From 6c774441827a05d463d3fbba76d1d4b4ac972fca Mon Sep 17 00:00:00 2001 From: kaiyan-sheng Date: Tue, 2 Jun 2020 11:19:37 -0600 Subject: [PATCH] Fix fields.yml for aws dynamodb metricset (#18888) --- metricbeat/docs/fields.asciidoc | 65 +++++++------- .../module/aws/dynamodb/_meta/fields.yml | 86 +++++++++---------- x-pack/metricbeat/module/aws/fields.go | 2 +- 3 files changed, 74 insertions(+), 79 deletions(-) diff --git a/metricbeat/docs/fields.asciidoc b/metricbeat/docs/fields.asciidoc index 8b2364b4222..1b55dc67ac5 100644 --- a/metricbeat/docs/fields.asciidoc +++ b/metricbeat/docs/fields.asciidoc @@ -1604,16 +1604,12 @@ type: keyword -[float] -=== SuccessfulRequestLatency - -The latency of successful requests to DynamoDB or Amazon DynamoDB Streams during the specified time period. - - - *`aws.dynamodb.metrics.SuccessfulRequestLatency.avg`*:: + -- +The average latency of successful requests to DynamoDB or Amazon DynamoDB Streams during the specified time period. + + type: double -- @@ -1621,6 +1617,9 @@ type: double *`aws.dynamodb.metrics.SuccessfulRequestLatency.max`*:: + -- +The maximum latency of successful requests to DynamoDB or Amazon DynamoDB Streams during the specified time period. + + type: double -- @@ -1655,16 +1654,12 @@ type: double -- -[float] -=== ConsumedReadCapacityUnits - -The number of read capacity units consumed over the specified time period, so you can track how much of your provisioned throughput is used. - - - *`aws.dynamodb.metrics.ConsumedReadCapacityUnits.avg`*:: + -- +The average number of read capacity units consumed over the specified time period, so you can track how much of your provisioned throughput is used. + + type: double -- @@ -1672,20 +1667,19 @@ type: double *`aws.dynamodb.metrics.ConsumedReadCapacityUnits.sum`*:: + -- -type: long +The sum of read capacity units consumed over the specified time period, so you can track how much of your provisioned throughput is used. --- - -[float] -=== ConsumedWriteCapacityUnits - -The number of write capacity units consumed over the specified time period, so you can track how much of your provisioned throughput is used. +type: long +-- *`aws.dynamodb.metrics.ConsumedWriteCapacityUnits.avg`*:: + -- +The average number of write capacity units consumed over the specified time period, so you can track how much of your provisioned throughput is used. + + type: double -- @@ -1693,20 +1687,19 @@ type: double *`aws.dynamodb.metrics.ConsumedWriteCapacityUnits.sum`*:: + -- -type: long - --- +The sum of write capacity units consumed over the specified time period, so you can track how much of your provisioned throughput is used. -[float] -=== ReplicationLatency - -The elapsed time between an updated item appearing in the DynamoDB stream for one replica table, and that item appearing in another replica in the global table. +type: long +-- *`aws.dynamodb.metrics.ReplicationLatency.avg`*:: + -- +The average elapsed time between an updated item appearing in the DynamoDB stream for one replica table, and that item appearing in another replica in the global table. + + type: double -- @@ -1714,20 +1707,19 @@ type: double *`aws.dynamodb.metrics.ReplicationLatency.max`*:: + -- -type: double - --- +The maximum elapsed time between an updated item appearing in the DynamoDB stream for one replica table, and that item appearing in another replica in the global table. -[float] -=== TransactionConflict - -Rejected item-level requests due to transactional conflicts between concurrent requests on the same items. +type: double +-- *`aws.dynamodb.metrics.TransactionConflict.avg`*:: + -- +Average rejected item-level requests due to transactional conflicts between concurrent requests on the same items. + + type: double -- @@ -1735,6 +1727,9 @@ type: double *`aws.dynamodb.metrics.TransactionConflict.sum`*:: + -- +Total rejected item-level requests due to transactional conflicts between concurrent requests on the same items. + + type: long -- diff --git a/x-pack/metricbeat/module/aws/dynamodb/_meta/fields.yml b/x-pack/metricbeat/module/aws/dynamodb/_meta/fields.yml index ddb767cbe55..7f902618678 100644 --- a/x-pack/metricbeat/module/aws/dynamodb/_meta/fields.yml +++ b/x-pack/metricbeat/module/aws/dynamodb/_meta/fields.yml @@ -7,16 +7,16 @@ - name: metrics type: group fields: - - name: SuccessfulRequestLatency - type: group + - name: SuccessfulRequestLatency.avg + type: double + description: > + The average latency of successful requests to DynamoDB or Amazon DynamoDB Streams + during the specified time period. + - name: SuccessfulRequestLatency.max + type: double description: > - The latency of successful requests to DynamoDB or Amazon DynamoDB Streams + The maximum latency of successful requests to DynamoDB or Amazon DynamoDB Streams during the specified time period. - fields: - - name: avg - type: double - - name: max - type: double - name: OnlineIndexPercentageProgress.avg type: double description: > @@ -29,46 +29,46 @@ type: double description: > The number of provisioned read capacity units for a table or a global secondary index. - - name: ConsumedReadCapacityUnits - type: group + - name: ConsumedReadCapacityUnits.avg + type: double + description: > + The average number of read capacity units consumed over the specified time period, + so you can track how much of your provisioned throughput is used. + - name: ConsumedReadCapacityUnits.sum + type: long description: > - The number of read capacity units consumed over the specified time period, + The sum of read capacity units consumed over the specified time period, so you can track how much of your provisioned throughput is used. - fields: - - name: avg - type: double - - name: sum - type: long - - name: ConsumedWriteCapacityUnits - type: group - description: > - The number of write capacity units consumed over the specified time period, + - name: ConsumedWriteCapacityUnits.avg + type: double + description: > + The average number of write capacity units consumed over the specified time period, so you can track how much of your provisioned throughput is used. - fields: - - name: avg - type: double - - name: sum - type: long - - name: ReplicationLatency - type: group - description: > - The elapsed time between an updated item appearing in the DynamoDB stream for + - name: ConsumedWriteCapacityUnits.sum + type: long + description: > + The sum of write capacity units consumed over the specified time period, + so you can track how much of your provisioned throughput is used. + - name: ReplicationLatency.avg + type: double + description: > + The average elapsed time between an updated item appearing in the DynamoDB stream for + one replica table, and that item appearing in another replica in the global table. + - name: ReplicationLatency.max + type: double + description: > + The maximum elapsed time between an updated item appearing in the DynamoDB stream for one replica table, and that item appearing in another replica in the global table. - fields: - - name: avg - type: double - - name: max - type: double - - name: TransactionConflict - type: group - description: > - Rejected item-level requests due to transactional conflicts between concurrent + - name: TransactionConflict.avg + type: double + description: > + Average rejected item-level requests due to transactional conflicts between concurrent + requests on the same items. + - name: TransactionConflict.sum + type: long + description: > + Total rejected item-level requests due to transactional conflicts between concurrent requests on the same items. - fields: - - name: avg - type: double - - name: sum - type: long - name: AccountProvisionedReadCapacityUtilization.avg type: double description: > diff --git a/x-pack/metricbeat/module/aws/fields.go b/x-pack/metricbeat/module/aws/fields.go index 1f63cff2180..32fb4eb68c2 100644 --- a/x-pack/metricbeat/module/aws/fields.go +++ b/x-pack/metricbeat/module/aws/fields.go @@ -19,5 +19,5 @@ func init() { // AssetAws returns asset data. // This is the base64 encoded gzipped contents of module/aws. func AssetAws() string { - return "eJzsfVtzGzfy73s+BWpfIqUkrmMnW6fycKokUd7o/GVZEeV13rjgTJPECgOMAQwlpvbDn0IDmDvvM5Rc9ffD1kYkgV9f0N1oNBrn5AmWvxH6rH8gxDDD4Tfyt4uvo7/9QEgMOlIsNUyK38j//YEQQv5Nn/W/SSLjjAOJJOcQGU0uvo5IIgUzUjExIwkYxSJNpkom+NkVl1n8TE00H/xAiAIOVMNvZEZ/IGTKgMf6Nxz9nAiaQEBj/5llar+oZJb6v7SAqg5SHsjQmR78lP85jCcn/4HIlP7s/jB2nz7B8lmquP3jcULTlImZ/+7ffvpb6Xut2Ny/RzqzA5MF5RmQlDLl+UOfNVGgZaYi0IMGBfrDYJJFT2AG9r8blDSxrsFwRxMgckooGX0gftTGhDFLQGgmxRth3CdUpjKsBuQffxp4lRv8NPjpxx1RxzKbcOgDtCZmTg1RYDIlIHbyLtYCubi/Id8yUMsmSRPGOROzBinllbABw7/9GP8mkRSGMmHhAAFtWEINxCSaUzUDTaZSkaXMFC5VGkUyE4YwUVu14V++eidgaOnv9SVYpsZLp/LZKopWjVUe7zrQcOVIGCT0pfHlMAGXFT62cu4TfWFJlqxgjucLMqYpqihn00HSKoapCSwp69IzKCA6UjQN+pTb16+oU89zFs2LAVqssgZhyGRJYjadgrL/YenQKa3Yn7qZ3kbM+Titgm5ahw0ssf8e51AMS3QKEZsyiMnzHIRbOyX+E5qyFoO2FDSR8eQg6YRBjiQb+8MhTjm8fGuLb5RFEWg9zfgDfMtAm1tqQETLlQuwbZIN/A7/rPi5G946Lp1PTZSbWxMjc04Ru1YT+pcUxZ9GRgFN6tR7ABky3wqy0CzDEiApKCbjQcuvVnGnzCG6aDM4BUMaHqc5RLtB2zhE+PlnwZmAGxHDyz2oCIShM7hXcqZA60E7vg3YtpRWmk9nBRbJJOVgf+NWLCUCnsmMywnlREMkRUzVkjALlDBNJmAFQuPYCkISSgydcGjKIdB5r+SC2agA4q+KGbiiKY2YWX4RzPRLp8iSCShLY1pgIM8WBIk8CpJZGOhCPCUE/287/VtR+QA0fm0iFdC4cxqvpNBZ0kJgX2aloK2NnsjDIXIBarWFOGsdXksbT5GICmIUjZ7IXD6TJIvmdjaMtMrsNHMls9k8zYxdAZmG17Q7OkvWDtEaTNVl2FyK/QuxdeX9rxTbh1grxQdIOYuoZX3Pnh04TXUQxQTMM1gXIUiWxhiDMwMJoWkKFP00EyjC3LVrdO3W9LTOIAUQ5WhxhumMUBG7UK05MhXSzEHlv/CTeTO2wg19L+HAo6JC08jK40qKKWeV3XB1qANk+gB24+wFd85hAaU4Lc7AunRTQKHcLlBEo3PxR1JEmbLbktYp8uGkk4+mCeB0+ntdbhduX7nKxxvG2V+4GHv19HQBysZs1fBtk9fPEB3EdstipUHre+TNxFZ9xZuhttWd7EzuaKkNJNdKSaUH7VqyfY5iNTk77oWcCZyBAEVNu2ZTQX5/fLwnv757R7ShJrO+NIY9dkyl2CBmbtVfzSF6+kgZt6rukPfInCJEmOKUhBoDSeq4lYKaSpVYqxPQOdG3mJM8GgcRMzEruckr1IJjkIB+y7lHL0aqABEbEJagptNrHXWSGffzOV0AEdKQJRgysQa4NNhePrEII2j8OFfSGA7XCxC9CfmhTfuROHiJAEMzWG3JWofsaE8TyO9bzXfmQClY5Sxpj89tAEVofjRBTrQNfamusEQ4Fpyu5gHa97epB1Ub36cieLf3ib7YVXF4unq1qUh8Inv97ha5Yjc2E8CtinVoVKz2Z250pp22kFiCRqNB05Qvndk5jyHB8NpySVs2tTNpnWUt2PRoR7m1AeQbZlihEY7U9l1kLcklp2VOk49SNZlnClZHNPWZZodzRVBM4xAEeMBbqCvSk+k1JrxNHl+ddzymQFpjsbctEQe5V5G8aUG8vi35RF9KuwzU31X7qnUs7DYdvut+as5mc9DtO+HGWDXd36DnuzBu5R7tdThXV8N2ppV/smaN7sm1wC2YlGOn3c8VYaKPeKR4fTk67IS367PEf0meJbgwL5fWmh2+6b/wW3vN/kLFARrN3fqQqd3vMinKu1ifAMYQMTU25F0gJG23iTSah3OoO2aUPJ9Qa+CY0IaKCM7I89zKx5QyCgpSBZbluvLnlvzzpg2zYw0uvV5545bBd8kcqzef0y44Yw2OkYbyehyY80VjkrgB0X7RsGSNxy7JsT+sNSEeCPaPDDK4BTEz847w1rhqnXtd7/Ik1jNlBjVQ2pDCnyCjZh1A0mO+4y3Owzuireqobv7+uSyHFJR3KeTk5vP96JTEwNkCFDjouSzthxUvN3X7a5/Du74c+cU3IF/sOntmZl4+GHYDjEbDfI1KwZeb2FI+de1FRWmC1WRrBK/JiZAqoc6HG0ne//qP/6kFRqfFSd56LeiGN5eZ0uaScmvHOuBGgemfmHPl5D5TqdSAkE5m6fvTM1IoKPmcGpYgN34fDsmJNj+fuqOrK8nD36KfT6vEOHpjsEt/avmJi4pOJGb62rQ0UhDboPPEapoFYaOgUmao8rk2PyMEnFhBQpkoHclNLMMaFaXtKvdo9QKTg1Zg61JB+5tDt+K01RMX/FDOG/bcbVw6Mi8WgEt1HZmqxmrqkqybmB+DoLUYXeGQkF5+qkmxC5KzScKMKR+75zF69P6wGD16f8wY/er9YTF6lGYD5PQgbRzzOuJ1RDnE4ymXtP6FLcoxq5aEci4jPK2/vnqPepcZKKcGqALiT3S53VSRTEM4vQ3B4mAlIc4IjTNNZ+1VpS05jm1KSnMdvLr/klu6fGGVsaEjtt/KShvfTXgnznn0ghgoFpOXgTtGiwLznGq7Z1UZxEQz+xdmyDPVhNNMYOCONp0qU69TKROjM5XyTI+PQJSfqkoRHk7hoVRh8gTJBGaOSnsNZyLsz67uv1zhCN57++sWTJO/QMltKdVjV/1dzxt0RCrS0kqwXStCGpJSFpNYPgtLclPeLhpwZsXMM2tAowyjRRrnx5iOhHaSBZhnqZ4GTAxSap12+47+UEr92ERBBGxhlU6gz/LTEyYMqCmNQNcX3bawxymosYaoV/ilGB4NtQ2pOqJEZuYoEugR9/cuAiYGk6WBrfnvguvfSNuPdqINB+hjbeDAvYrFQS8JpWsqrH69plT6WC+vIJauyIiZfmJyYCPwo4nl0i8P6oNqiz93+NpIBUU2ckEZxzy+kftQ07FQSshLsuiHCNwMHVkm5QqhHunpRSoBe0kwfZCBuiXTrpz6Vb6drycx9taqXRIDK4jrWECriexiFR1Ar9PJPqTZTN7sp4tdENebNBtEHr729qHXlbEOojlET2NXCtoRqQ+QSmW03YViuWQFqd2Jp1RjYYQ08+qHobTWYvKXE4BoLBqufubzrJxqQxImMrM9kWM33pFp7YOQMM8rkNIusW2JyV1GJJX9n6xxucHRYMOyGdRvs+yezpLKX1zf7K/yT1lCZzBg7Wti76vbN8NwyoXjuwIhI30aahd8RdZ0YGXQ4RXzGxGzCAuqgybEYFypeClVyzQBYW3RinxZDjRVbEENDGKhx7WWHR0w1I9OhncjnDiwtxHZb4mS1Ss2vCbW/7wDtJv7xS+ExrECrQnVWkYM88N4ArYX1mzCWdQXQ3HwBj+31EoPrUMuBsZ5HNfWuLCI3Nznn5xYBp+SicycA92HpbiEBpGM27m5tyHCces8PHNV4z//43zCDMmEZjOB2VucZCuk3cu9FSk5Sd3lDvJfojIh3P/T88wYJmbnmJH9LzGgEiZQp/9rIxbsEBP+L8SnGygycxvfunjLmuq+XIGfB8Ot4BZaDsf4YY0xgB+zJ8b1bXs7jFcrYLuk0ROI+EoKAXipsaPLXlVRRvnwZbYKaUodMfiSgDZ0wpme22DT36fEAEXSmPjTG5XHmQpmTBusRAm6uaae9vfHx/srGcPYUzx+/+efHVOJN87e//knUaBTKTS4O2fhohoWeB4I+kM/oD/0CvqXfkD/0ivoX/sB/WsvoK9vL/vkcsSZtWFgTQOC1lXUjTW6JeQeeaxBLUB1Atnfy+rmkmS9mNDXDBb1Lgi3sJYJXXVrFUOlBeVrbu+mjHO5ANUd9GaNabizllt1FS7RTyCimXYVtDpTMyDfMnCH2dbcr9ERoNzMl7/LwPRD74hUmT53wxcLrLzqMMjH5hhbasfIUlYuOO0C7Eo2n6CCc4tWgDqta8vJ41X50/xMPkSFSmahNJU2+LCaxi+iZ5Fkoluh+L4fnVaCYi2X7/hxRpgI1V9nLizESlj7lWbAggGgKe65O/a3mHqSCcN4I2GjjEs6aMgjH+9A5kBjUGs8RN5o8OL28iIybAFFpOcE2Q2Lir6DlaDP100Rq5ZlPaUIxTHOORcddoLNWC9nb/Uj+32qZmC2JD+UCt9efemqRLiN6irI2v2ok9urL6flW2YXaX4Jn9zaX15u1O0yTXfwfDx5CnhuCLIcsR9PmvdK2k0DdHbpZhXJ/kA6TLe90PLmLMVXD92oVoc64p61RO6b276227Q+Ip03YM2ucOzH29EdzKRhNN+u9xGaPt6OKkQywQwrR89+U4AaF7MYd/O5OSCUaNAa+yaGtGmVYN9OieJEGKav3zSMP7IXiMcP3vWN+6B5aqc4z70rbWQsimzFBrAPEDMFkekFpvKDdwLwi+LjW5YwM77GLhMQHxFzJDMeix9N9aJUeePw5eE2HFPlcsGCbataLvyxGwpu146ygwryf/5ny+3nhz//7IXWUkrFEW2xuj0oUi0Vm2H+dYUx2H7D3x/8Fdv+LvH/2if+FTmATvG/e9cj/nfvegT+vk/g73sE/qFP4B96BP5Ln8B/6RL4zf3iH7UAu494qiW0bgYJeLPaAloPt8cMnR2+SL/kZcK7ZRBbtml9sPTVN2hvTW1+QYLW60/o+dmHgDYdgLWmSqukzLEzkutVwIxuaWpTGvp1c9iFUHbif8bhekF55orrugaX8c3qMmMLcK3iXHpOWbPpmzt4Yqggc5mtWeI9ZJf2yimty5LWivoPTUgUwxwxGXHnJn2jiYiPXD53mYZbk4SYcvmsyUn1AOC0aeM32ewa8PHj1X3/4K2X6o2A29ERCLgd9UbAl+ERJPBl2J0Evgfb18Dcfy6tzn2rM3MqYj2nTyFM9y19/QGvKLAU7eTDNty6UpctCwd8awPOwhT1FWquUJ+1EadTpZDR2arxcpkWXNy9hc6r13TXNL2RQPmMMBHxDI+GH6/u/35zv/lEsQq9N4G0wC+r/hqAjyiP72Jllyny69tp0xrqru7HznaNH0BDlwnmZtGBBkNOHkaPp9V72O4OU34AILeEfX17+SqY9637sZidMr06qx17Hasd21+teiaYu6I3ihSaxVjH4Is4XrGQZB26vMikuSPiNJnE9KDdkBviiDuhW5zwrT2udyMW/nSm+1DQulbtorxpJopjFbzb8gJRZlxlTnBppdf23MfutFbE5f/0L5zqjBt3Ky8fesOhpC+U7ppIVjBwf2xDoPEtGAOqM5QfpSJUL0U0V1JI7NkSgJ65Kxw1OTn9rLxWgQVMVBBY5I4jBhqfc4TqywMnmXOea1z8ELRhAuceum6Ey4+U8Ux1UgzSG6U56K1ozFRX78jgtZy8j6EvUqOmbSXpFEScx134lqEnYvMrEX2uhVqhKcXGrP5xijVnA8Y6fqkuOumVafXCydO/KOHfVs7Xaej04N710k5ZfJux/J6lgkiqOOwWNrD2Kt+wX+cWq3Mu5xpQ1F4WhaOFIoB7+2KNb7dRjFpgKr0P1B99Q9GvI/IAs5bV6BAW4N1jnJU9RKDVfyuW4kffpiuAL5Ik0ZpAptScs5XabqOanSREpKj0Yd2bnmjrVunbUITSIwtQWBRk/4Mz6teIa3Imp5vYSmK2YHERyNdbtK4gu+jxtysDytFMtwcT28QyHUoyvwrw+hRZDY6pqkrIPa7L+UoRMu1bL7YcZ1Azowae6fKw44x8mBVBfP31e/cYYPREsLmjZcHdxSPxY9hgnLpeIM5btD9N/oqROuZvbsRHJZNSPNWxUtR6hPl1W+ZTftxcio/WdDYuQI+Qra+DN6T/mHAK/6/7qw2YP2fmUfbN57xdlu+C3ADvD/23ZzXC7pHT/mrEWrQ7Mbs4xr9w4Xi/p/lF0I8XtVZQsg3c6yLF3HcBQjmbvTNi3FDeS2UueKjD7MWR1JUBS0XdQzvemxMaAvFUqjVBdGgCLbOelcFHZfhCLHYxhVI1jS8Sd9f2QzugmPu/rPHnLh04VDLtA33INsYK7/63WLyN0Pr2IY0urAd7kQrwXqzb1ph3Mm4ed8++pNFztQtvUobeK8c79yjtV0z6uOVZOp731qJezbfRWgfQKj7sWScVH/NZp4fhgc86HdQyPvST9H3hf1gjtW0ayu/aav1/W8MfuzV8TA2dUA3j0tLqhZwwUe0iVfOFxBzZJG8SN6BKtILaq2OQf4XnITyGe0cTOLl4uDtFFXBvjMV6M6iIU93Oq71gXZUtTLl9VXiHgYqYJJBItSxKfxBD+OLwclND0xJ6FoMwbMoafYm6IIFasapznaUpZxAXwi9mHbiHI4s/EOZIzwT7loEF4PQ9/4YddicSXX+/7sgb+X4TDmdwT6XmU0znlK7u0znGo51xDKmZt2Lb8ymPYqnJzGBiybqYm8+anCig8d8rz5jq0/LTXBTPBl0Aw/RTO/bQgfIbH7vLRGM6A2HG/5GTfiyGrxoZ/XFLRu720oWdkNgJy21ANrZsnCoAOuEwdqvnqM3Ii4Rs0QBVURHLJHDdg1qJfKyNVHR2vMbQq2B7HESnK3vS+Yr8caYhHuPez11xHLO4Sx0Jhf+lGcjNMLwzot0zIxbDwF3YBjyHvJfazBSM/rhtBy+5jd7H/oF8hK25NGNOZ4Nk0iF8TmczPJP3Tze6C53uWf7wGYaZUuNZtwGVoJH/enGLBibfSu1En7UCYyY39gfe0/6EFyBLLp/pJ3cUuPIhvVVIkRnI+R26GAedj/1x8SFqjyfDlDxY9A9eNiXnY+Vk9WzOQqNfF0uU/VNZNp+Woz9uz8gnqhgdXro3Xwp5VaZZEXnoZ5q6+PiVDIEF4Na+KzL2zz5VKEaX7nY11p1jhiq3Hza6Kox5O5Vlm8HlTI99wVpTmocsQFTMEil2K1AyJXbinVYWutbjLy3n0XdcW98yUGx79dkLnZ+jOOraBCoGGnMZPfULK58lVBzkYekmfK6JObq111p93vlW6vsvMiVVxS5hMyacbB0hrus/26ELfndPsjDOw6sANc3NS2kzbUB5qGfWGUjs+kQN+fXcxXl5w7f1ZLp++K9Cp1ubuExrZOZ5t8PJxPCQy4jyVw4Sg3ZWjb2BJJWKqmV4/N96PWtcN2kplzMmsFN8pno2VX6TgTMWB1ib7EHxsuogkknC2vNsnVl7N8cuVr4EMAYOK1qsd+eOcI7c7u+CLub9QhsOb0vXcncAlvQMjAkNyugzkqUxNeAfAnSc3AmpG+gYYPcRsL8Z2ym83O6EVumll47xYY78qMn5FBuj2/jOPSprLXA49cAnGaN55TESa529Z8Ww3fpXb60Lw7UHC8YeVZesYCKSid0vnjy4wU8Lnig6nbKoJU4v14Uju6JMG5mAKgKi8GPLupAvHY7yP2MUYk186TCD4tNx+d55a64EyXTJFpmZmUS2PPrRvx++2NCoj8Vcr3qmT/7prGaQshGjBg4rDpc6Mzlujn1MjjOo/aJzc+yDDiPDfsFN6k+7oYg3YeS+UeyOEU2XWRcPAZdQI+hB45swzpnvNruejF0ii75owGRdDFNsGCgF4VTMMiurk+Hw9jSPS3albIfQpC/K1kYvO9KzYwDTL0lhSe9Iw05WuwMKujLqAf+OFr0vGVSN/o4y2NHu90VD1TXsSMNu3uENKtKO283eLG9lR7qlEPB41ufYGSagXymfUkpQyyjKUuaSfhMmqFpiCiWErwm1+5LmWYPLsKm1RwolcuuHXt0eeLXk20sTEjshmTIOu2XdS/Drxwa9wz/ouKD0Yz1w1W295rhCpUJ53nDtV8zwPWkRdrxFpUbYEW8MbcvUTLiMnjp7jLOdnAoZ9Ux+ceHNIdl89FAqGIknY7/RH/dRHrNnwUvIFPvnTiLKubNxfgNanAL4b24mVMnGFcMD6BpeEjugJpw9Afn6cPN4/UCkIg/XF8Prh7MugYOYMQEdPx14TaN55XBXZcLz3s135iirH+KWDnDxIr2J2gmgSOfYu5Rx6XS7y3VSP7pWxal10KDwDF7Be2xI7hxGJJOUGjZhnJnlmvPttbLypM64nFA+jie5Y4F4nJ+S7uRTN5B+UzZe/8RpydAbg/qd2Nbz0gJgUTifKpZYR1tcr20/tfFPF6N1qX5/S+5Ys+USYFNQR+ZLoTAKYmm9mNuuBjiqzBEXZtQYchDp5YgDK2y6ojxcjd6KdE5n7r5lDkfMwpZ2nT5sGVB6qv3ggx7p9MUjh9FXOUXeh7pxQl+6o7Bc6lUlqfwgYh28s8XWpDePx0O4UMvo70cqEx2TysRbIHVCoye8yzuO5lTMYOy6NOhBpMAtV7Vql31oxWc+NXFT+wYRmuDUof/slC3A13u6l7GxFmKTZ1pJFj5T32nEGpms2r9tFVmVYo7tCXhmIpbPAzdPp/uc6RQUWOUpa51vuFVQ4ebP3x719NY/35YKvir3d6g2hbuT1KyDaaNwnVDOw5MZ60ieYuMG1yPZ9TUME60o2nN1Eb5wiEZPWTpWYGx8L8XYd0bs0u0/tnSCcPPmNRr5CWZ4v11naSqVY1IqmTDnTJxjEKkAFweZAjWZAowWqwekhdL+qMNEOYFrFaHCGi1oqufSvBovIt+2FV+14jyQF3A5O0NbtixYbM9iwIbkOzEgotEcxnNmxhiKDiaZXX0d0l69itVsGuR7vPh7UG56h2o7wK4Z11hDl8t3N9APCEGDWYfb7xmzFNfpDvXEu++6cmNTuaGF5eh+71V+LXFF8XOsx0aOfcSRuj2m/sbHe1ZF75hCnZUA7hA6PgxH5f1wTr+RRJo5KCLwPQ5vPTY6uiwNFW1jVzE4dlcaX8s+2OXv7nEuZebyS66QsewRtsxneMn6mlIOU9MTcQoSynDDX7rEgWlMrM5rKUJMgOrMvcJZr8/L7faHcUwZXwb5/FDHusvV2vpgtXu2+FkujD5v3Y4+HHbpdpJFT2AGmv31WiWYuHfP9dUFtS4/4bG14nbR0lhOx3LyH4hM92urdC3NzdCCza0iznNR47XGFdrnfcKheueHKWlcePLiLetZcIjuhnePwsLXlHL36xq6SIyAXO529MHL7owomFEVc/AXUZfpCj+cY591GjHUMP/z+rGG2ypX0D0m2mjYgDfNesR7/6VzvGuOYDuBPLy+vX687hr1fFUFRSeYf7++GG6lz5t0Qeo+leHzqK4Ne6FcU81xKM4Cyej69vrqkXxGoePdb2voOtYKR8lYR1SII1++qdfTBSfrsbizk63ZcQj1Ckym3gr5Acwx6Oesz9VW3V3auXy/BYSOFK+PnmL5LLik8etIxomlwICLbTuX/TwHBdWHZF3pM545T2S84j56lr42uQFBeDMXw67Se2UW+9nulhNca/BfXuqdjDpUt19eXqrPyLr+FK4x6DZycyuOFi1igeHW+h2Rivy8lrBf+yTs15eX6vuyxyAs1JtNmdJmbJVjh9OYw6vOUlDnQecw9ZNnRMLbzYVKYuvlcvezNhYY6bItlUWJrXuwpmgCueFdzw8M5MPu5qgsAU5T7SpuVrAGZYULuWBHeHuThk906BK/bu3m+0FxWG8vLY7Z22t0197b6xU7395n2P1yxP7qoi28VYPQ1SIBrekMNEkz32BzdV+50afRyD1Q8UBNV0CU78tTevpi9GkUcJHYvZbA6pdQy7ju0NB9nn7ytNznpHTbsK/JK7sC3B1vvwbuRsTIlEVboL2TBsutsMDFPwrRH+SCvXwZmBpWSzsF7tBpYoeeYK92EeO5066kfcS7u33RhQaghN3fFDYyELkrWsaN5cznrOu+pVXItdd0l4HV+FMyRRQklZxFW6n+KhrOb8SCchZfGKPYJOvq6bZOqKq8IRzG+ZHQHCpm8JkjgJy7vm8v1Prts8pv81+Q/zf6fOcar0dSKYiMK2VMqFnbSn8jF++kty3fDR/dExFClti5I/0PECu2APEoh/xbr9QiVDx+S6QPNlqe2dnL7DxKT0b/VGC7Z/GjjST3pGP0afRJCjN/lENqYJSCMF9Gw05AR3OqZu6xA8fuaj9KrB21UWzezdAXo0eUg4gpXpU1c3/5x/WsK3nptiOAbweGfN+OGvL9cWA7V9+VzPNjTGc7HWF3cL0mTZV8YQk2GS/e73GwiJDi3KWb4zyw8me8LSpZBLFeuDFwuuyu+GrFIioDKioJ/NxYxtRsVKWAoi6yJIGYUQN8RUokp0VIM14wzZrRaTdb7apNcA6MTDmbzVfkNHJkR0FVZ59RDBaUF5u/LfXBqlK/SIO+7oQs7Ff7hZbnVidLayB53i3Id3fwsQJxt182QNbNBs5dyzyOgzNaw0NIUrMMzS/6aRVaY8/F/U1gH75sxdwKd9wlNBCwojANRGFuj36g39g9b8dj91G312JGf4y8zayMW7n3xTp5bqg61N5PDvlhvrtnh47ybk+NOatjxfDWTX9v3OSGd2tM+SMVR3qaYldg3bOr8oTDfqjyZ1IuOY2e5pL39cxE/l5KsVtcksQuUhtekUmYnijZ6NG8BvadfMDvHxF08BQIntA64PwYTB9a+IYj7G3otEwAdxdv1rJdUc77eKLHXyWFGH18tSGe9byurgzTjjSKEMBKjOEBgD5w4rY3x5qLKb+BWQfp6zXD19z+ZMpEYZJiloDQ7tVmrWXE0LXhwVmhPE1VXaTiIEVdpGJvNf3X/d3b98GPmRDAR6a7c4fSgwBADA4/wNt69gMWWbboM/KOMBHjxVNNhp+/3uE+9OfSH7/cu19d/vPe/6T86fXo8eLy9mb0+/UQf/mOMF20H6Oc+7JrBLMmQefIH1JDNzjX7emvxR/ld3qsRniObIFok1fdFVLjOaQynP8fAAD//xqOLBg=" + return "eJzsfd9zIzfu53v+Cta+xE7Z2slMsnWVh6uyLc/G9/V4HMuzkzct1Q1JXLPJHpItW6n9468Ikv1LrR8tdcueq5uHrY0lkR+AIACCIHBOnmD5G6HP+gdCDDMcfiN/u/g6+tsPhMSgI8VSw6T4jfzvHwgh5N/0Wf+bJDLOOJBIcg6R0eTi64gkUjAjFRMzkoBRLNJkqmSCn11xmcXP1ETzwQ+EKOBANfxGZvQHQqYMeKx/w9HPiaAJBDT2n1mm9otKZqn/SwOo6iDlgQyd6cFP+Z/DeHLyH4hM6c/uD2P36RMsn6WKmz8eJzRNmZj57/7tp7+VvteIzf17pDM7MFlQngFJKVOeP/RZEwVaZioCPVihQH8YTLLoCczA/vcKJatYN2C4owkQOSWUjD4QP+rKhDFLQGgmxRth3CcUpjKsFcg//jTwIjf4afDTjy1RxzKbcOgDtCZmTg1RYDIlIHbrXewFcnF/Q75loJarJE0Y50zMVkgp74QtGP7tx/g3iaQwlAkLBwhowxJqICbRnKoZaDKViixlpnCr0iiSmTCEidquDf/y3TsBQ0t/r2/BMjV+dSqfraNo3Vjl8a4DDVeOhEFCX1a+HCbgssLHRs59oi8syZI1zPF8QcasLlWUs+mg1SqGqS1YUpalZ1BAdKRoGuQp169fUaae5yyaFwM0aGUNwpDJksRsOgVl/8PSoVNa0T91Nb3LMufjNC70qnbYwhL773EOxbBEpxCxKYOYPM9BuL1T4j+hKWtQaEtBExlPDlqdMMiR1sb+cIhTDi/f2uYbZVEEWk8z/gDfMtDmlhoQ0XJAF037bI2S3YHp4Z+VAboARWdAuJvLWjGd4yDKAdHEyJxtxG7chP4lRfGnkVFAkzorPJAMV8KuaiFmhiVAUlBMxoP2DNmklQ5lSOI11ltkyGfBmYAbEcPLPagIhKEzuFdypkDrXsUkzaezDIlkknKwv3H6ghIBz2TG5YRyoiGSIqZqSZgFSpgmE7AE0zi2hEpCiaETDuvpvFdywaxPAvFXxQxc0ZRGzCy/CGb6pVNkyQSUpTEtMJBnC4JEHgXJLAw0YJ4Sgv+3mf6dqHwAGr82kQpo3DmNV1LoLDk2gUGpFYQ2ERd5bEQuQK3fjmeN02hpXTsSUUGMotETmctnkmTR3M6GTl+Zt2auZDabp5mx2yHTsGGTr2eZzpKDnLH1DNNZ8p1y6cj6YVWyGnXD98e03mXre+LTA6ScRdRSdkwfDDhNdaB8AuYZrG0VJEtjPDoxAwmhaQoUHQgmkGO5z6HR57A6u3EmKYAoR5jT6GeEith52KsjUyHNHFT+Cz+Z1/9b7HcD/47hsv0/w79HRYWmkaX7SoopZ5HpTQAvvPAp+A9EgUvnHBZQ8nbjDKzjZgpclNvNi9B0zutIiihT9ujbOFU+nHTM0DQBnE63Y0VPukoayt8qGy5ckGSdy2gYZ3/hfjuKoqqeBrY5kRmig9ievy29tB7w2U5s1WC9GWobbVprckdLbSC5VkqqPu1wy6OrU2wzEKCoaeIisar198fHe/Lru3dEG2oya9BjOOCAeyVFzNy+uppD9PSRMm5F3SHvkTmFPzfFKQk1BpLUcSsFNZUqsfs6oHNLv2HD3oOImZiVLOEVSsExSEBr5IyeX0aqABEbEJagVVPWOOokM+7nc7oAIqQhSzBkYlVcabADPQUaP86VNIbD9QJEb4v80CT9SBy8RID+IazXZI1DdnREDuT3LeatOVDymDlLmGmOZklBaH7PRk609b+prrBEOBacrucB6ve3KQdVHd+nIHiz94m+2F1x+N3Ldod5c3wEuWJPVxPA85I1aFSst2dudKadtJBYgkalQdOUL53aOY8hQafZcklbNjUzaZNmLdj0aEe5tS7aG2ZYIRGO1OajbC1mKqdlTpOPUq0yzxSsjmjqr00czjVuJ42DE+AB7yCuSE+mN6jwpvX46qzjMRek0Rd72yviIPe6JG96IV5fl3yiL6VTBsrvunNVnwGMw85Tczabg24+a66MVZP9LXLehnFrz2ivw7m6GDYzrfyTDXt0T64FbsGk7Du1vySHiT7i/fj15eiwdIWuL8b/JXmW4Ma8XFptdvihPwS9NPsLBQdoNHf7Q6b2vMukKJ9ifRQaXcTUWJd3gZC0PSbSaB6uNe+YUfJ8Qq2CY0IbKiI4I89zuz6mFFFQkCqwLNeVPzcEwbcdmB1rcOv1yhu3Db5L5li5+Zx2wRmrcAxGCWt+YM4XjaHfFYj2i4YlGyx2aR37w1pbxAPB/pFBBrcgZmbeEd4aV61xr8tdHsR6psygBErrUviEBJSsA0h6zE+8RXpFR7RVDdXN3z+X1yEF5U0KObn5fD86JTFwtgAFDnq+lvbDipWbuvO1j+FdX4785huQL3afPTMzL+cZuAFGo2G+R6Xgy21sKd9I9yKiNMHUyA0Lr8mJkCqhzoYbSd7/+o//qTlGp8V14mYp6IY3l5nS5pJyq8c64EaB6Z8Yc+XkPlOp1ICQTmbp+9MzUggo+ZwaliA3fh8OyYk2P5+6C6krycPfop9Pq8Q4emOwW39q+Ymbik4kRvqapDRSEFun88RKmgVhvaBSZKjyuTY/IwScWEFCmShdtE0sw1bSo5tFDi9jMDhoF2xTKGh/deh2nLZy4pwfyvmKPncHl47UiwXgQl1HpmplN3VJ1k3Mj0HQRowuD01Iv35qlWLnJGeThBlTvvvPffTo/WE+evT+mD761fvDfPQozQbI6UEa1Y+OjngdUQ7xeMolrX9hh9ziqiahnMsI7+Cvr96j3GUGyqEBqoD4O1NuD1Uk0xDuR4OzOFhLiFNC40zTWXOKdEOMY5f86FwGr+6/5Jou31hlbGiI7bey0sF3G96JMx69IAaKLyPKwB2jRYF5TrU9s6oMYqKZ/Qsz5Jlqwmkm0HFHnU6VqSfLlInRmUp5psdHIMpPVaUIL6fwUqpQeYJkAiNHpbOGUxH2Z1f3X65wBG+9/dshpslfoOSulOqxe8pQjxt0RCrS0kiw3StCGpJSFpNYPgtL8up6O2/AqRUzz6wCjTL0FmmcX2M6EppJFmCepXoaMDFIqTXazSf6Qyn1YxMFEbCFFTqBNstPT5gwoKY0Al3fdLvCHqegxhqiXuGXfHhU1Nal6ogSmZmjrECPuL/3JWBiMFka2Jn/zrn+jTT9qBVtOEAfewMH7nVZHPTSonRNhZWv11yVPvbLKyxLV2TETD8xObAe+NGW5dJvD+qdaos/N/jaSAVFNHJBGcc4vpH7UNPxopSQl9aiHyLwMHTkNSlnCPVITy+rErCXFqYPMlC2ZNqVUb/Kj/P1IMbeUtUmMLCGuI4XaD2RXeyiA+h1MtnHaq4Gb/aTxS6I6201V4g8fO/tQ69LYx1Ec4iexi4VtCNSHyCVymh7CsV0yQpSexJPqcbECGnm1Q9Daq3F5J8cANGYNFz9zMdZOdWGJExkZncix268I9PaByFhnlcgpXnFdiUmNxmRVPZ/spXnA44G65bNoP5GpX04SypfhWG7vco/ZQmdwYA174m96xDcDMMtF47vEoSM9GGoNviKqOnArkGH9RJuRMwiTKgOkhCDcanipVAt0wSE1UVr4mU50FSxBTUwiIUe1+rPdMBQPzoZ3o1w4sDeFc9+R5SsnrHhJbH+5xbQbu4XvxAaxwq0JlRrGTGMD+MN2F5YswlnUV8MxcFX+LmjVHpoHXIxMM7juLbKhUXk5j7/5MQy+JRMZOYM6D4sxS00iGTczM29FRGOW+fhmcsa//kf5xNmSCY0mwmM3uIkOyHtft0bkZKT1D3uIP8lKhPC/T89z4xhYnaOEdn/EgMqYQJl+r/WY8FyR+H/Qny6hSIzt/6t87esqu7LFPh50N0KZqHhcowfVuUF+DELvFzfNtd2ebUEtksaPYGIr6QQgM8GO3rsVV3KKB++zFYhTamACV8S0IZOONNz62z6F4vooEgaE397o3I/U8GMaYOZKEE2N+TT/v74eH8lYxh7isfv//yzYyrxxdn7P/8kCnQqhQb35iw8VMMEzwNBf+gH9IdeQf/SD+hfegX9az+gf+0F9PXtZZ9cjjizOgysakDQuop6ZY/uCLlHHmtQC1CdQPbvsrp5JFlPJvQ5g0W+C8IttGVC171aRVdpQfmG17sp41wuQHUHfTXHNLxZy7V6/kx9AhHNtMug1ZmaAfmWgbvMtup+g4wA5Wa+/F0Gph/6RqTK9Lkbvthg5V2HTj5W6NhROkaWsnLCaRdg17L5BAWcW7QC1GldWk4er8qf5nfywStUMgupqXSFD+tp/CJ6XpJMdLso3ZVGKVYDc7l8HY8zwkTI/jpzbiFmwtqvrDos6ACa4p27Y3+DqieZMIyvBGyUcUEHDbnn4w3IHGgMaoOFyKtmXtxeXkSGLaDw9NxCdsOioohmxenzeVPEimVZTilCcYxzxkWHk+Cqr5ezt/qR/T5VMzA7kh9ShW+vvnSVItxEdRVk7X3Uye3Vl9PyK7OLNH+ET27tLy+3ynaZpjt4Pt56CnheWciyx3681bxX0h4aoLNHN+tI9hfSYbrdFy2val189dCDanWoI55ZS+S+ueNrs07rw9N5A9rsCsd+vB3dwUwaRvPjeh+u6ePtqEIkE8ywsvfsDwUocTGL8TSfqwNCiQatsQxnCJtWCfYFiyhOhG765kPD+CN7gXj84E3fuA+ap3aK89y60pWIRRGt2AL2AWKmIDK9wFR+8E4AflF8fMsSZsbXWGUC4iNijmTGY/GjqT6UKh8cvjzchmuqfF0wYduKlnN/7IGC272j7KCC/K//2fH4+eHPP3uhtRRScURbrO4MilRLxWYYf12jDHY/8PcHf82xv0v8v/aJf00MoFP87971iP/dux6Bv+8T+PsegX/oE/iHHoH/0ifwX7oEfnO/+EfNwe7Dn2pwrVedBHxZbQFthttjhM4OX4Rf8jThdhHEhmNaHyx99QPaWxObX5CgzfLz4MOVfSzQtguwxlBplZQ5VkZytQqY0Q1FbUpDv24Mu1iUVvzPOFwvKM9ccl3X4DK+XVxmbAGuVJwLzymrNn1xB08MFWQusw1bvIfo0l4xpU1R0lpS/6EBiWKYIwYj7tykbzQQ8ZHL5y7DcBuCEFMunzU5qV4AnK7q+G06uwZ8/Hh13z94a6V6I+B2dAQCbke9EfBleIQV+DLsbgW+B923grn/WFqd+1Zm5lTEek6fgpvuS/r6C15RYCmKxIdjuDWlLloWLvg2OpyFKurL1VwjPhs9TidKIaKzU+HlMi24uXtzndfv6a5peiOO8hlhIuIZXg0/Xt3//eZ++41iFXpvC9IAvyz6m8ry43p8Fzu7TJHf306aNlB3dT92umv8ABq6DDCvJh1oMOTkYfR4Wn2H7d4w5RcAckfY17eXr4J537wfi9kJ06uz2rHXsdqx/dWyZ4K6K2qjSKFZjHkMPonjFRNJNqHLk0xWT0ScJpOYHnQackMc8SR0ixM2noJesVPkjVj425nuXUFrWrXz8qaZKK5V8G3LC0SZcZk5waSVmiO6j91trYjL/+nb9eqMG/cqLx96y6WkT5TumkhWMHB/bEOg8S0YA6ozlB+lIlQvRTRXUkis2RKAnrknHLV1cvJZ6VaBCUxUEFjkhiMGGp9zhOrTAyeZM54bTPwQtGEC5x66aoTLj5TxTHWSDNIbpTnonWjMVFd9ZPBZTl7H0CepUdO0k3QKIs79LmyN6YnY3iWiz71QSzSlWJjVN6fYcDdgrOGX6qKTWplWLtx6+o4SvlF4vk9DpQfXrUs7YfFlxvJ3lgoiqeJwWtjC2qv8wH6da6zOuZxLQJF7WSSOFoIArvfFBttuvRi1wFB6H6g/+oKiX0fkAWYNu9EhLMC73q6VM0Sg1X8rluJHX6YrgC+CJNEGR6ZUnLOR2m69mlYrRKSo1GHdm55o51Lpu1CEq0cWoDApyP4HZ9TvEVfkTE63sZXEbMHiwpGvl2hdQ3ZR468tA8reTLcXE7v4Mh2uZP4U4PUpshIcU1VdIdermfO1S8i0L73YcJ1BzYwaeKbLw64z8mHWOPGo26+KzvOu3V70RLC4o2XB3cUj8WNYZ5y6WiDOWjT32X9FTx3jNzfio5JJyZ/qWChqNcL8vi3zKb9uLvlHGyobF6BHyNbXwRvCf0w4gf/X/dUWzJ8z8yj75nNeLstXQV4B7y/9d2c1wu6R0/5pxEa0rZhdXONfOHe839v8wunHh1prKNkF7nURYu47AaEczW6NGA+U91KZCx7yMHsxJHVhwFRR12jHW3NCgyOeSrXBiQ5FoGXWszB4rwx7sGIVUyhl0/gkcfdsP5QDirn/ywZ77sKBQyXTPtCHaGOs8O1/g8bbCq1vG7JShfVgK1IB3ot22xlzK+XmcfdsS1ZqrnZhTcrQe+V45xal+YlJH688S9fzXlvUs/m2ausAWsWHtXVS8THbOj0MD2zrdFDJ+FBP0teF/2HDqu1SUL5tqfX/Xxr+2KXhY2rohGoYl7ZWL+SEiWoPqVY7JObIJnmRuAFVohHUXhWDfBeeh9AM944mcHLxcHeKIuB6jMV6O6iIU93Mq71gXZU1TLl8VejDQEVMEkikWhapP4ghfHF4ua2gaQk9i0EYNmUrdYm6IIHaZVXnOktTziAuFr+YdeAaRxZ/IMyRngn2LQMLwMl7/g07bCsSXX2/7sgb+XoTDmcwT6XiU0znlK6v0znGq51xDKmZN2Lbs5VHsdVkZjCwZE3MzWdNThTQ+O+VNqb6tNyai+LdoHNgmH5qxh4qUH7jY/eYaExnIMz4P3LSj8bwWSOjP27JyL1eurATEjthuQzI1pKNUwVAJxzGbvcctRh5EZAtCqAqKmKZBK57UGuRj7WRis6OVxh6HWyPg+h0bU06n5E/zjTEYzz7uSeOYxZ3KSMh8b80A7kZhj4j2rUZsRgG7sE24D3kvdRmpmD0x20zeMmt9z72DfIRtubSjDmdDZJJh/A5nc3wTt63bnQPOl1b/vAZuplS4123AZWgkv96cYsKJj9KtaLPaoExk1vrA++pf0IHyJLJZ/rJXQWubaS3DikyAznfoopxkPnYXxcfIvZ4M0zJg0X/4NemZHzsOlk5m7NQ6Nf5EmX7VF6bT8vRH7dn5BNVjA4vXc+XYr0q06zxPPQzTZ1//EqKwAJwe98lGfu2TxWK0aS7U4015xihyvWH9a4KZd5MZVlncDnTY5+wtrqah2xAFMwSKfYoUFIlduJWOwtN6/G3lrPoLffWtwwU21189kLn5yiuuraBioHGXEZP/cLKZwkZB7lbug2fK2KOZu21dp83vpX8/otMSVXRS1iMCSfbRIir+s9aVMHvriUL4zx0BahJbp5Km2kDykM9s8ZAYtUnasiv587Pywu+bSbT1cN/FTrd3sRtWiMzj7sdTia6h1xGlL+ykxiks6rsDSSpVFQtQ/N/a/Wsct0mpVzOmMBK8ZnqWVX5QwbOWFxgbdMHRWfVQSSThDXH2TrT9m6ONlq+BDAGDmtKrHdnjnCOXO+3QRfzfqENh7elZ7ktgCU9A2NCgzL6jGRpTA34RoCOk62QuoGOAXafBfYvYzuFl+udUCq91OkYG3PkV03Oplgf3fp3rqms1cDh1gNbMkbzSjMSq529ZUW33dpXr60LxbUHC8YeVZesYCKSiT0vnjy4wU8Lnig6nbKowU8v54Uju6JMG5mAKhyi8GPLuhAvHY7yP6MXYlV86TKDYuu4/Oy8M1fCynTJFpmZmUS2PPrRvx++WNeoj81cz3qmT7511qqTshWjBg5rLpc6Uzlujn1UjlOo/aJzc+yDDj3DfsFN6q3dcIm3YeS+UGxLj6bLqIuHgFtoxelB5ZswzpmvNruZjDaeRV80YLAuhikWDJSCcCpmmV2rk+Hw9jT3S9pS1sI16Yuyjd5LS3paOjD9khS2dEsaWmntDijoSqkH/C01el9rUFX6Ldegpd7vi4aqaWhJQzvr8AYFqeVxszfNWzmR7rgIeD3rY+wMA9CvFE8pBahlFGUpc0G/CRNULTGEEtzXhNpzyepdg4uwqY1XCiVy65de3V54NcTbSxMSOyGZMg7tou4l+PVrg97hH3RdUPqxHrjstl5jXCFToTxvePYrZthPWoQTb5GpEU7EW13bMjUTLqOnzppxNpNTIaMeyS8evDkk268eSgkj8WTsD/rjPtJj9kx4CZFi3+4kopw7HecPoMUtgP/mdkKVXHlieABdw0tiB9SEsycgXx9uHq8fiFTk4fpieP1w1iVwEDMmoOPWgdc0mlcud1UmPO/dfGeOsvolbukCFx/Sm6iZAIp0jr1JGZdut7vcJ/Wra1XcWgcJCm3wCt5jQXJnMCKZpNSwCePMLDfcb29cK0/qjMsJ5eN4khsWiMf5LWkrm7qF9Juy8vonTkuGXhnU38Q23pcWAIvE+VSxxBra4nlt862Nb12M2qX6/R25Y9WWC4BNQR2ZL4XAKIiltWLuuBrgqDJHnJtRY8hBpJc9Dsyw6Yry8DR6J9I5nbn3ljkcMQtH2k3ysKND6an2gw96pNMnjxxGX+UWeR/qxgl96Y7CcqpXlaRyQ8Q6eKeLrUpfvR4P7kItor8fqUx0TCoTb4HUCY2e8C3vOJpTMYOxq9KgB5ECt13VulP2oRmf+dTETe0LRGiCU4f6s1O2AJ/v6TpjYy7ENsu0lixsU9+pxxqZrFq/bR1ZlWSO3Ql4ZiKWzwM3T6fnnOkUFFjhKUudL7hVUOHmz3uPenrrn+9KBV8X+ztUmsLbSWo2wbReuE4o56FlxiaSp1i4wdVIdnUNw0RrkvZcXoRPHKLRU5aOFRjr30sx9pURuzT7jw2VINy8eY5GfoMZ+rfrLE2lckxKJRPmnIlzdCIV4OYgU6AmU4DeYvWCtBDaH3WYKCdwoyBUWKMFTfVcmlfjReTLtmJXK84DeQGX0zO04ciCyfYsBixI3ooBEY3mMJ4zM0ZXdDDJ7O7rkPbqU6zVokG+xot/B+Wmd6h2A+yKcY01dLl924F+QAgazCbc/syYpbhPW+QTtz915cqm8kIL09H92avcLXFN8nOsx0aOvceRujOm/sbHe2ZFtwyhzkoAW7iOD8NR+Tyc028kkWYOigjsx+G1x1ZDl6Uho23sMgbH7knja+kHu/3dO86lzFx8ySUyli3CjvEMv7I+p5TD1PREnIKEMjzwlx5xYBgTs/MakhAToDpzXTjr+Xm53v4wjinjy7A+P9SxtnlaWx+s9s4WP8sXo89Xt6MPhz26nWTRE5iBZn+9Vgomnt1zeXVOrYtPeGyNuJ23NJbTsZz8ByLT/d4qPUtzMzRgc7uI83yp8VnjGunzNuFQufPDlCQutLx4y3IWDKJ74d3jYmE3pdz8uoIuEj0gF7sdffBrd0YUzKiKOfiHqMt0jR3Osc869RhqmP95/VjDbYUryB4TTTRswZtmPeK9/9I53g1XsJ1AHl7fXj9ed416vi6DohPMv19fDHeS522yIHWfwvB5VJeGvVBuyOY4FGeBZHR9e331SD7jouPbb6voOpYKR8lYR1SIIz++qefTBSPrsbi7k53ZcQj1Ckym3gr5Acwx6Oesz91WPV3auXy9BYSOFG/2nmL5LLik8eusjFuWAgNutt1M9vMcFFQbybrUZ7xznsh4zXv0LH1tcgOC0DMX3a5SvzKL/ay95gRXGvyXl3olow7F7ZeXl2obWVefwhUG3WXd3I6jRYlYYHi0fkekIj9vJOzXPgn79eWl2l/2GISFfLMpU9qMrXC0uI05POssBXUeZA5DP3lEJPRuLkQSSy+Xq581scBIF22pbEos3YM5RRPIFe9mfqAjH043R2UJcJpql3GzhjW4VriRC3aE3ps0fKJDlfhNezc/D4rDantpcczaXqO75tper1j59j7D6pcj9lcXZeGtGISqFgloTWegSZr5Apvr68qNPo1GrkHFAzVdAVG+Lk+p9cXo0yjgIrHrlsDqj1DLuO5Q0X2efvK03OekdFuwb5VXdge4N95+D9yNiJEpi3ZAeycNplthgotvCtEf5IK9fBmYGnZLMwXu0mlih55grXYR471TW9I+4tvdvuhCBVDC7l8KGxmIbIuWcWM58znrum5pFXKtm+4ysBp/SqaIgqSSs2gn0V9Hw/mNWFDO4gtjFJtkXbVu64SqSg/hMM6PhOZQMYLPHAHk3NV9e6HWbp9Vfpv/gvyf0ec7V3g9kkpBZFwqY0LNxlL6W7l4J71u+W746FpECFliZ0v6HyBWbAHiUQ75t16pRah4/ZZI72w0tNnZS+08Sk9G/1RguWfxo/Uk96Rj9Gn0SQozf5RDamCUgjBfRsNOQEdzqmau2YFjd7UeJeaOWi82r2bok9EjykHEFJ/Kmrl//ONq1pWsdNMVwLcDXb5vR3X5/jiwnKuvSub5MaazVlfYHTyvSVMlX1iCRcaL/j0OFhFSnLtwc5w7Vv6Ot0EkCyfWL24MnC67S75as4nKgIpMAj83pjGtFqpSQFEWWZJAzKgBviYkktMipBkvmGar3mk3R+2qTnAGjEw5m83XxDRyZEdBVWefUQwWlBeHvx3lwYpSv0iDvLZCFs6r/ULLY6uTpVWQPK8W5Ks7eF+BuNcvWyDr1QLOXa95HAdjtIGHkKRmGYpf9FMqtMaei/ubwD7sbMXcDnfcJTQQsCYxDUShbo9+ob9yet6Nx+6jbp/FjP4YeZ1ZGbfy7ot10m6oOtTeLYf8MN9d26Gj9O2pMWe9rxh63fTX4yZXvDtjyptUHKk1RVtg3bOr0sJhP1R5m5RLTqOnueR9tZnI+6UUp8UlSewmte4VmYTpiZIrNZo3wL6TD/j9I4IOlgLBE1oHnF+D6UMT33CEvRWdlgng6eLNarYrynkfLXr8U1KI0cZXC+JZy+vyyjDsSKMIAazFGBoA9IETj7051nyZ8heYdZA+XzN8zZ1PpkwUKilmCQjtujZrLSOGpg0vzgrhWRXVRSoOEtRFKvYW03/d3719G/yYCQF8ZLq7dyg1BABicPgBvtazH7DIskWfkXeEiRgfnmoy/Pz1Ds+hP5f++OXe/eryn/f+J+VPr0ePF5e3N6Pfr4f4y3eE6aL8GOXcp10jmA0BOkf+kBq6xbjuTn/N/yj36bES4TmyA6JtVrUtpJV2SGU4/zcAAP//E71G2g==" }