forked from pressel/pycles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ScalarAdvection.pyx
186 lines (144 loc) · 9.5 KB
/
ScalarAdvection.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
cimport Grid
cimport PrognosticVariables
cimport ParallelMPI
cimport ReferenceState
cimport DiagnosticVariables
cimport TimeStepping
from NetCDFIO cimport NetCDFIO_Stats
from FluxDivergence cimport scalar_flux_divergence
from Thermodynamics cimport LatentHeat
import numpy as np
cimport numpy as np
import cython
cdef extern from "scalar_advection.h":
void compute_advective_fluxes_a(Grid.DimStruct *dims, double *rho0, double *rho0_half, double *velocity,
double *scalar, double* flux, int d, int scheme) nogil
void compute_qt_sedimentation_s_source(Grid.DimStruct *dims, double *p0_half, double* rho0_half, double *flux,
double* qt, double* qv, double* T, double* tendency, double (*lam_fp)(double),
double (*L_fp)(double, double), double dx, Py_ssize_t d)nogil
cdef class ScalarAdvection:
def __init__(self, namelist, LatentHeat LH, ParallelMPI.ParallelMPI Pa):
self.L_fp = LH.L_fp
self.Lambda_fp = LH.Lambda_fp
try:
self.order = namelist['scalar_transport']['order']
except:
Pa.root_print('scalar_transport order not given in namelist')
Pa.root_print('Killing simulation now!')
Pa.kill()
Pa.kill()
try:
self.order_sedimentation = namelist['scalar_transport']['order_sedimentation']
except:
self.order_sedimentation = self.order
return
cpdef initialize(self,Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
self.flux = np.zeros((PV.nv_scalars*Gr.dims.npg*Gr.dims.dims,),dtype=np.double,order='c')
#Initialize output fields
for i in xrange(PV.nv):
if PV.var_type[i] == 1:
NS.add_profile(PV.index_name[i] + '_flux_z',Gr,Pa)
NS.add_profile('s_flux_z_tendency',Gr,Pa)
NS.add_profile('qt_flux_z_tendency',Gr,Pa)
NS.add_profile('s_flux_xy_tendency',Gr,Pa)
NS.add_profile('qt_flux_xy_tendency',Gr,Pa)
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState Rs,PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t d, i, vel_shift,scalar_shift, scalar_count = 0, flux_shift
Py_ssize_t s_shift = PV.get_varshift(Gr,'s')
Py_ssize_t t_shift = DV.get_varshift(Gr,'temperature')
Py_ssize_t ql_shift, qv_shift, qt_shift
for i in xrange(PV.nv): #Loop over the prognostic variables
if PV.var_type[i] == 1: #Only compute advection if variable i is a scalar
scalar_shift = i * Gr.dims.npg
#No rescaling of fluxes
for d in xrange(Gr.dims.dims): #Loop over the cardinal direction
#The flux has a different shift since it is only for the scalars
flux_shift = scalar_count * (Gr.dims.dims * Gr.dims.npg) + d * Gr.dims.npg
#Make sure that we get the velocity components in the correct order
#Check for a scalar-specific velocity
sc_vel_name = PV.velocity_names_directional[d] + '_' + PV.index_name[i]
if sc_vel_name in DV.name_index:
vel_shift = DV.get_varshift(Gr, sc_vel_name)
if sc_vel_name == 'w_qt':
ql_shift = DV.get_varshift(Gr,'ql')
qt_shift = PV.get_varshift(Gr,'qt')
qv_shift = DV.get_varshift(Gr,'qv')
compute_advective_fluxes_a(&Gr.dims,&Rs.rho0[0],&Rs.rho0_half[0],&DV.values[vel_shift],
&DV.values[ql_shift],&self.flux[flux_shift],d,self.order_sedimentation)
scalar_flux_divergence(&Gr.dims,&Rs.alpha0[0],&Rs.alpha0_half[0],&self.flux[flux_shift],
&PV.tendencies[scalar_shift],Gr.dims.dx[d],d)
compute_qt_sedimentation_s_source(&Gr.dims, &Rs.p0_half[0], &Rs.rho0_half[0], &self.flux[flux_shift],
&PV.values[qt_shift], &DV.values[qv_shift], &DV.values[t_shift],
&PV.tendencies[s_shift], self.Lambda_fp,self.L_fp, Gr.dims.dx[d],d)
else:
# print(sc_vel_name, ' detected as sedimentation velocity')
#First get the tendency associated with the sedimentation velocity
compute_advective_fluxes_a(&Gr.dims,&Rs.rho0[0],&Rs.rho0_half[0],&DV.values[vel_shift],
&PV.values[scalar_shift],&self.flux[flux_shift],d,self.order_sedimentation)
scalar_flux_divergence(&Gr.dims,&Rs.alpha0[0],&Rs.alpha0_half[0],&self.flux[flux_shift],
&PV.tendencies[scalar_shift],Gr.dims.dx[d],d)
# now the advective flux for all scalars
vel_shift = PV.velocity_directions[d]*Gr.dims.npg
compute_advective_fluxes_a(&Gr.dims,&Rs.rho0[0],&Rs.rho0_half[0],&PV.values[vel_shift],
&PV.values[scalar_shift],&self.flux[flux_shift],d,self.order)
scalar_flux_divergence(&Gr.dims,&Rs.alpha0[0],&Rs.alpha0_half[0],&self.flux[flux_shift],
&PV.tendencies[scalar_shift],Gr.dims.dx[d],d)
scalar_count += 1
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t scalar_count = 0, i, d = 2, flux_shift, k
double[:] tmp
double [:] tmp_interp = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
double [:] tmp_tendency = np.zeros(Gr.dims.npg,dtype=np.double,order='c')
double [:] mean_tendency = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
for i in xrange(PV.nv):
if PV.var_type[i] == 1:
flux_shift = scalar_count * (Gr.dims.dims * Gr.dims.npg) + d * Gr.dims.npg
tmp = Pa.HorizontalMean(Gr, &self.flux[flux_shift])
for k in xrange(Gr.dims.gw,Gr.dims.nlg[2]-Gr.dims.gw):
tmp_interp[k] = 0.5*(tmp[k-1]+tmp[k])
NS.write_profile(PV.index_name[i] + '_flux_z', tmp_interp[Gr.dims.gw:-Gr.dims.gw], Pa)
if PV.index_name[i] == 's':
tmp_tendency[:] = 0.0
scalar_flux_divergence(&Gr.dims, &RS.alpha0[0], &RS.alpha0_half[0], &self.flux[flux_shift],
&tmp_tendency[0], Gr.dims.dx[d], d)
mean_tendency = Pa.HorizontalMean(Gr, &tmp_tendency[0])
NS.write_profile(PV.index_name[i] + '_flux_z_tendency', mean_tendency[Gr.dims.gw:-Gr.dims.gw], Pa)
#Now get x direction tendency
tmp_tendency[:] = 0.0
flux_shift = scalar_count * (Gr.dims.dims * Gr.dims.npg) + 0 * Gr.dims.npg
scalar_flux_divergence(&Gr.dims, &RS.alpha0[0], &RS.alpha0_half[0], &self.flux[flux_shift],
&tmp_tendency[0], Gr.dims.dx[0], 0)
#Next y direction
flux_shift = scalar_count * (Gr.dims.dims * Gr.dims.npg) + 1 * Gr.dims.npg
scalar_flux_divergence(&Gr.dims, &RS.alpha0[0], &RS.alpha0_half[0], &self.flux[flux_shift],
&tmp_tendency[0], Gr.dims.dx[1], 1)
mean_tendency = Pa.HorizontalMean(Gr, &tmp_tendency[0])
NS.write_profile(PV.index_name[i] + '_flux_xy_tendency', mean_tendency[Gr.dims.gw:-Gr.dims.gw], Pa)
elif PV.index_name[i] == 'qt':
tmp_tendency[:] = 0.0
scalar_flux_divergence(&Gr.dims, &RS.alpha0[0], &RS.alpha0_half[0], &self.flux[flux_shift],
&tmp_tendency[0], Gr.dims.dx[d], d)
mean_tendency = Pa.HorizontalMean(Gr, &tmp_tendency[0])
NS.write_profile(PV.index_name[i] + '_flux_z_tendency', mean_tendency[Gr.dims.gw:-Gr.dims.gw], Pa)
#Now get x direction tendency
tmp_tendency[:] = 0.0
flux_shift = scalar_count * (Gr.dims.dims * Gr.dims.npg) + 0 * Gr.dims.npg
scalar_flux_divergence(&Gr.dims, &RS.alpha0[0], &RS.alpha0_half[0], &self.flux[flux_shift],
&tmp_tendency[0], Gr.dims.dx[0], 0)
#Next y direction
flux_shift = scalar_count * (Gr.dims.dims * Gr.dims.npg) + 1 * Gr.dims.npg
scalar_flux_divergence(&Gr.dims, &RS.alpha0[0], &RS.alpha0_half[0], &self.flux[flux_shift],
&tmp_tendency[0], Gr.dims.dx[1], 1)
mean_tendency = Pa.HorizontalMean(Gr, &tmp_tendency[0])
NS.write_profile(PV.index_name[i] + '_flux_xy_tendency', mean_tendency[Gr.dims.gw:-Gr.dims.gw], Pa)
scalar_count += 1
return