABCD') → A B C D A B C D ...`` +:func:`repeat` elem [,n] elem, elem, elem, ... endlessly or up to n times ``repeat(10, 3) → 10 10 10`` ================== ================= ================================================= ========================================= **Iterators terminating on the shortest input sequence:** @@ -51,20 +51,20 @@ Iterator Arguments Results ============================ ============================ ================================================= ============================================================= Iterator Arguments Results Example ============================ ============================ ================================================= ============================================================= -:func:`accumulate` p [,func] p0, p0+p1, p0+p1+p2, ... ``accumulate([1,2,3,4,5]) --> 1 3 6 10 15`` -:func:`batched` p, n (p0, p1, ..., p_n-1), ... ``batched('ABCDEFG', n=3) --> ABC DEF G`` -:func:`chain` p, q, ... p0, p1, ... plast, q0, q1, ... ``chain('ABC', 'DEF') --> A B C D E F`` -:func:`chain.from_iterable` iterable p0, p1, ... plast, q0, q1, ... ``chain.from_iterable(['ABC', 'DEF']) --> A B C D E F`` -:func:`compress` data, selectors (d[0] if s[0]), (d[1] if s[1]), ... ``compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F`` -:func:`dropwhile` predicate, seq seq[n], seq[n+1], starting when predicate fails ``dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1`` -:func:`filterfalse` predicate, seq elements of seq where predicate(elem) fails ``filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8`` +:func:`accumulate` p [,func] p0, p0+p1, p0+p1+p2, ... ``accumulate([1,2,3,4,5]) → 1 3 6 10 15`` +:func:`batched` p, n (p0, p1, ..., p_n-1), ... ``batched('ABCDEFG', n=3) → ABC DEF G`` +:func:`chain` p, q, ... p0, p1, ... plast, q0, q1, ... ``chain('ABC', 'DEF') → A B C D E F`` +:func:`chain.from_iterable` iterable p0, p1, ... plast, q0, q1, ... ``chain.from_iterable(['ABC', 'DEF']) → A B C D E F`` +:func:`compress` data, selectors (d[0] if s[0]), (d[1] if s[1]), ... ``compress('ABCDEF', [1,0,1,0,1,1]) → A C E F`` +:func:`dropwhile` predicate, seq seq[n], seq[n+1], starting when predicate fails ``dropwhile(lambda x: x<5, [1,4,6,4,1]) → 6 4 1`` +:func:`filterfalse` predicate, seq elements of seq where predicate(elem) fails ``filterfalse(lambda x: x%2, range(10)) → 0 2 4 6 8`` :func:`groupby` iterable[, key] sub-iterators grouped by value of key(v) -:func:`islice` seq, [start,] stop [, step] elements from seq[start:stop:step] ``islice('ABCDEFG', 2, None) --> C D E F G`` -:func:`pairwise` iterable (p[0], p[1]), (p[1], p[2]) ``pairwise('ABCDEFG') --> AB BC CD DE EF FG`` -:func:`starmap` func, seq func(\*seq[0]), func(\*seq[1]), ... ``starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000`` -:func:`takewhile` predicate, seq seq[0], seq[1], until predicate fails ``takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4`` +:func:`islice` seq, [start,] stop [, step] elements from seq[start:stop:step] ``islice('ABCDEFG', 2, None) → C D E F G`` +:func:`pairwise` iterable (p[0], p[1]), (p[1], p[2]) ``pairwise('ABCDEFG') → AB BC CD DE EF FG`` +:func:`starmap` func, seq func(\*seq[0]), func(\*seq[1]), ... ``starmap(pow, [(2,5), (3,2), (10,3)]) → 32 9 1000`` +:func:`takewhile` predicate, seq seq[0], seq[1], until predicate fails ``takewhile(lambda x: x<5, [1,4,6,4,1]) → 1 4`` :func:`tee` it, n it1, it2, ... itn splits one iterator into n -:func:`zip_longest` p, q, ... (p[0], q[0]), (p[1], q[1]), ... ``zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-`` +:func:`zip_longest` p, q, ... (p[0], q[0]), (p[1], q[1]), ... ``zip_longest('ABCD', 'xy', fillvalue='-') → Ax By C- D-`` ============================ ============================ ================================================= ============================================================= **Combinatoric iterators:** @@ -84,7 +84,7 @@ Examples Results ``product('ABCD', repeat=2)`` ``AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD`` ``permutations('ABCD', 2)`` ``AB AC AD BA BC BD CA CB CD DA DB DC`` ``combinations('ABCD', 2)`` ``AB AC AD BC BD CD`` -``combinations_with_replacement('ABCD', 2)`` ``AA AB AC AD BB BC BD CC CD DD`` +``combinations_with_replacement('ABCD', 2)`` ``AA AB AC AD BB BC BD CC CD DD`` ============================================== ============================================================= @@ -119,9 +119,9 @@ loops that truncate the stream. def accumulate(iterable, func=operator.add, *, initial=None): 'Return running totals' - # accumulate([1,2,3,4,5]) --> 1 3 6 10 15 - # accumulate([1,2,3,4,5], initial=100) --> 100 101 103 106 110 115 - # accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120 + # accumulate([1,2,3,4,5]) → 1 3 6 10 15 + # accumulate([1,2,3,4,5], initial=100) → 100 101 103 106 110 115 + # accumulate([1,2,3,4,5], operator.mul) → 1 2 6 24 120 it = iter(iterable) total = initial if initial is None: @@ -194,7 +194,7 @@ loops that truncate the stream. Roughly equivalent to:: def batched(iterable, n, *, strict=False): - # batched('ABCDEFG', 3) --> ABC DEF G + # batched('ABCDEFG', 3) → ABC DEF G if n < 1: raise ValueError('n must be at least one') it = iter(iterable) @@ -217,7 +217,7 @@ loops that truncate the stream. Roughly equivalent to:: def chain(*iterables): - # chain('ABC', 'DEF') --> A B C D E F + # chain('ABC', 'DEF') → A B C D E F for it in iterables: for element in it: yield element @@ -229,7 +229,7 @@ loops that truncate the stream. single iterable argument that is evaluated lazily. Roughly equivalent to:: def from_iterable(iterables): - # chain.from_iterable(['ABC', 'DEF']) --> A B C D E F + # chain.from_iterable(['ABC', 'DEF']) → A B C D E F for it in iterables: for element in it: yield element @@ -250,8 +250,8 @@ loops that truncate the stream. Roughly equivalent to:: def combinations(iterable, r): - # combinations('ABCD', 2) --> AB AC AD BC BD CD - # combinations(range(4), 3) --> 012 013 023 123 + # combinations('ABCD', 2) → AB AC AD BC BD CD + # combinations(range(4), 3) → 012 013 023 123 pool = tuple(iterable) n = len(pool) if r > n: @@ -299,7 +299,7 @@ loops that truncate the stream. Roughly equivalent to:: def combinations_with_replacement(iterable, r): - # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC + # combinations_with_replacement('ABC', 2) → AA AB AC BB BC CC pool = tuple(iterable) n = len(pool) if not n and r: @@ -339,7 +339,7 @@ loops that truncate the stream. Roughly equivalent to:: def compress(data, selectors): - # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F + # compress('ABCDEF', [1,0,1,0,1,1]) → A C E F return (d for d, s in zip(data, selectors) if s) .. versionadded:: 3.1 @@ -352,8 +352,8 @@ loops that truncate the stream. Also, used with :func:`zip` to add sequence numbers. Roughly equivalent to:: def count(start=0, step=1): - # count(10) --> 10 11 12 13 14 ... - # count(2.5, 0.5) --> 2.5 3.0 3.5 ... + # count(10) → 10 11 12 13 14 ... + # count(2.5, 0.5) → 2.5 3.0 3.5 ... n = start while True: yield n @@ -373,7 +373,7 @@ loops that truncate the stream. indefinitely. Roughly equivalent to:: def cycle(iterable): - # cycle('ABCD') --> A B C D A B C D A B C D ... + # cycle('ABCD') → A B C D A B C D A B C D ... saved = [] for element in iterable: yield element @@ -394,7 +394,7 @@ loops that truncate the stream. start-up time. Roughly equivalent to:: def dropwhile(predicate, iterable): - # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1 + # dropwhile(lambda x: x<5, [1,4,6,4,1]) → 6 4 1 iterable = iter(iterable) for x in iterable: if not predicate(x): @@ -410,7 +410,7 @@ loops that truncate the stream. that are false. Roughly equivalent to:: def filterfalse(predicate, iterable): - # filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8 + # filterfalse(lambda x: x%2, range(10)) → 0 2 4 6 8 if predicate is None: predicate = bool for x in iterable: @@ -447,8 +447,8 @@ loops that truncate the stream. :func:`groupby` is roughly equivalent to:: class groupby: - # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B - # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D + # [k for k, g in groupby('AAAABBBCCDAABBB')] → A B C D A B + # [list(g) for k, g in groupby('AAAABBBCCD')] → AAAA BBB CC D def __init__(self, iterable, key=None): if key is None: @@ -499,10 +499,10 @@ loops that truncate the stream. Roughly equivalent to:: def islice(iterable, *args): - # islice('ABCDEFG', 2) --> A B - # islice('ABCDEFG', 2, 4) --> C D - # islice('ABCDEFG', 2, None) --> C D E F G - # islice('ABCDEFG', 0, None, 2) --> A C E G + # islice('ABCDEFG', 2) → A B + # islice('ABCDEFG', 2, 4) → C D + # islice('ABCDEFG', 2, None) → C D E F G + # islice('ABCDEFG', 0, None, 2) → A C E G s = slice(*args) start, stop, step = s.start or 0, s.stop or sys.maxsize, s.step or 1 it = iter(range(start, stop, step)) @@ -535,10 +535,12 @@ loops that truncate the stream. Roughly equivalent to:: def pairwise(iterable): - # pairwise('ABCDEFG') --> AB BC CD DE EF FG - a, b = tee(iterable) - next(b, None) - return zip(a, b) + # pairwise('ABCDEFG') → AB BC CD DE EF FG + iterator = iter(iterable) + a = next(iterator, None) + for b in iterator: + yield a, b + a = b .. versionadded:: 3.10 @@ -562,8 +564,8 @@ loops that truncate the stream. Roughly equivalent to:: def permutations(iterable, r=None): - # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC - # permutations(range(3)) --> 012 021 102 120 201 210 + # permutations('ABCD', 2) → AB AC AD BA BC BD CA CB CD DA DB DC + # permutations(range(3)) → 012 021 102 120 201 210 pool = tuple(iterable) n = len(pool) r = n if r is None else r @@ -621,8 +623,8 @@ loops that truncate the stream. actual implementation does not build up intermediate results in memory:: def product(*args, repeat=1): - # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy - # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111 + # product('ABCD', 'xy') → Ax Ay Bx By Cx Cy Dx Dy + # product(range(2), repeat=3) → 000 001 010 011 100 101 110 111 pools = [tuple(pool) for pool in args] * repeat result = [[]] for pool in pools: @@ -642,7 +644,7 @@ loops that truncate the stream. Roughly equivalent to:: def repeat(object, times=None): - # repeat(10, 3) --> 10 10 10 + # repeat(10, 3) → 10 10 10 if times is None: while True: yield object @@ -670,7 +672,7 @@ loops that truncate the stream. equivalent to:: def starmap(function, iterable): - # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000 + # starmap(pow, [(2,5), (3,2), (10,3)]) → 32 9 1000 for args in iterable: yield function(*args) @@ -681,7 +683,7 @@ loops that truncate the stream. predicate is true. Roughly equivalent to:: def takewhile(predicate, iterable): - # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4 + # takewhile(lambda x: x<5, [1,4,6,4,1]) → 1 4 for x in iterable: if predicate(x): yield x @@ -741,7 +743,7 @@ loops that truncate the stream. Iteration continues until the longest iterable is exhausted. Roughly equivalent to:: def zip_longest(*args, fillvalue=None): - # zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D- + # zip_longest('ABCD', 'xy', fillvalue='-') → Ax By C- D- iterators = [iter(it) for it in args] num_active = len(iterators) if not num_active: @@ -816,7 +818,7 @@ and :term:`generators ` which incur interpreter overhead. def prepend(value, iterable): "Prepend a single value in front of an iterable." - # prepend(1, [2, 3, 4]) --> 1 2 3 4 + # prepend(1, [2, 3, 4]) → 1 2 3 4 return chain([value], iterable) def tabulate(function, start=0): @@ -842,7 +844,7 @@ and :term:`generators ` which incur interpreter overhead. def tail(n, iterable): "Return an iterator over the last n items." - # tail(3, 'ABCDEFG') --> E F G + # tail(3, 'ABCDEFG') → E F G return iter(collections.deque(iterable, maxlen=n)) def consume(iterator, n=None): @@ -865,26 +867,27 @@ and :term:`generators ` which incur interpreter overhead. def first_true(iterable, default=False, predicate=None): "Returns the first true value or the *default* if there is no true value." - # first_true([a,b,c], x) --> a or b or c or x - # first_true([a,b], x, f) --> a if f(a) else b if f(b) else x + # first_true([a,b,c], x) → a or b or c or x + # first_true([a,b], x, f) → a if f(a) else b if f(b) else x return next(filter(predicate, iterable), default) def all_equal(iterable, key=None): "Returns True if all the elements are equal to each other." + # all_equal('4٤໔4৪', key=int) → True return len(take(2, groupby(iterable, key))) <= 1 def unique_justseen(iterable, key=None): "List unique elements, preserving order. Remember only the element just seen." - # unique_justseen('AAAABBBCCDAABBB') --> A B C D A B - # unique_justseen('ABBcCAD', str.casefold) --> A B c A D + # unique_justseen('AAAABBBCCDAABBB') → A B C D A B + # unique_justseen('ABBcCAD', str.casefold) → A B c A D if key is None: return map(operator.itemgetter(0), groupby(iterable)) return map(next, map(operator.itemgetter(1), groupby(iterable, key))) def unique_everseen(iterable, key=None): "List unique elements, preserving order. Remember all elements ever seen." - # unique_everseen('AAAABBBCCDAABBB') --> A B C D - # unique_everseen('ABBcCAD', str.casefold) --> A B c D + # unique_everseen('AAAABBBCCDAABBB') → A B C D + # unique_everseen('ABBcCAD', str.casefold) → A B c D seen = set() if key is None: for element in filterfalse(seen.__contains__, iterable): @@ -899,7 +902,7 @@ and :term:`generators ` which incur interpreter overhead. def sliding_window(iterable, n): "Collect data into overlapping fixed-length chunks or blocks." - # sliding_window('ABCDEFG', 4) --> ABCD BCDE CDEF DEFG + # sliding_window('ABCDEFG', 4) → ABCD BCDE CDEF DEFG it = iter(iterable) window = collections.deque(islice(it, n-1), maxlen=n) for x in it: @@ -908,9 +911,9 @@ and :term:`generators ` which incur interpreter overhead. def grouper(iterable, n, *, incomplete='fill', fillvalue=None): "Collect data into non-overlapping fixed-length chunks or blocks." - # grouper('ABCDEFG', 3, fillvalue='x') --> ABC DEF Gxx - # grouper('ABCDEFG', 3, incomplete='strict') --> ABC DEF ValueError - # grouper('ABCDEFG', 3, incomplete='ignore') --> ABC DEF + # grouper('ABCDEFG', 3, fillvalue='x') → ABC DEF Gxx + # grouper('ABCDEFG', 3, incomplete='strict') → ABC DEF ValueError + # grouper('ABCDEFG', 3, incomplete='ignore') → ABC DEF iterators = [iter(iterable)] * n match incomplete: case 'fill': @@ -924,7 +927,7 @@ and :term:`generators ` which incur interpreter overhead. def roundrobin(*iterables): "Visit input iterables in a cycle until each is exhausted." - # roundrobin('ABC', 'D', 'EF') --> A D E B F C + # roundrobin('ABC', 'D', 'EF') → A D E B F C # Algorithm credited to George Sakkis iterators = map(iter, iterables) for num_active in range(len(iterables), 0, -1): @@ -936,19 +939,19 @@ and :term:`generators ` which incur interpreter overhead. If *predicate* is slow, consider wrapping it with functools.lru_cache(). """ - # partition(is_odd, range(10)) --> 0 2 4 6 8 and 1 3 5 7 9 + # partition(is_odd, range(10)) → 0 2 4 6 8 and 1 3 5 7 9 t1, t2 = tee(iterable) return filterfalse(predicate, t1), filter(predicate, t2) def subslices(seq): "Return all contiguous non-empty subslices of a sequence." - # subslices('ABCD') --> A AB ABC ABCD B BC BCD C CD D + # subslices('ABCD') → A AB ABC ABCD B BC BCD C CD D slices = starmap(slice, combinations(range(len(seq) + 1), 2)) return map(operator.getitem, repeat(seq), slices) def iter_index(iterable, value, start=0, stop=None): "Return indices where a value occurs in a sequence or iterable." - # iter_index('AABCADEAF', 'A') --> 0 1 4 7 + # iter_index('AABCADEAF', 'A') → 0 1 4 7 seq_index = getattr(iterable, 'index', None) if seq_index is None: # Path for general iterables @@ -972,7 +975,7 @@ and :term:`generators ` which incur interpreter overhead. Converts a call-until-exception interface to an iterator interface. """ - # iter_except(d.popitem, KeyError) --> non-blocking dictionary iterator + # iter_except(d.popitem, KeyError) → non-blocking dictionary iterator try: if first is not None: yield first() @@ -987,28 +990,28 @@ The following recipes have a more mathematical flavor: .. testcode:: def powerset(iterable): - "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)" + "powerset([1,2,3]) → () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)" s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) def sum_of_squares(iterable): "Add up the squares of the input values." - # sum_of_squares([10, 20, 30]) --> 1400 + # sum_of_squares([10, 20, 30]) → 1400 return math.sumprod(*tee(iterable)) def reshape(matrix, cols): "Reshape a 2-D matrix to have a given number of columns." - # reshape([(0, 1), (2, 3), (4, 5)], 3) --> (0, 1, 2), (3, 4, 5) + # reshape([(0, 1), (2, 3), (4, 5)], 3) → (0, 1, 2), (3, 4, 5) return batched(chain.from_iterable(matrix), cols, strict=True) def transpose(matrix): "Swap the rows and columns of a 2-D matrix." - # transpose([(1, 2, 3), (11, 22, 33)]) --> (1, 11) (2, 22) (3, 33) + # transpose([(1, 2, 3), (11, 22, 33)]) → (1, 11) (2, 22) (3, 33) return zip(*matrix, strict=True) def matmul(m1, m2): "Multiply two matrices." - # matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)]) --> (49, 80), (41, 60) + # matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)]) → (49, 80), (41, 60) n = len(m2[0]) return batched(starmap(math.sumprod, product(m1, transpose(m2))), n) @@ -1023,10 +1026,10 @@ The following recipes have a more mathematical flavor: Article: https://betterexplained.com/articles/intuitive-convolution/ Video: https://www.youtube.com/watch?v=KuXjwB4LzSA """ - # convolve([1, -1, -20], [1, -3]) --> 1 -4 -17 60 - # convolve(data, [0.25, 0.25, 0.25, 0.25]) --> Moving average (blur) - # convolve(data, [1/2, 0, -1/2]) --> 1st derivative estimate - # convolve(data, [1, -2, 1]) --> 2nd derivative estimate + # convolve([1, -1, -20], [1, -3]) → 1 -4 -17 60 + # convolve(data, [0.25, 0.25, 0.25, 0.25]) → Moving average (blur) + # convolve(data, [1/2, 0, -1/2]) → 1st derivative estimate + # convolve(data, [1, -2, 1]) → 2nd derivative estimate kernel = tuple(kernel)[::-1] n = len(kernel) padded_signal = chain(repeat(0, n-1), signal, repeat(0, n-1)) @@ -1038,7 +1041,7 @@ The following recipes have a more mathematical flavor: (x - 5) (x + 4) (x - 3) expands to: x³ -4x² -17x + 60 """ - # polynomial_from_roots([5, -4, 3]) --> [1, -4, -17, 60] + # polynomial_from_roots([5, -4, 3]) → [1, -4, -17, 60] factors = zip(repeat(1), map(operator.neg, roots)) return list(functools.reduce(convolve, factors, [1])) @@ -1048,7 +1051,7 @@ The following recipes have a more mathematical flavor: Computes with better numeric stability than Horner's method. """ # Evaluate x³ -4x² -17x + 60 at x = 5 - # polynomial_eval([1, -4, -17, 60], x=5) --> 0 + # polynomial_eval([1, -4, -17, 60], x=5) → 0 n = len(coefficients) if not n: return type(x)(0) @@ -1061,14 +1064,14 @@ The following recipes have a more mathematical flavor: f(x) = x³ -4x² -17x + 60 f'(x) = 3x² -8x -17 """ - # polynomial_derivative([1, -4, -17, 60]) --> [3, -8, -17] + # polynomial_derivative([1, -4, -17, 60]) → [3, -8, -17] n = len(coefficients) powers = reversed(range(1, n)) return list(map(operator.mul, coefficients, powers)) def sieve(n): "Primes less than n." - # sieve(30) --> 2 3 5 7 11 13 17 19 23 29 + # sieve(30) → 2 3 5 7 11 13 17 19 23 29 if n > 2: yield 2 start = 3 @@ -1082,9 +1085,9 @@ The following recipes have a more mathematical flavor: def factor(n): "Prime factors of n." - # factor(99) --> 3 3 11 - # factor(1_000_000_000_000_007) --> 47 59 360620266859 - # factor(1_000_000_000_000_403) --> 1000000000000403 + # factor(99) → 3 3 11 + # factor(1_000_000_000_000_007) → 47 59 360620266859 + # factor(1_000_000_000_000_403) → 1000000000000403 for prime in sieve(math.isqrt(n) + 1): while not n % prime: yield prime @@ -1097,7 +1100,7 @@ The following recipes have a more mathematical flavor: def totient(n): "Count of natural numbers up to n that are coprime to n." # https://mathworld.wolfram.com/TotientFunction.html - # totient(12) --> 4 because len([1, 5, 7, 11]) == 4 + # totient(12) → 4 because len([1, 5, 7, 11]) == 4 for p in unique_justseen(factor(n)): n -= n // p return n @@ -1567,6 +1570,13 @@ The following recipes have a more mathematical flavor: >>> ranges = [range(5, 1000), range(4, 3000), range(0), range(3, 2000), range(2, 5000), range(1, 3500)] >>> collections.Counter(roundrobin(ranges)) == collections.Counter(ranges) True + >>> # Verify that the inputs are consumed lazily + >>> input_iterators = list(map(iter, ['abcd', 'ef', '', 'ghijk', 'l', 'mnopqr'])) + >>> output_iterator = roundrobin(*input_iterators) + >>> ''.join(islice(output_iterator, 10)) + 'aeglmbfhnc' + >>> ''.join(chain(*input_iterators)) + 'dijkopqr' >>> def is_odd(x): ... return x % 2 == 1 @@ -1676,7 +1686,7 @@ The following recipes have a more mathematical flavor: def triplewise(iterable): "Return overlapping triplets from an iterable" - # triplewise('ABCDEFG') --> ABC BCD CDE DEF EFG + # triplewise('ABCDEFG') → ABC BCD CDE DEF EFG for (a, _), (b, c) in pairwise(pairwise(iterable)): yield a, b, c