-
Notifications
You must be signed in to change notification settings - Fork 0
/
notes.txt
102 lines (61 loc) · 2.03 KB
/
notes.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os
import json
import jsonlines
import re
import numpy as np
import pandas as pd
import scipy as sci
import scipy.stats
# import scipy.stats._stats_py
from scipy.stats import pearsonr
from PyPDF2 import PdfFileReader, PdfReader, PdfWriter
import io
import matplotlib.pyplot as plt
import igraph as ig
from igraph import Graph as Graph
import webbrowser
import urllib
from urllib.parse import quote, urlparse
import mpl_toolkits
from datetime import datetime, date, timedelta
import pickle
import requests
from bs4 import BeautifulSoup
import requests_html
from requests_html import HTML
from requests_html import HTMLSession
import sys
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import math
import itertools
from itertools import product
import nltk
# Should consider using in place of custom text parsers I've built
import gensim
from gensim.models import Word2Vec
# See https://pypi.org/project/gensim/
# See https://enjoymachinelearning.com/blog/finding-semantic-similarity-between-sentences-in-python/
import wayback
from wayback import WaybackClient
from htmldate import find_date
import webbrowser
import urllib
from urllib.parse import quote, urlparse
from urllib.request import Request, urlopen
from selectolax.parser import HTMLParser
# https://pypi.org/project/scholarly/. See site for citation if used in publication.
from scholarly import scholarly
# See https://pypi.org/project/pymed/
from pymed import PubMed
# See https://pypi.org/project/arxiv/
import arxiv
# See https://pypi.org/project/paperscraper/
from paperscraper.pubmed import get_and_dump_pubmed_papers
from paperscraper.arxiv import get_and_dump_arxiv_papers
from paperscraper.xrxiv.xrxiv_query import XRXivQuery
from paperscraper import dump_queries
from paperscraper.scholar import get_and_dump_scholar_papers, get_citations_from_title
from paperscraper.pdf import save_pdf
# See https://pypi.org/project/litstudy/, https://nlesc.github.io/litstudy/example.html
import litstudy